Supporting Information

A Mitochondria-Localized Iridium(III)-Chlorin E6 Conjugate for Synergistic

Sonodynamic and Two-Photon Photodynamic Therapy against Melanoma

Zhuoli Chen,^a Tao Feng,^a Jinchao Shen,^a Johannes Karges,^b Chengzhi Jin,^a Yukun Zhao,^{c*} Liangnian Ji,^a Hui Chao^{a,d,*}

^a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong
Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen
University, Guangzhou, 510006, P. R. China. E-mail: ceschh@mail.sysu.edu.cn
^b Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive,
La Jolla, CA 92093, United States.
^c Department of Dermatology, The Eastern Division of the First Affiliated Hospital, Sun Yat-Sen
University, Guangzhou, 510275, P. R. China. E-mail: zhaoyukun7288569@sina.com
^d MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry
and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R.

China.

Table of Contents

Scheme S1. Synthesis of IrCe6. a) SeO ₂ , dioxane, dark, Ar purge, 105 $^{\circ}$ C, 24 h; b) AgNO ₃ , NaOH, EtOH,
dark, rt, 24 h; c) pyBOP, DIEA, dry DMF, rt, 30 min; DCM, TFA, rt, 30 min. d) MeOH, H_2SO_4 , rt, 24 h; e)
pyBOP, DIEA, dry DMF, rt, 30 min; f) DCM, MeOH, 65 $^{\circ}\!\!\mathbb{C}$, dark, Ar purge, 6 h
Figure S1. HR-ESI-MS spectra of IrCe6 in MeOH. $m/z = C_{76}H_{78}IrN_{10}O_6$, 1419.5735 [M] ⁺ , found,
1419.5699, m/z = 710.2901 [M-H] ²⁺ , found, 710.28805
Figure S2. ¹ H-NMR spectrum of IrCe6 (400 MHz, Acetonitrile-d ₃)
Figure S3. ¹ H-NMR spectrum of Chlorin e6-bpy. (400 MHz, Chloroform-d)7
Figure S4. (a) Average effective diameter and zeta potential of NPs (n = 3). (b) Transmission electron
microscopy image of NPs. (c) Release kinetics of NPs in water under physiological (pH=7.4) or acidic
(pH=5.5) conditions (n = 3)
Figure S5. Change in absorption of DPBF at 416 nm upon incubation with Ir, IrCe6, or Ce6 (0.5 μ M) and
exposure to (a) ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm-2, 1 min) or (b) light irradiation
(405 nm, 0.5 J cm ⁻²)
Figure S6. UV-vis spectra of DPBF upon incubation with Ir, IrCe6, or Ce6 (0.5 μ M) and exposure to
ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm-2, 1 min), light irradiation (405 nm, 0.5 J cm ⁻²)
or the combination of ultrasound radiation and light irradiation 10
Figure S7. Determination of the singlet oxygen quantum yield of Ce6 and IrCe6 upon light irradiation
(405 nm, 0.5 J cm ⁻²)11
Figure S8. Representative flow cytometry results of the time-dependent cellular uptake of talaporfin,
IrCe6, or NPs in A375 cells using the APC channel
Figure S9. Representative flow cytometry results of the time-dependent cellular uptake of NPs in L02
cells or A375 cells using the APC channel
Figure S10. Confocal laser scanning microscopy images of A375 cells incubated with talaporfin or IrCe6
for 8 h and co-stained with Lyso-Tracker Green (LTG) or Mito-Tracker Green (MTG), Scale bars: 10 $\mu m.$
Figure S11. Confocal laser scanning microscopy images of the mixture of fluorescent dye
carboxyfluorescein diacetate succinimidyl ester (CFSE) labeled non-cancerous L02 cells and unlabeled
cancerous A375 cells, the mixture of cells was incubated with IrCe6 for 8 h. Scale bars: 10 $\mu m13$
Figure S12. Confocal imaging of A375 cells incubated with increased concentration of IrCe6 (0, 0.5, 1,
6, 12 $\mu M)$ for 8 h. The excitation wavelength for IrCe6 was set at 405 nm and the luminescence was
recorded from 650 to 680 nm. Scale bars: 10 $\mu m.$ 14
Figure S13. (a) Relative cell viability of A375 cells treated with ultrasound radiation (1 MHz, 50% duty
cycle) using various power intensities and radiation times. (b) Relative cell viability of A375 cells
incubated with increasing concentrations of talaporfin and exposure to ultrasound radiation (1 MHz,

