Electronic Supplementary Information (ESI)

2-Dimensional Rare Earth Metal-Organic Frameworks based on a hexanuclear secondary building unit as efficient detectors for vapours of nitroaromatics and volatile organic compounds

Nikos Panagiotou^a, Francisco García Moscoso^b, Tânia Lopes-Costa^b, José María Pedrosa^{b*}, Anastasios J. Tasiopoulos^{a*}

^aDepartment of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus. E-mail: atasio@ucy.ac.cy

^bDepartment of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain.

Table of Contents

Experimental Part	3
Physical Measurements/Characterization of UCY-15(RE) (RE: Y, Eu, Gd, Tb, I	Dy, Ho, Er) 5
Gas Sorption Measurements	15
Photoluminescence Studies	19
Thin film characterisation and sensing studies	21
References	34

Experimental Part Synthesis of analytes used in sensing studies

2,4,6-Trinitrotoluene

TNT was synthesized by mononitration of DNT with a mixture of concentrated sulfuric and fuming nitric acid in a 5:2 ratio (V/V). The DNT:nitric acid molar *ratio* is calculated to be 1:2. The flask is slowly heated to 110 °C, and the reaction is allowed to occur for 1 h. The mixture is cooled to 80 °C and then distilled water is gently added. The mixture is transferred to a separation funnel, and the upper layer is separated and washed sequentially with distilled water and sodium carbonate solution. The so-obtained solid is recrystallized in an ethanol/toluene (95%, 5%) solution, weighted and purified with sodium sulfite solution with a TNT:sulfite molar ratio of 10:1. A small aliquot is dissolved in ethanol and analyzed with an ion trap spectrometer (HCT, Bruker-Daltonics). The mass (MS) and fragmentation (MS/MS) spectra recorded in positive mode is consistent with the results reported in the literature.¹

Triacetone triperoxide

A 1:1 molar ratio mixture of acetone and aqueous 30% wt hydrogen peroxide was placed in an ice bath to keep the temperature of the mixture at 0-5°C all the time. Under magnetic stirring, 37% wt HCl (1.3 equivalents) was added drop by drop. After 1 hour, a white precipitate had formed. Next, the product was filtered, washed with cold distilled water, and dried in air. Finally, the product was recrystallized in dichloromethane and characterized by mass spectrometry which proved the obtention of the desired product.²

Compound	UCY-15(Y)	UCY-15(Eu)	UCY-15(Gd)	UCY-15(Tb)	UCY-15(Dy)	UCY-15(Ho)
Empirical formula	$\begin{array}{c} C_{28}H_{16}NO_{22}S_{2}\\ Y_{3} \end{array}$	$\begin{array}{c} C_{28}H_{16}NO_{22}S_{2}\\Eu_{3}\end{array}$	$\begin{array}{c} C_{28}H_{16}NO_{22}S_2\\Gd_3\end{array}$	$\begin{array}{c} C_{28}H_{16}NO_{22}S_{2}\\ Tb_{3} \end{array}$	$\begin{array}{c} C_{28}H_{16}NO_{22}S_{2}\\ Dy_{3} \end{array}$	$\begin{array}{c} C_{28}H_{16}NO_{22}S_{2} \\ Ho_{3} \end{array}$
Formula weight	1049.27	1238.45	1254.29	1259.3	1270.04	1277.33
Temperature / K	104(2)	105(4)	102.8(9)	103.8(9)	103.8(8)	105(1)
Wavelength / Å	1.54184	1.54184	1.54184	1.54184	1.54184	1.54184
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C 2/m	C 2/m	C 2/m	C 2/m	C 2/m	C 2/m
a / Å	29.232(8)	29.457(2)	29.272(2)	29.298(6)	29.243(1)	29.360(9)
b / Å	18.441(8)	18.607(8)	18.611(1)	18.510(4)	18.498(1)	18.475(6)
c / Å	14.630(4)	14.691(1)	14.579(6)	14.423(3)	14.460(3)	14.691(6)
$\alpha = \gamma / o$	90	90	90	90	90	90
β/°	104.3(3)	103.8(5)	103.9(5)	103.5(2)	103.8(2)	104.3(3)
Volume / Å ³	7642.3(5)	7819.7(8)	7708.8(7)	7605.3(3)	7598.0(3)	7721.7(4)
Z	4	4	4	4	4	4
d _{calc} ./ g/cm ³	0.912	1.054	1.078	1.1	1.11	1.099
Absorption						
coefficient /	3.885	17.869	17.333	14.381	16.448	6.394
F(000)	2064	2352	2364	2376	2388	2400
Reflections collected	14335	14902	17267	15142	14568	23966
Independent reflections	6989	7205	7786	7006	7010	7092
Completenes	99.20%	99.80%	99.80%	99.90%	99.80%	99.50%
s to $\theta =$	[R(int) =	[R(int) =	[R(int) =	[R(int) =	[R(int) =	[R(int) =
66.999°	0.0594]	0.0559]	0.0741]	0.0344]	0.0403]	0.0416]
Data / restraints / parameters	6989 / 16 / 262	7205 / 16 / 262	7786 / 16 / 262	7006 / 25 / 262	6997 / 22 / 262	7092 / 1 / 262
Goodness- of-fit	1.068	0.98	1.039	1.01	1.027	1.083
Final R indices [I > 2σ(I)]	$\begin{array}{l} R_{obs.} = \\ 0.0849, wR_{obs.} \\ = 0.2560 \end{array}$	$R_{obs.} = 0.0680, \ wR_{obs.} = 0.1867$	$\begin{array}{l} R_{obs.} = \\ 0.0845, wR_{obs.} \\ = 0.2423 \end{array}$	$\begin{array}{l} R_{obs.} = \\ 0.0479, wR_{obs.} \\ = 0.1359 \end{array}$	$\begin{array}{l} R_{obs.} = \\ 0.0513, wR_{obs.} \\ = 0.1467 \end{array}$	$\begin{array}{l} R_{obs.} = \\ 0.0588, wR_{obs.} \\ = 0.1792 \end{array}$
R indices [all data]	$R_{all} = 0.1199,$ $wR_{all} = 0.2814$	$R_{all} = 0.0790,$ $wR_{all} = 0.1951$	$R_{all} = 0.1119,$ $wR_{all} = 0.2833$	$\begin{array}{c} R_{all} = 0.0565, \\ wR_{all} = \\ 0.1402 \end{array}$	$\begin{array}{c} R_{all} = 0.0583, \\ wR_{all} = \\ 0.1517 \end{array}$	$\begin{array}{l} R_{all} = 0.0655, \\ wR_{all} = \\ 0.1893 \end{array}$

