Supplementary Materials:

Fabrication dual-functional electrodes of oxygen vacancy abundant NiCo₂O₄ nanosheets for advanced hybrid supercapacitors and Zn-ion

batteries

Jinhe Wei, ^a Jiaqing Guo, ^c Siyu Wang, ^a Ning Ding, ^a Pengcheng Xu, ^a Ping Wang, ^a Dandan Han, ^{*a} Yen Wei ^{*b} and Xiaohong Yin ^{*c}

^a College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China

^b Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, China

^c School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China

*Corresponding author.

E-mail address: handandan@jlict.edu.cn (D.H.); weiyen@tsinghua.edu.cn (Y.W.); yinxiaohong@tjut.edu.cn (X.Y.)

Preparation of Co₃O₄ nanosheets

The electrodes of Co₃O₄ and ZnCo₂O₄ are synthesized using a similar method. For the preparation the Co₃O₄ on Ni foam, the used 2.5 mmol Co(NO₃)₂·6H₂O, 5 mmol of NH₄F and 12.5 mmol C₆H₁₂N₄ were dissolved in a mixed solution of 30 mL of H₂O stirring for 30 min. After that, the mixed solution was sealed and kept at 120 °C for 5 h. The Co₃O₄ nanowires were obtained by calcination of the Co precursor at 350 °C for 2 h at a rate of 2 °C·min⁻¹.

Preparation of ZnCo₂O₄ nanosheets

For the synthesis of ZnCo₂O₄ on Ni foam, the used 1 mmol Zn(NO₃)₂·6H₂O, 5 mmol Co(NO₃)₂·6H₂O, 2 mmol of NH₄F and 5 mmol C₆H₁₂N₄ were dissolved in a mixed solution of 40 mL of H₂O stirring for 30 min. After that, the mixed solution was sealed and kept at 120 °C for 5 h. The ZnCo₂O₄ nanowires were obtained by calcination of the Zn-Co precursor at 400 °C for 2 hours at a rate of 2 °C·min⁻¹.

Figure S1 (a, b) SEM image of the NiCo₂O₄ samples.

Figure S2 (a, b) SEM image of the V-NiCo₂O₄-3 samples.

Figure S3 (a, b) SEM image of the V-NiCo₂O₄-5 samples.

Figure S4 TEM images and (d) high-resolution TEM image of NiCo₂O₄.

Peak identity	2P _{1/2}	2P _{1/2}	2P _{3/2}	2P _{3/2}	2P _{1/2}	2P _{1/2}	2P _{3/2}	2P _{3/2}	0	0	0
Materials	Co ²⁺	C0 ³⁺	C0 ²⁺	C0 ³⁺	Ni ²⁺	Ni ³⁺	Ni ²⁺	Ni ³⁺	Ι	п	Ш
NiCo ₂ O ₄	0.48	0.52	0.53	0.47	0.43	0.57	0.60	0.40	0.26	0.37	0.42
V-NiCo ₂ O ₄ -4	0.63	0.37	0.68	0.32	0.52	0.48	0.63	0.37	0.32	0.55	0.13

Table S1 XPS peak area ratios of NiCo₂O₄ and V-NiCo₂O₄-4.

Figure S5 (a) UV-vis absorbance spectra of $NiCo_2O_4$ and V- $NiCo_2O_4$ -4 samples; (c) The experimental bandgaps of $NiCo_2O_4$ and V- $NiCo_2O_4$ -4 samples.

Figure S6 The atomic structure of $NiCo_2O_4$ (a) and V-NiCo_2O_4-4 (b); Minority spin channel in $NiCo_2O_4$ (c) and V-NiCo_2O_4-4 (d).

Figure S7 (a, b) electrons density image of $NiCo_2O_4$ and V- $NiCo_2O_4$ -4; (c, d) electron density difference of $NiCo_2O_4$ and V- $NiCo_2O_4$ -4.

Figure S8 (a, c, e) CV curves of NiCo₂O₄, V-NiCo₂O₄-3, V-NiCo₂O₄-5 electrodes at different scan rates; (b, d, f) GCD curves of the NiCo₂O₄, V-NiCo₂O₄-3, V-NiCo₂O₄-5 electrodes at different specific currents.

Figure S9 XRD patterns of Co₃O₄ and Co₃O₄-4.

Figure S10 XRD patterns of ZnCo₂O₄ and V-ZnCo₂O₄-4.

