Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

## **Supplementary Material**

## Ru@Ni<sub>3</sub>S<sub>2</sub> Nanorod Arrays as Highly Efficient Electrocatalysts for Alkaline Hydrogen

## **Evolution Reaction**

Kefeng Wang,<sup>a\*</sup> Bin Li,<sup>a, b</sup> Jingxiao Ren,<sup>a</sup> Wenxia Chen,<sup>a</sup> Jinhai Cui,<sup>a</sup> Wei Wei,<sup>a</sup> Peng Qu<sup>a, b\*</sup>

<sup>*a*</sup> Henan Engineering Center of New Energy Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China <sup>*b*</sup> College of Chemistry, Zhengzhou University, Zhengzhou 450002, China



Figure S1 SEM images of blank nickel foam



Figure S2 SEM images of  $Ni_3S_2/NF$  (a, b) and  $Ru@Ni_3S_2$  (c, d) with different magnifications



Figure S3 SEM image and corresponding EDS mapping images of  $Ru@Ni_3S_2$ 



Figure S4 EDS spectrum of  $Ru@Ni_3S_2$  and the corresponding elemental contents.



Figrue S5 XPS spectra of Ru/NF, (a) survey spectrum, (b, c, d) high-resolution Ni 2p, Ru 3d and Cl 2p spectra.



Figure S6 SEM images of Ru nanoparticles directly deposited on nickel foam (Ru/NF).



Figure S7 Comparison of TOF values at different overpotentials of Ru@Ni<sub>3</sub>S<sub>2</sub> and Ru/NF



Figure S8 Cyclic voltammetry curves of Ru@Ni<sub>3</sub>S<sub>2</sub>, Ru/NF and Ni<sub>3</sub>S<sub>2</sub>/NF at different scan rates ranging from 5 mV s<sup>-1</sup> to 50 mV s<sup>-1</sup>.



**Figure S9** Cyclic voltammetry (CV) curves of different catalysts recorded in 0.1 M KOH electrolyte at a scan rate of 5 mV s<sup>-1</sup>.



Figure S10 (a) LSV curves (without IR-compensation) for  $Ru@Ni_3S_2$  in 1 mol/L KOH with the addition of 10 mmol/L EDTA or 10 mmol/L KSCN. (b) The corresponding overpotentials to deliver a current density of 10 mA cm<sup>-2</sup>.



Figure S11 Optimized structure models of Ru(001) at different stages during the HER process.



Figure S12 Long-term stability of  $Ru@Ni_3S_2$  by recording the overpotential variation at a constant current density of 20 mA cm<sup>-2</sup>.



Figure S13 High-resolution XPS spectra of Ru 3d and Ni 2p for Ru@Ni<sub>3</sub>S<sub>2</sub> after stability test.



Figure S14 SEM images of Ru@Ni<sub>3</sub>S<sub>2</sub> after long-term durability test.



Figure S15 SEM images of Ni<sub>3</sub>S<sub>2</sub>/NF after long-term durability test.



Figure S16 SEM images of PANI-Ru@Ni<sub>3</sub>S<sub>2</sub>



Figure S17 High-resolution Ru 3d and N 1s spectra of PANI-Ru@Ni<sub>3</sub>S<sub>2</sub>



Figure S18 SEM images of PANI-Ru@Ni<sub>3</sub>S<sub>2</sub> after long-term stability test.



Figure S19 High resolution Ni 2p and Ru 3d of PANI-Ru@Ni $_3$ S $_2$  (C 1s peaks omitted) before and after long-term stability test.