 Table S1: Selected Crystal Data for UCY-15(RE).

$$\label{eq:aR} \begin{split} {}^{a}R = \Sigma ||F_{o}| {-}|F_{c}|| \ / \ \Sigma |F_{o}|, \ wR = \{ \Sigma [w(|F_{o}|^{2} - |F_{c}|^{2})^{2}] \ / \ \Sigma [w(|F_{o}|^{4})] \}^{1/2} \ \text{and} \\ {}^{b}w = 1/[\sigma^{2}(F_{o}{}^{2}) {+}(mP)^{2} {+}nP] \ \text{where} \ P = (Fo^{2} {+} 2Fc^{2})/3 \ \text{and} \ m \ \text{and} \ n \ \text{are constants} \end{split}$$

Physical Measurements/Characterization of UCY-15(RE) (RE: Y, Eu, Gd, Tb, Dy, Ho, Er)

Figure S1: Powder X-ray diffraction pattern of the as synthesized compounds UCY-15(RE), along with the simulated pattern of UCY-15(Y) from the single crystal data.

Figure S2: IR spectra of H₂SDBA and the as synthesized compounds UCY-15(RE).

Functional Group	IR freque	ency (cm ⁻¹)
	H ₂ SDBA	UCY-15(RE)
v(O-H), H ₂ O	-	~3400
v(=С-Н)-р	3099, 864	866
ν (-CH ₃ DMF)	-	2927, 2852
v(C=O, DMF)	-	1660
$v(C=O)_{ant}$	1685	1630
v(C=O) _{sym}	-	1406
$v(N-O), NO_{3}^{-}$	-	1384
ν (S=O) _{ant}	1278	1296
v(S=O) _{sym}	1159	1161

 Table S2: IR peaks assignment.

Figure S3: ¹H-NMR spectrum of as synthesized **UCY-15**(Y) digested in 0.5M KOH in D₂O. These data indicate the presence of the organic ligand SDBA²⁻ as well as HFBA and DMF molecules in **UCY-15**(Y). ¹H NMR (D₂O): δ 4.79 (s, residual solvent peaks), δ 2.74 (s, 3H, CH₃, DMF), δ 2.9 (s, 3H, CH₃, DMF), δ 7.82 (s, H, CHO, DMF), δ 7.05-7.51 (m, 4H, Ar-H, FBA⁻), δ 7.86-7.89 (d, 4H, Ar-H, SDBA²⁻), δ 7.91 – 7.94 (d, 4H, Ar-H, SDBA²⁻).

Figure S4: ¹⁹F-NMR spectrum of as synthesized **UCY-15**(Y) digested in 0.5M KOH in D₂O. These data indicate the presence of the modulator HFBA and F⁻ anions in **UCY-15**(Y). ¹⁹F NMR (D₂O): δ -116.44 (HFBA), δ -121.99 (F⁻).^{3,4}

Determination of the amount of F⁻ anions per $(Y^{3+})_6$ SBU in bulk UCY-15(Y) microcrystalline powder: In order to quantify the amount of F⁻ anions per $(Re^{3+})_6$ SBU ¹⁹Fq-NMR measurements were performed. For this purpose, a trifluoroacetic acid (TFA) solution in D₂O was used as an external standard. Prior the ¹⁹Fq-NMR experiment, the concentration of the trifluoroacetic acid (TFA) solution was determined using NaF solutions with known concentration. Afterwards microcrystalline powder of UCY-15(Y) (~ 10 – 15mg in each experiment) was digested in a 0.5M KOH solution and then 500 µL of the resulting solution was transferred to the NMR tube along with the microprobe tube containing the external standard (the known concentration trifluoroacetic acid (TFA) solution). The experiment was repeated three times.⁵

Figure S5: ¹⁹Fq-NMR calibration spectra of the TFA solution external standard using NaF solutions of known concertation. TFA concentration was found equal to 4.4 ± 0.6 mM. ¹⁹F NMR (D₂O): δ -75.71 (TFA), δ -121.99 (F⁻).

