An efficient strategy to boost the directed migration of photogenerated holes by introducing phthalocyanine as a hole extraction layer

Qijing Bu,^a Qifeng Zhao,^a Guang Lu,^a Xixi Zhu,^a Yuexing Zhang,^c Tengfeng Xie,^{*b} Qingyun Liu^{*a} and Jianzhuang Jiang^{*d}

^a College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China

^b College of Chemistry, Jilin University, Changchun 130012, P. R. China

^c College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China

^d School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China **Surface photovoltage (SPV) spectra:** SPV spectra based on lock-in amplifier were carried out on a home-made system, which is consisted of a 500 W xenon lamp (LSH-X500, Zolix), a monochromator (Omnik5006, Zolix) and a lock-in amplifier (model SR830-DSP) with an optical chopper (model SR540) running at a frequency of 23 Hz. The construction of the SPV sample cell is a sandwich-like structure of FTO/mica/sample/FTO.

SPV transient measurements: SPV transient measurements were performed on a home-made instrument. The sample was excited by the laser radiation pulse with the wavelength of 355 nm from a Nd:YAG laser ((Q-smart 450, Quantel), and the response was collected by the digital phosphor oscilloscope (TDS 5054, Tektronix). The intensity of the pulse was adjusted by a neutral grey filter and measured with a Joule meter (Starlite, Ophir, Inc.).

Figure S1. XRD patterns of Ti-Fe₂O₃, Pc/Ti-Fe₂O₃, CoPi/Ti-Fe₂O₃ and CoPi/Pc/Ti-Fe₂O₃.

Figure S2. XPS spectra of (a) Fe 2p, (b) O 1s, (c) Ti 2p from Ti-Fe₂O₃. XPS spectra of (a) Fe 2p, (b) O 1s, (c) Ti 2p from CoPi/Pc/Ti-Fe₂O₃.

Figure S3. XPS spectra of C 1s (a) and N 1s (b) from Pc/Ti-Fe₂O₃. (c) XPS spectra of Fe 2p from Ti-Fe₂O₃ and Pc/Ti-Fe₂O₃.

The C 1s XPS spectrum is divided into three peaks at 284.5 eV, 285.9 eV and 288.1 eV, which are assigned to C-C, C-N and C=O of H₂Pc(COOH)₈. The N 1s XPS spectrum displays a peak at 399.5 eV, which is indexed to -NH of H₂Pc(COOH)₈. The binding energy of Fe 2p is shifted after the introduction of H₂Pc(COOH)₈, which indicates the electronic interaction between Pc and Ti-Fe₂O₃ resulted from the the chemical bonding.¹⁻³ The above results confirm the H₂Pc(COOH)₈ molecules are bonded with Ti-Fe₂O₃ successfully.

Figure S4. (a) Current density-potential (J-V) curves of CoPi/Pc/Ti-Fe₂O₃ with different concentrations of Pc(COOH)₈ solution. (b) Photocurrent density at 1.23 V vs. RHE and onset potential of CoPi/Pc/Ti-Fe₂O₃ with different concentrations of Pc(COOH)₈ solution. (c) Current density-potential (J-V) curves of CoPi/Pc/Ti-Fe₂O₃ with different temperature of hydrothermal reaction. (d) Photocurrent density at 1.23 V vs. RHE and onset potential of CoPi/Pc/Ti-Fe₂O₃ with different temperature of hydrothermal reaction. (d) Photocurrent density at 1.23 V vs. RHE and onset potential of CoPi/Pc/Ti-Fe₂O₃ with different temperature of hydrothermal reaction.

Figure S5. The XPS spectra of (a) C 1s and (b) N 1s from $CoPi/Pc/Ti-Fe_2O_3$ after the photostability measurement.

Figure S6. The absorbed photon-to-current efficiency (APCE) of Ti-Fe₂O₃, Pc/Ti-Fe₂O₃, CoPi/Ti-Fe₂O₃ and CoPi/Pc/Ti-Fe₂O₃.

