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Synthesis of Meso-Mn1FenOx

Meso-Mn1FenOx with different Fe/Mn ratios were synthesized via a facile co-

precipitation route. Firstly, 0.5 g polyethylene oxide–polypropylene oxide–

polyethylene oxide (P123) was dissolved in 50 ml deionized water (DW). Then, 

MnCl2·4H2O (1 mmol) and FeCl3 (0.4 - 1.2 mmol) were added to the above solution 

under stirring. Afterwards, Na2CO3 solution was slowly added. When the reaction was 

complete, the mixture was filtered and washed with DW and ethanol. Finally, the 
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obtained precursor was dried at 35 °C for 12 h to obtain Meso-Mn1FenOx. For 

comparison, Meso-MnOx and Meso-FeOx were synthesized following a process similar 

to that for Meso-Mn1FenOx.

Characterization

Transmission electron microscope (TEM) images were observed by a HITACHI 

HT7700. High-resolution TEM (HRTEM) images were recorded on a JEM-2100 

transmission electron microscope (Tokyo, Japan) at 200 kV. SEM images were 

recorded on a HITACHI SU8020 field emission scanning electron microscope. The 

valence state was determined using XPS recorded on a Thermo ESCALAB 250Xi. The 

X-ray source selected was monochromatized Al Kα source (15 kV, 10.8 mA). Region 

scans were collected using a 30 eV pass energy. Peak positions were calibrated relative 

to C 1s peak position at 284.6 eV.

Electrochemical measurements

All electrochemical measurements were performed on a CHI760E 

electrochemical working station at room temperature. The catalysts were 

measured in 1.0 M KOH aqueous solution using a typical three-electrode 

configuration, in which glassy carbon electrode (GCE) was used as the working 

electrode; platinum plate and saturated calomel electrode (SCE, saturated KCl) 

were used as the counter and reference electrodes, respectively. Linear sweep 

voltammetry (LSV) polarization curves were acquired at a scan rate of 1 mV·s−1 
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with 90% iR-compensation. Electrochemical impedance spectroscopy (EIS) 

measurements were performed at open-circuit potential in the frequency range 

from 100 kHz to 0.1 Hz with an a.c. perturbation of 5 mV. All potentials 

measured were calibrated to RHE using the following equation: E (versus RHE) 

= E (versus SCE) + 0.241 V + 0.0591 pH.

Computational methods

Spin-polarized DFT calculations were performed using the Vienna Ab initio 

Simulation Package.1, 2 The generalized gradient approximation with the PBE 

functional3 was used to describe the exchange and correlation energy. Electron−ion 

interactions were treated by the projector augmented wave method.4 In all calculations, 

the energy cutoff of the plane-wave basis set was 400 eV. DFT+U method was applied 

to 3d orbitals of Fe and Co to correct the on site Coulomb interactions.5 Ueff = 5 eV 

were used for both Fe and Mn to reproduce the electronic structure that has been 

observed experimentally.6 Brillouin zone was sampled by Monkhorst-Pack k-point 

meshes.7 Optimized structures were obtained by minimizing the forces on each ion until 

they fell below 0.05 eV/Å. The solvation effects were also considered using an implicit 

solvation model implemented in VASP.8 The relative permittivity for the continuum 

solvent was set to 80 to simulate a water environment. The OER activities of various 

active sites are evaluated using the computational hydrogen electrode method.9
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Figure S1. XRD patterns of Meso-MnOx, Meso-Mn1Fe0.8Ox, Meso-Mn1Fe1Ox, and 

Meso-Mn1Fe1.2Ox.
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Figure S2. SEM images of (a) Meso-Mn1Fe0.8Ox, (b) Meso-Mn1Fe1.2Ox, (c) FeOx and 