|                                                                                                | 10                               | palli                                                    |                                                    |
|------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------|----------------------------------------------------|
| Catalysts                                                                                      | $\frac{\eta@10}{\text{mA cm}^2}$ | Tafel<br>slope<br>(mV dec <sup>-</sup><br><sup>1</sup> ) | Ref.                                               |
| Ru@Ni <sub>3</sub> S <sub>2</sub>                                                              | 19.8                             | 33.2                                                     | This work                                          |
| PANI-Ru@Ni <sub>3</sub> S <sub>2</sub>                                                         | 24.5                             | 36.5                                                     |                                                    |
| Pt nanoparticle-decorated<br>Ni <sub>3</sub> S <sub>2</sub> microrod Array                     | 10                               | 73                                                       | ACS Appl. Mater. Interfaces, 2020, 12:39163-39169. |
| N-doped Ni <sub>3</sub> S <sub>2</sub>                                                         | 155                              | 113                                                      | Adv. Energy Mater., 2018, 8:<br>1703538            |
| Cu nanodots-decorated Ni <sub>3</sub> S <sub>2</sub><br>nanotubes                              | 128                              | 76.2                                                     | J. Am. Chem. Soc., 2018, 140:<br>610-617           |
| $MoS_2/Ni_3S_2$ Nanoarrays                                                                     | 76                               | 56                                                       | ACS Appl. Mater. Interfaces, 2018, 10: 1752-1760   |
| Ni <sub>3</sub> S <sub>2</sub> films grown on<br>nanoporous copper                             | 60.8                             | 67.5                                                     | Nano Energy, 2017, 36: 85-94.                      |
| N-anion decorated Ni <sub>3</sub> S <sub>2</sub>                                               | 110                              |                                                          | Adv. Mater., 2017, 29:<br>1701584                  |
| Fe-doped Ni <sub>3</sub> S <sub>2</sub> nanosheet array                                        | 47                               | 95                                                       | ACS Catal. 2018, 8,<br>5431–5441                   |
| hollow MoOx/Ni <sub>3</sub> S <sub>2</sub> composite microsphere                               | 106                              | 90                                                       | Adv. Funct. Mater., 2016, 26:<br>4839-4847         |
| $Ni_xCo_{3-x}S_4$ -decorated $Ni_3S_2$<br>nanosheet arrays                                     | 136                              | 107                                                      | Nano Energy, 2017, 35: 161-<br>170                 |
| CoSx/Ni <sub>3</sub> S <sub>2</sub>                                                            | 204                              | 133.32                                                   | ACS Appl. Mater. Interfaces, 2018, 10: 27712-27722 |
| Nitrogen-doped carbon dots/<br>Ni <sub>3</sub> S <sub>2</sub>                                  | 160                              | 127                                                      | Carbon, 2018, 129: 335-341                         |
| MoS <sub>2</sub> -Ni <sub>3</sub> S <sub>2</sub> Heteronanorods                                | 98                               | 61                                                       | ACS Catal., 2017, 7: 2357-<br>2366                 |
| Cu-doped Ni <sub>3</sub> S <sub>2</sub> nanoparticles                                          | 121                              | 86.2                                                     | Nanoscale, 2021, 13, 2456–<br>2464                 |
| $Ni_3Sn_2S_2$ dots-decorated thin $Ni_3S_2$ nanosheets                                         | 53.2                             | 73.2                                                     | Appl. Catal., B, 2020, 267:<br>118675              |
| amorphous NiWO <sub>4</sub><br>nanoparticles-decorated Ni <sub>3</sub> S <sub>2</sub>          | 136                              | 112                                                      | Appl. Catal., B, 2020, 274:<br>119120              |
| CoMo <sub>2</sub> S <sub>4</sub> /Ni <sub>3</sub> S <sub>2</sub>                               | 51                               | 69                                                       | Chem. Commun., 2021, 57,<br>785788                 |
| $Ni_3S_2$ nanosheets edged with $MoS_2$                                                        | 78                               | 68                                                       | Appl. Catal., B, 2020, 268:<br>118435              |
| CoS <sub>x</sub> -Ni <sub>3</sub> S <sub>2</sub>                                               | 120                              | 141                                                      | Appl. Catal., B, 2020, 269:<br>118780              |
| $Ni_3S_2$ -MoS <sub>2</sub> nanowire arrays                                                    | 99                               | 65                                                       | Chem. Commun., 2020, 56:<br>2471-2474              |
| δ-FeOOH/Ni <sub>3</sub> S <sub>2</sub>                                                         | 106                              | 82.6                                                     | J. Mater. Chem. A, 2020, 8:<br>21199–21207         |
| Co <sub>9</sub> S <sub>8</sub> /Ni <sub>3</sub> S <sub>2</sub> heterostructure nanowire arrays | 128                              | 97.6                                                     | Appl. Catal., B, 2019, 253:<br>246-252             |