50% duty cycle, 1.5 W cm⁻², 2 min) and/or light irradiation (405 nm, 0.5 J cm⁻²). (c) Relative cell viability of L02 cells incubated with increasing concentrations of **talaporfin** and exposure to ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm⁻², 2 min) and/or light irradiation (405 nm, 0.5 J cm⁻²). (d) Relative cell viability of L02 cells incubated with increasing concentrations of **NPs** and exposure to ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm⁻², 2 min) and/or light irradiation (405 nm, 0.5 J cm⁻²).

cm ⁻²)15
Figure S14. Relative caspase 3/7 activity of A375 cells incubated with NPs upon incubation in dark;
exposure to ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm ⁻² , 2 min); exposure to light
irradiation (405 nm, 0.5 J cm $^{-2}$), or exposure to a combination of ultrasound radiation and light
irradiation (n = 3)16
Figure S15. Biodistribution of NPs in major organs and tumor 4 h, 12 h, or 24 h after the administration
examined by ICP-MS (n = 3)17
Figure S16. H&E stained histopathologic slices of the major organs of A375 tumor xenograft mice after
various treatments. Scale bars: 50 $\mu m18$

Scheme S1. Synthesis of IrCe6. a) SeO₂, dioxane, dark, Ar purge, 105 $^{\circ}$ C, 24 h; b) AgNO₃, NaOH, EtOH, dark, rt, 24 h; c) pyBOP, DIEA, dry DMF, rt, 30 min; DCM, TFA, rt, 30 min. d) MeOH, H₂SO₄, rt, 24 h; e) pyBOP, DIEA, dry DMF, rt, 30 min; f) DCM, MeOH, 65 $^{\circ}$ C, dark, Ar purge, 6 h.

Figure S1. HR-ESI-MS spectra of **IrCe6** in MeOH. $m/z = C_{76}H_{78}IrN_{10}O_6$, 1419.5735 [M]⁺, found, 1419.5699, m/z = 710.2901 [M-H]²⁺, found, 710.2880.

Figure S2. ¹H-NMR spectrum of **IrCe6** (400 MHz, Acetonitrile-*d*₃).

Figure S3. ¹H-NMR spectrum of **Chlorin e6-bpy**. (400 MHz, Chloroform-*d*) δ 9.66 (s, 1H), 9.46 (s, 1H), 8.83 (s, 1H), 8.77 – 8.69 (m, 1H), 8.64 (d, *J* = 5.0 Hz, 1H), 8.11 (dd, *J* = 17.8, 11.5 Hz, 1H), 7.90 – 7.73 (m, 2H), 6.37 (d, *J* = 16.4 Hz, 1H), 6.16 (d, *J* = 11.4 Hz, 1H), 5.58 (d, *J* = 17.7 Hz, 1H), 5.30 (d, *J* = 16.3 Hz, 1H), 4.48 (q, *J* = 7.2 Hz, 1H), 4.36 (d, *J* = 9.6 Hz, 1H), 3.81 (s, 3H), 3.62 (s, 7H), 3.51 (s, 5H), 3.31 (s, 3H), 2.56 (dt, *J* = 15.7, 7.7 Hz, 1H), 2.44 (s, 1H), 2.27 – 2.14 (m, 2H), 1.92 (s, 1H), 1.81 – 1.61 (m, 13H), 1.43 (s, 1H), 1.30 (dd, *J* = 12.6, 6.7 Hz, 7H), 0.93 – 0.78 (m, 2H), -1.77 (s, 1H), -2.12 (s, 1H).