(d) MnOx.
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Figure S3. TEM images of (a) FeOx and (b) MnOx.
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Figure S4. SAED pattern of Meso-Mn1Fe1Ox.
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Figure S5. Element mapping of O.
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Figure S6. SEM-EDS of the Meso-Mn1Fe1Ox supported on copper grid.
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Figure S7. (a) OER polarization curves of Meso-Mn1FenOx. (b) Tafel slopes.
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Figure S8. CV of Meso-Mn1Fe1Ox in 1 M KOH at scan rates of 10–100 mV s−1.
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Figure S9. OER polarization curves of (a) Meso-FeOx, (b) Meso-MnOx, and (c) Meso-

Mn1Fe1Ox in three-electrode configuration in 1 M KOH at 20 °C, 30 °C, 40 °C, 50 °C, 

and 60 °C.
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Figure S10. (a) CVs of Meso-FeOx measured in a non-Faradaic region at scan rate of 

20 mV s-1, 40 mV s-1, 60 mV s-1, 80 mV s-1, and 100 mV s-1. (b) The cathodic (black) 

and anodic (red) currents measured at 1.234 V vs RHE as a function of the scan rate. 

The average of the absolute value of the slope is taken as the double-layer capacitance 

of the electrode.
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Figure S11. (a) CVs of Meso-MnOx measured in a non-Faradaic region at scan rate of 

20 mV s-1, 40 mV s-1, 60 mV s-1, 80 mV s-1, and 100 mV s-1. (b) The cathodic (black) 

and anodic (red) currents measured at 1.234 V vs RHE as a function of the scan rate. 

The average of the absolute value of the slope is taken as the double-layer capacitance 

of the electrode.
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Figure S12. (a) CVs of Meso-Mn1Fe1Ox measured in a non-Faradaic region at scan rate 

of 20 mV s-1, 40 mV s-1, 60 mV s-1, 80 mV s-1, and 100 mV s-1. (b) The cathodic (black) 

and anodic (red) currents measured at 1.234 V vs RHE as a function of the scan rate. 

The average of the absolute value of the slope is taken as the double-layer capacitance 

of the electrode.
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Figure S13. (a) Nyquist plots of the EIS test for Meso-FeOx, Meso-MnOx, and Meso-

Mn1Fe1Ox. (b) Nyquist plots of the EIS test for Meso-Mn1FenOx. (c) The equivalent 

circuit used for fitting the Nyquist plots. Rs, Rct and Rint represent the series resistance, 

charge-transfer resistance and solid-electrolyte interface resistance, respectively; and 

the parameters of CPE1 and CPE2 correspond to the double-layer capacitance and the 

Faradic capacitance, respectively.
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Figure S14. XRD pattern of the used Mn1Fe1Ox.
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Figure S15. TEM image of the used Mn1Fe1Ox.
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Figure S16. (a) SEM image and (b) EDS spectrum of the used Mn1Fe1Ox supported 

on copper grid.
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Figure S17. (a) XPS survey spectrum of the used Mn1Fe1Ox. (b) High-resolution Fe 2p 

XPS spectrum. (c) High-resolution Mn 2p XPS spectrum. (d) High-resolution O 1s XPS 

spectrum.
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Table S1 Comparison of OER performance of Meso-Mn1Fe1Ox with other MnFe-based 

catalysts in 1.0 M KOH

catalyst
η @ 10mA cm-2 

(mV)

Tafel slope (mV dec-

1)
Ref.

Meso-Mn1Fe1Ox 275 52 This work

Mn-Fe oxide/CC 730 80 10

Mn0.5Fe2.5O4NP/MC 560 129 11

MnFe2O4NP/MC 510 88 11

Fe/Mn-N-C 360 60 12

Fe1.1Mn0.9P 440 62 13

MnFe2O4/NF 310 65 14

MnFe2O4 582 71 15

Fe–Mn–O NS/CC 273 63.9 16

Mn-Fe2O3 351 102 17

a-Fe-Mn:Pi 252 52 18

α-Mn1- xFexO2 400 59 19

Mn0.5(Fe0.3Ni0.7)0.5 340 - 20

Fe2O3-MnO/NF 370 66 21

Mn-FeOOH/FTO 246 71 22

Fe-MnSe/NF 247 35 23

Mn@HUST-8 485 240.8 24

P-FeMnOx 251 - 25
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