Figure S12 EPR spectra of ZnCo₂O₄ and V-ZnCo₂O₄-4.

ure S13 (a) CV curves of Co_3O_4 and Co_3O_4 -4 at the scan rate of 10 mV·s⁻¹; (b) Specific discharge capacitance at different current densities of Co_3O_4 and Co_3O_4 -4 h.

Figure S14 (a) CV curves of ZnCo₂O₄ and V-ZnCo₂O₄-4 at the scan rate of 10 mV·s⁻¹; (b) Specific discharge capacitance at different current densities of ZnCo₂O₄ and V-ZnCo₂O₄-4.

Figure S15 (a) CV curves of AC; (b) GCD curves of AC; (c) EIS curve of AC.

Figure S16 (a) GCD curves of the V-NiCo₂O₄ -4//AC HSC device at different voltages (from 1.5 to 1.8 V) at a specific current of 30 mA·cm⁻²; (b) EIS curves of the asassembled V-NiCo₂O₄-4//AC HSC device.

Material	Electrolyte	Performance	Cycling stability of Device	Sr.	
	v		v o v	No	
L-CuCo ₂ O ₄	3 M KOH	$139.72 \text{mAh} \cdot \text{g}^{-1}$ at 1 A · g^{-1}	85.5% after 10000 cycles	1	
150-N:ZnCo ₂ O ₄	3 М КОН	422.73 mAh·g ⁻¹ at 5 A·g ⁻¹	95.4% after 3000 cycles	2	
OV-MgCo ₂ O ₄	3 М КОН	54.11 mAh·g ⁻¹ at 1 A·g ⁻¹	82% after 10000 cycles	3	
OV-ZnCo ₂ O ₄	6 M KOH	293.14 mAh·g ⁻¹ at 1 A·g ⁻¹	No cycling	4	
ZnMoO ₄ -OV	6 M KOH	209.12 mAh·g ⁻¹ at 1.4 A·g ⁻¹	87.4% after 10000 cycles	5	
P-NiMoO ₄	1 M KOH	142.88 mAh·g ⁻¹ at 1.4 A·g ⁻¹	98.7% after 5000 cycles	6	
N-Bi ₂ MoO ₆	6 M KOH	$155.13 \text{ mAh} \cdot \text{g}^{-1}$ at 0.5 A $\cdot \text{g}^{-1}$	79% after 10000 cycles	7	
Ov-NiMn-LDH	2 M KOH	$32.8.6 \text{ mAh} \cdot \text{g}^{-1}$ at 1 A $\cdot \text{g}^{-1}$	No cycling	8	
Co ₃ O ₄ @Co/NC- HN	3 M KOH	273.9 mAh·g ⁻¹ at $1 \text{ A} \cdot \text{g}^{-1}$	92.6% after 4000 cycles	9	
v-Co ₃ O ₄ /CC	2 M LiOH	51.75 mAh·g ⁻¹ at 1 A·g^{-1}	81.4% after 5000 cycles	10	
N-GNTs@OV- Bi2O3	6 M KOH	196.47 mAh·g ⁻¹ at 1 A·g ⁻¹	85% after 10000 cycles	11	
Vo-NiCo LDH	6 M KOH	217.1 mAh·g ⁻¹ at 1 A·g^{-1}	75% after 10000 cycles	12	
MoO _{3-x}	1 M H ₂ SO ₄	273.33 mAh·g ⁻¹ at 5 A·g ⁻¹	75% after 10000 cycles	13	
Pd-Co ₃ O ₄	6 M KOH	$181.92 \text{ mAh} \cdot \text{g}^{-1}$ at 2 .06 A $\cdot \text{g}^{-1}$	92.5% after 4000 cycles	14	
L-CoFe ₂ O ₄ /C	2 M KOH	66.67 mAh·g ⁻¹ at 1 A·g^{-1}	No cycling	15	
Ov-MnO ₂ @ MnO ₂	1 M Na ₂ SO ₄	$125.67 \text{ mAh} \cdot \text{g}^{-1}$ at 1 A · g^{-1}	82% after10000 cycles	16	
α -MnO ₂	1 M KOH	$204.53 \text{ mAh} \cdot \text{g}^{-1}$ at 1 A $\cdot \text{g}^{-1}$	80.6% after10000 cycles	17	
LOV-MnO ₂	1 M Na ₂ SO ₄	$126.42 \text{ mAh} \cdot \text{g}^{-1}$	92.2% after10000 cycles	18	
V-NiCo ₂ O ₄ -4	2 M KOH	751.67 mAh·g ⁻¹ at 1 A·g ⁻¹	91.9% after 10000 cycles	This work	

 Table S2. Comparison of the similar device properties of the oxygen-deficient metal oxide as cathode

Figure S17 EIS curves of the as-assembled V-NiCo₂O₄-4//Zn batteries.