The absorbed photon-to-current efficiency (APCE) was calculated according to the following equation:

$$APCE = \frac{IPCE}{LHE}$$
$$LHE = 1 - 10^{-A(\lambda)}$$

in which $A(\lambda)$ is the absorbance at wavelength λ .

Figure S7. The time-resolved photoluminescence (TRPL) decay curves of CoPi/Ti- Fe_2O_3 and CoPi/Pc/Ti- Fe_2O_3 with an excitation wavelength of 405 nm.

Composite	Phtocurrent density	Electrolyte	Ref	
CoPi/P-Fe ₂ O ₃	0.89 mA/cm ²	1 M NaOH	4	
CoPi/Fe ₂ O ₃ -PN	1.6 mA/cm ²	0.1 M KOH	5	
α -Fe ₂ O ₃ /Sb ₂ S ₃ /Co-Pi	1.14 mA/cm ²	1M NaOH	6	
CoPi/Al ₂ O ₃ /Ti-Fe ₂ O ₃	1.32 mA/cm ²	1 M KOH	7	
Co-Pi/h-FeOOH/Fe ₂ O ₃	1.31 mA/cm ²	1 M NaOH	8	
Co-Pi/Fe ₂ O ₃ -NaBH ₄	1.29 mA/cm ²	1 M NaOH	9	
Fe ₂ O ₃ /R-CN/CoPi	0.7 mA/cm ²	1 M NaOH	10	
CoPi/H ₂ -TiO ₂ /H ₂ -Fe ₂ O ₃	6.0 mA/cm ²	1 M KOH	11	
Fe ₂ O ₃ /FeB/CoPi	1.9 mA/cm ²	1 M NaOH	12	
CoPi/Co ₃ O ₄ /Fe ₂ O ₃	2.7 mA/cm ²	1 M KOH	13	
CoPi/Ag/Fe ₂ O ₃	4.68 mA/cm ²	1 M NaOH	14	
CoPi/Pc/Ti-Fe ₂ O ₃	1.72 mA/cm ²	1 M KOH	In	this
			work	Σ.

Table S1. Comparison of the photocurrent density of CoPi modified Fe_2O_3 in the reported literatures with our result at 1.23 V vs. RHE under AM 1.5 G illumination

Table S2. Theoretical calculation results about HUMO and LOMO of Pc(COOH)₈

Table S3. The binding mode geometry of Ti-Fe₂O₃ and Pc(COOH)₈

-22.03046060

-17.80578118

-77.95679623

Sample	$R_{ct1}\left(\Omega ight)$	$\mathrm{R}_{\mathrm{ct2}}\left(\Omega ight)$
Ti-Fe ₂ O ₃	556.6	3151.0
Pc/Ti-Fe ₂ O ₃	169.6	758.1
CoPi/Ti-Fe ₂ O ₃	139.2	648.1
CoPi/Pc/Ti-Fe ₂ O ₃	136.2	481.3

Table S4. The fitted resistances of $Ti-Fe_2O_3$, $Pc/Ti-Fe_2O_3$, $CoPi/Ti-Fe_2O_3$ and $CoPi/Pc/Ti-Fe_2O_3$ photoanodes

REFERENCE

(1) Yu, M.-M.; Wang, C.; Li, J.; Yuan, L.; Sun, W.-J. Facile fabrication of CuPp-TiO₂ mesoporous composite: An excellent and robust heterostructure photocatalyst for 4-nitrophenol degradation. *Appl. Surf. Sci.* **2015**, *342*, 47-54.

(2) Wei, M.; Wan, J.; Hu, Z.; Peng, Z.; Wang, B. Enhanced photocatalytic degradation activity over TiO₂ nanotubes co-sensitized by reduced graphene oxide and copper (II) meso-tetra(4-carboxyphenyl)porphyrin. *Appl. Surf. Sci.* **2016**, *377*, 149-158.