Figure S4. (a) Average effective diameter and zeta potential of **NPs** (n = 3). (b) Transmission electron microscopy image of **NPs**. (c) Release kinetics of **NPs** in water under physiological (pH=7.4) or acidic (pH=5.5) conditions (n = 3).

Figure S5. Change in absorption of DPBF at 416 nm upon incubation with **Ir**, **IrCe6**, or **Ce6** (0.5 μ M) and exposure to (a) ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm-2, 1 min) or (b) light irradiation (405 nm, 0.5 J cm⁻²).

Figure S6. UV-vis spectra of DPBF upon incubation with **Ir**, **IrCe6**, or **Ce6** (0.5 μ M) and exposure to ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm-2, 1 min), light irradiation (405 nm, 0.5 J cm⁻²) or the combination of ultrasound radiation and light irradiation.

Figure S7. Determination of the singlet oxygen quantum yield of **Ce6** and **IrCe6** upon light irradiation (405 nm, 0.5 J cm⁻²).

Figure S8. Representative flow cytometry results of the time-dependent cellular uptake of **talaporfin**, **IrCe6**, or **NPs** in A375 cells using the APC channel.

Figure S9. Representative flow cytometry results of the time-dependent cellular uptake of **NPs** in L02 cells or A375 cells using the APC channel.

Figure S10. Confocal laser scanning microscopy images of A375 cells incubated with **talaporfin** or **IrCe6** for 8 h and co-stained with Lyso-Tracker Green (LTG) or Mito-Tracker Green (MTG), Scale bars: 10 μm.

Figure S11. Confocal laser scanning microscopy images of the mixture of fluorescent dye carboxyfluorescein diacetate succinimidyl ester (CFSE) labeled non-cancerous L02 cells and unlabeled cancerous A375 cells, the mixture of cells was incubated with **IrCe6** for 8 h. Scale bars: 10 μ m.

Figure S12. Confocal imaging of A375 cells incubated with increased concentration of **IrCe6** (0, 0.5, 1, 6, 12 μ M) for 8 h. The excitation wavelength for IrCe6 was set at 405 nm and the luminescence was recorded from 650 to 680 nm. Scale bars: 10 μ m.

Figure S13. (a) Relative cell viability of A375 cells treated with ultrasound radiation (1 MHz, 50% duty cycle) using various power intensities and radiation times. (b) Relative cell viability of A375 cells incubated with increasing concentrations of **talaporfin** and exposure to ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm⁻², 2 min) and/or light irradiation (405 nm, 0.5 J cm⁻²). (c) Relative cell viability of L02 cells incubated with increasing concentrations of **talaporfin** and exposure to ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm⁻², 2 min) and/or light increasing concentrations of **talaporfin** and exposure to ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm⁻², 2 min) and/or light irradiation (405 nm, 0.5 J cm⁻²). (d) Relative cell viability of L02 cells incubated with increasing concentrations of **NPs** and exposure to ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm⁻², 2 min) and/or light irradiation (405 nm, 0.5 J cm⁻²).

Figure S14. Relative caspase 3/7 activity of A375 cells incubated with **NPs** upon incubation in dark; exposure to ultrasound radiation (1 MHz, 50% duty cycle, 1.5 W cm⁻², 2 min); exposure to light irradiation (405 nm, 0.5 J cm⁻²), or exposure to a combination of ultrasound radiation and light irradiation (n = 3).

Figure S15. Biodistribution of **NPs** in major organs and tumor 4 h, 12 h, or 24 h after the administration examined by ICP-MS (n = 3).

Figure S16. H&E stained histopathologic slices of the major organs of A375 tumor xenograft mice after various treatments. Scale bars: $50 \mu m$.