References

[1] Y. M. Feng, W. F. Liu, Y. Wang, W. N. Gao, J. T. Li, K. L. Liu, X. P. Wang and J. Jiang, *J. Power Sources*, 2020, **458**, 228005.

[2] I. K. Moon, S. Yoon, B. Ki, K. Choi and J. Oh, *ACS Appl. Energy Mater.*, 2018, 1, 4804-4813.

[3] H. Z. Wang, N. Y. Mi, S. F. Sun, W. G. Zhang and S. W. Yao, *J. Alloys Compd.*, 2021, **869**, 159294.

[4] K. Xiang, D. Wu, Y. Fan, W. You, D. D. Zhang, J. L. Luo and X. Z. Fu, *Chem. Eng. J.*, 2021, **425**, 130583.

[5] P. X. Li, J. P. Wang, L. M. Li, S. L. Song, X. M. Yuan, W. Q. Jiao, Z. Hao and X. L. Li, *New J. Chem.*, 2021, **45**, 9026.

[6] F. F. Wang, K. Ma, W. Tian, J. C. Dong, H. Han, H. P. Wang, K. Deng, H. R. Yue,Y. X. Zhang, W. Jiang and J. Y. Ji, *J. Mater. Chem. A*, 2019, 7, 19589-19596.

[7] T. Ma, S. M. Jin, X. D. Kong, M. Lv, H. Wang, X. Y. Luo, H. F. Tan, Z. W. Li, Y. Zhang, X. H. Chang and X. L. Song, *Appl. Surf. Sci.*, 2021, **548**, 149244.

[8] Y. Q. Tang, H. M. Shen, J. Q. Cheng, Z. B. Liang, C. Qu, H. Tabassum and R. Q. Zou, *Adv. Funct. Mater.*, 2020, **30**, 1908223.

[9] L. D. Wang, X. F. Li, S. S. Xiong, H. J. Lin, Y. C. Xu, Y. Jiao and J. R. Chen, J. Colloid Interface Sci., 2021, 600, 58-71.

- [10] S. Dai, F. F. Han, J. Tang and W. H. Tang, *Electrochim. Acta*, 2019, 328, 135103.
- [11] J. Zhao, Z. Li, T. Shen, X. Yuan, G. Qiu, Q. Jiang, Y. Lin, G. song, A. Meng and Q. Li, *J. Mater. Chem. A*, 2019, **7**, 7918-7931.

[12] H. Y. Liang, H. A. Jia, T. S. Lin, Z. Y. Wang, C. Li, S. L. Chen, J. L. Qi, J. Cao, W.
D. Fei and J. C. Feng, *J. Colloid Interface Sci.*, 2019, **554**, 59-65.

[13] Q. L. Wu, S. X. Zhao, L. Yu, X. X. Zheng, Y. F. Wang, L. Q. Yu, C. W. Nan and G. Z. Cao, J. Mater. Chem. A, 2019, 7, 13205-13214.

[14] J. X. Hao, S. L. Peng, H. Q. Li, S. Dang, T. F. Qin, Y. X. Wen, J. J. Huang, F. Ma, D. Q. Gao, F. Li and G. Z. Cao, *J. Mater. Chem. A*, 2018, 6, 16094-16100.

[15] Y. Zhao, Y. G. Xu, J. Zeng, B. Kong, X. W. Geng, D. W. Li, X. Gao, K. Liang, L. Xu, J. B. Lian, S. Q. Huang, J. X. Qiu, Y. P. Huang and H. M. Li, *RSC Adv.*, 2017, 7, 55513-55522.

[16] Y. S. Fu, X. Y. Gao, D. S. Zhang, J. W. Zhu, X. Ouyang and X. Wang, *J. Mater. Chem. A*, 2018, **6**, 1601-1611.

[17] Y. C. Chen, C. B. Zhou, G. Liu, C. X. Kang, L. Ma and Q. M. Liu, *J. Mater. Chem. A*, 2021, **9**, 2872-2887.

[18] P. Cui, Y. X. Zhang, Z. Cao, Y. P. Liu, Z. H. Sun, S. T. Cheng, Y. Wu, J. C. Fu and E. Q. Xie, *Chem. Eng. J.*, 2021, **412**, 128676.