 Table S1 Alkaline hydrogen evolution performance of Ni<sub>3</sub>S<sub>2</sub>-based hybrids formed on nickel foam

| Ni <sub>3</sub> S <sub>2</sub> /MnS                                              | 116 | 41 | Appl. Catal., B, 2019, 257:<br>117899        |
|----------------------------------------------------------------------------------|-----|----|----------------------------------------------|
| MoS <sub>2</sub> /Co <sub>9</sub> S <sub>8</sub> /Ni <sub>3</sub> S <sub>2</sub> | 113 | 85 | J. Am. Chem. Soc., 2019, 141:<br>10417-10430 |
| Ni(OH) <sub>2</sub> /Ni <sub>3</sub> S <sub>2</sub> nanoforests                  | 50  | 49 | Appl. Catal., B, 2019, 242: 60-<br>66        |

| Catalysts                                                                                               | $\begin{array}{c} \eta @ 10 \\ mA \ cm^{-2} \\ (mV) \end{array}$ | Tafel<br>slope<br>(mV dec <sup>-</sup><br><sup>1</sup> ) | Ref.                                             |  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|--|
| Ru@Ni <sub>3</sub> S <sub>2</sub>                                                                       | 19.8                                                             | 33.2                                                     | This work                                        |  |
| $PANI-Ru@Ni_3S_2$                                                                                       | 24.5                                                             | 36.5                                                     |                                                  |  |
| Ru SAs and NPs anchored on defective carbon                                                             | 18.8                                                             | 35.8                                                     | Adv. Sci., 2021, 2004516                         |  |
| carbon fiber cloth supported<br>RuNi nanoclusters                                                       | 43                                                               | 30.4                                                     | Nanoscale, 2021, 13: 13042-<br>13047             |  |
| two-dimensional RuBe<br>nanosheets                                                                      | 34.8                                                             | 28.9                                                     | Chem. Eng. J., 2021, 421:<br>129741              |  |
| Ru nanoclusters supported on N/S doped macroporous carbon spheres                                       | 32                                                               | 24                                                       | Nanoscale Adv., 2021, 3:<br>5068-5074.           |  |
| Ru decorated hollow N-doped carbon matrix                                                               | 49                                                               | 37                                                       | J. Mater. Chem. A, 2021, 9: 13958-13966          |  |
| Ru nanoparticles-anchored<br>sponge-like WNO embedded<br>in N-doped carbon layers                       | 24                                                               | 39.7                                                     | Nano Energy, 2021, 80, 105531.                   |  |
| RuP clusters encapsulated in N, P-doped carbon                                                          | 15.6                                                             | 31                                                       | Nano Res., 2021, 14: 4321-<br>4327.              |  |
| Ru nanoclusters on Co <sub>3</sub> O <sub>4</sub><br>porous nanowire                                    | 30.96                                                            | 69.75                                                    | Nano Energy, 2021, 85: 105940.                   |  |
| Ru cluster catalysts supported<br>on $Ti_3C_2T_x$ MXene                                                 | 96                                                               | 159                                                      | J. Phys. Chem. Lett., 2021, 12: 8016-8023.       |  |
| Phosphorus-modified<br>ruthenium–tellurium dendritic<br>nanotubes                                       | 35                                                               | 30.8                                                     | J. Mater. Chem. A 2021, 9: 5026-5032.            |  |
| Ru nanoclusters/N-doped graphene                                                                        | 25.9                                                             | 32.6                                                     | Carbon, 2021, 183: 362-367.                      |  |
| ruthenium decorated on S, N-<br>codoped carbon                                                          | 14                                                               | 28                                                       | J. Mater. Chem. A, 2021, 9: 16967-16973          |  |
| Air plasma treated Ru doped<br>CoNi-LDH                                                                 | 29                                                               | 69                                                       | Small 2021, 2104323                              |  |
| Ru nanoparticles confined in<br>3D nitrogen-doped porous<br>carbon                                      | 17                                                               | 42                                                       | Appl. Catal., B, 2021, 280:<br>119412            |  |
| Ru/RuO <sub>2</sub> hybrid nanoparticles<br>on MoO <sub>2</sub>                                         | 18                                                               | 50                                                       | J. Colloid Interface Sci., 2021,<br>604: 508-516 |  |
| Partially reduced Ru/RuO <sub>2</sub> composites                                                        | 17                                                               | 35                                                       | Energy Environ. Sci., 2021, 14: 5433-5443        |  |
| Ru nanoparticles supported on partially reduced TiO <sub>2</sub>                                        | 15                                                               | 49                                                       | Nano Energy, 2021, 106211.                       |  |
| Ru Nanoparticles on Boron-<br>Doped Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> (MXene)<br>Nanosheets | 62.9                                                             | 100                                                      | Small, 2021, 2102218                             |  |