(3) Gao, H.; Wang, J.; Jia, M.; Yang, F.; Andriamitantsoa, R. S.; Huang, X.; Dong, W.; Wang, G. Construction of TiO₂ nanosheets/tetra (4-carboxyphenyl) porphyrin hybrids for efficient visible-light photoreduction of CO₂. *Chem. Eng. J.* **2019**, *374*, 684-693.

(4) Wu, D.; Zhang, Z. Simultaneous non-metal doping and cocatalyst decoration for efficient photoelectrochemical water splitting on hematite photoanodes. *Electrochim. Acta* **2018**, *282*, 48-55.

(5) Liu, G.; Li, N.; Zhao, Y.; Wang, M.; Yao, R.; Zhao, F.; Wu, Y.; Li, J. Porous versus Compact Hematite Nanorod Photoanode for High-Performance Photoelectrochemical Water Oxidation. *ACS Sustainable Chem. Eng.* **2019**, *7* (13), 11377-11385.

(6) Chen, D.; Liu, Z.; Zhou, M.; Wu, P.; Wei, J. Enhanced photoelectrochemical water splitting performance of alpha-Fe₂O₃ nanostructures modified with Sb₂S₃ and cobalt phosphate. *J. Alloy. Compd.* **2018**, *742*, 918-927.

(7) Xu, D.; Bu, Q.; Wang, D.; Xie, T. Enhanced photoelectrochemical water oxidation performance by altering the interfacial charge transfer path. *Inorg. Chem. Front.* **2017**, *4* (8), 1296-1303.

(8) Xiao, J.; Fan, L.; Huang, Z.; Zhong, J.; Zhao, F.; Xu, K.; Zhou, S.-F.; Zhan, G. Functional principle of the synergistic effect of co-loaded Co-Pi and FeOOH on Fe₂O₃ photoanodes for photoelectrochemical water oxidation. *Chinese J. Catal.* **2020**, *41* (11), 1761-1771.

(9) Xiao, J.; Fan, L.; Zhao, F.; Huang, Z.; Zhou, S.-F.; Zhan, G. Kinetic analysis of the synergistic effect of NaBH₄ treatment and Co-Pi coating on Fe₂O₃ photoanodes for photoelectrochemical water oxidation. *J. Catal.* **2020**, *381*, 139-149.

(10) An, X.; Hu, C.; Lan, H.; Liu, H.; Qu, J. Strongly Coupled Metal

Oxide/Reassembled Carbon Nitride/Co-Pi Heterostructures for Efficient Photoelectrochemical Water Splitting. *ACS Appl. Mater. Interfaces* **2018**, *10* (7), 6424-6432.

(11) Jeon, T. H.; Moon, G.-h.; Park, H.; Choi, W. Ultra-efficient and durable photoelectrochemical water oxidation using elaborately designed hematite nanorod arrays. *Nano Energy* **2017**, *39*, 211-218.

(12) Liao, A.; He, H.; Fan, Z.; Xu, G.; Li, L.; Chen, J.; Han, Q.; Chen, X.; Zhou, Y.; Zou, Z. Facile room-temperature surface modification of unprecedented FeB cocatalysts on Fe₂O₃ nanorod photoanodes for high photoelectrochemical performance. *Journal Of Catal.* **2017**, *352*, 113-119.

(13) Yi, S.-S.; Wulan, B.-R.; Yan, J.-M.; Jiang, Q. Highly Efficient Photoelectrochemical Water Splitting: Surface Modification of Cobalt-Phosphate-Loaded Co₃O₄/Fe₂O₃ p-n Heterojunction Nanorod Arrays. *A Adv. Funct. Mater.* 2019, 29 (11), 1801902.

(14) Peerakiatkhajohn, P.; Yun, J.-H.; Chen, H.; Lyu, M.; Butburee, T.; Wang, L. Stable Hematite Nanosheet Photoanodes for Enhanced Photoelectrochemical Water Splitting. *Adv. Mater.* **2016**, *28* (30), 6405-6410.