 Table S2 Alkaline hydrogen evolution performance of Ru-based hybrids

| Ru nanoclusters anchored on<br>B/N–doped graphene             | 14 | 28.9 | Nano Energy, 2020, 68: 104301         |
|---------------------------------------------------------------|----|------|---------------------------------------|
| Ru on NiFe-P nanosheets                                       | 44 | 80   | Appl. Catal., B, 2020, 263: 118324    |
| Defect-rich copper-doped<br>Ruthenium hollow<br>nanoparticles | 25 | 50   | Chem Asian J, 2020, 15: 2868-<br>2872 |
| Ru nanoclusters/porous carbon                                 | 21 | 46.6 | Green Chem., 2020, 22: 835-<br>842.   |

Table S3 XPS peak parameters of Ru, Ni and S species in  $Ru@Ni_3S_2$ 

| Spe | ecies            | B.E. (eV) | FWHM | Relative peak<br>area (%) |
|-----|------------------|-----------|------|---------------------------|
| Du  | Ru <sup>0</sup>  | 280.5     | 1.35 | 46.9                      |
| Ru  | $Ru^{3+}$        | 281.6     | 1.35 | 53.1                      |
|     | Ni <sup>0</sup>  | 852.8     | 1.12 | 3.8                       |
| Ni  | Ni <sup>2+</sup> | 856.5     | 2.68 | 82.3                      |
|     | Ni <sup>3+</sup> | 859.3     | 2.68 | 13.9                      |
| S   | S-Ni             | 162.2     | 1.4  | 100                       |

Table S4 XPS peak parameters of Ru and Ni species in PANI-Ru@Ni<sub>3</sub>S<sub>2</sub>

| Spe | ecies            | B.E. (eV) | FWHM | Relative peak<br>area (%) |
|-----|------------------|-----------|------|---------------------------|
| Ru  | Ru <sup>0</sup>  | 280.5     | 1.62 | 55.9                      |
|     | Ru-N             | 282.1     | 1.62 | 44.1                      |
| Ni  | Ni <sup>2+</sup> | 856.5     | 2.60 | 81.5                      |
|     | Ni <sup>3+</sup> | 859.3     | 2.60 | 18.5                      |

Table S5 XPS peak parameters of Ru and Ni species in PANI-Ru@Ni\_3S\_2 after stability test

| Spe | cies             | B.E. (eV) | FWHM | Relative peak<br>area (%) |
|-----|------------------|-----------|------|---------------------------|
|     | Ru <sup>0</sup>  | 280.5     | 1.35 | 27.1                      |
| Ru  | $Ru^{x+}$        | 281.4     | 1.35 | 34.4                      |
|     | Ru-N             | 282.1     | 1.35 | 38.5                      |
| Ni  | Ni <sup>2+</sup> | 856.5     | 2.40 | 74.6                      |
|     | Ni <sup>3+</sup> | 859.3     | 2.40 | 25.4                      |