Figure S6: ¹⁹Fq-NMR spectra of as synthesized **UCY-15**(Y) digested in 0.5M KOH in D₂O along with the TFA solution external standard. These studies indicated that **UCY-15**(Y) contains $\sim 2.9 \pm 0.4$ F⁻ anions / (Y³⁺)₆ SBU. Moreover, the quantity of the trapped HFBA molecules was found to be $\sim 0.29 \pm 0.04$ HFBA / (Y³⁺)₆ SBU. ¹⁹F NMR (D₂O): δ -75.71 (TFA), δ -116.44 (FBA⁻), δ -121.99 (F⁻).

Figure S7: TGA graphs of the as synthesized compounds UCY-15(RE) ((a) RE = Y, (b) RE = Eu, (c) RE = Gd, (d) RE = Tb, (e) RE = Dy, (f) RE = Ho, (g) RE = Er). TG analysis reveals that the thermal decomposition of compounds UCY-15(RE) proceeds via a two-step process. The first step (until ~460-480°C) is attributed to the removal of the terminal water molecules and lattice DMF molecules. The second mass loss which is completed at ~650°C for UCY-15(RE) is attributed to the decomposition of the ligand OBA²⁻. Lastly the residual mass at 900°C corresponds to the rare earth oxide of the corresponding RE^{III} ion. Details on calculated values for solvent removal and ligand decomposition along with the experimental values obtained from TG analysis are shown in Table S2.

Figure S8: Variable temperature powder X-ray diffraction patterns of activated UCY-15(Y).

Table S3: Calculated values for solvent removal and ligand combustion along with the experimental values obtained from TG analysis for the assynthesized compounds UCY-15(RE).

Lattice Solvent Removal		Ligand Combustion		Residual Oxide				
Compound	Temperature (°C)	Experimental (Calculated) (%)	xDMF	Temperature (°C)	Experimental (Calculated) (%)	Temperature (°C)	Experimental (Calculated) (%)	Formula
UCY-15(Y)	r.t 480	29 (29)	10	480 - 680	46 (47)	900	25 (24)	Y_2O_3
UCY-15(Eu)	r.t 460	31 (32)	14	460 - 630	37 (38)	900	32 (30)	Eu_2O_3
UCY-15(Gd)	r.t 460	32 (32)	14	460 - 650	37 (38)	900	31 (31)	Gd_2O_3
UCY-15(Tb)	r.t 460	35 (35)	16	460 - 690	33 (34)	900	32 (31)	$\mathrm{Tb}_{4}\mathrm{O}_{7}$
UCY-15(Dy)	r.t 470	32 (33)	15	470 - 680	36 (37)	900	32 (31)	Dy_2O_3
UCY-15(Ho)	r.t 470	33 (33)	15	470 - 650	36 (36)	900	31 (31)	Ho ₂ O ₃
UCY-15(Er)	r.t 470	34 (35)	17	470 - 670	35 (35)	900	29 (30)	Er_2O_3

Figure S9: Powder X-ray diffraction patterns of as synthesized UCY-15(Y) treated (as described in the experimental part) in CHCl₃ and MeCN for 10 days.

Figure S10: ¹H-NMR spectra of **UCY-15**(Y) after treatment with a) CHCl₃ and b) MeCN digested in 0.5M KOH in D₂O. These data indicate the absence of DMF molecules and the presence of the organic ligand SDBA²⁻ as well as HFBA in **UCY-15**(Y). ¹H NMR (D₂O):a) δ 7.88-7.91 (d, 4H, Ar-H, SDBA²⁻), δ 7.92 – 7.95 (d, 4H, Ar-H, SDBA²⁻). b) δ 2.02 (s, 3H, CH₃CN), δ 4.9 (s, residual solvent peaks), δ 7.94 – 7.97 (d, 8H, Ar-H, SDBA²⁻), δ 7.99 – 8.02 (d, 4H, Ar-H, SDBA²⁻).

Gas Sorption Measurements

Figure S11: BET plot from N₂ adsorption isotherm at 77K for UCY-15(Y).

Figure S12: Langmuir plot from N₂ adsorption isotherm at 77K for UCY-15(Y).

Figure S13: N₂ adsorption isotherm recorded at 77K and the corresponding NLDFT fitting for UCY-15(Y).

Figure S14: Pore size distribution curve of UCY-15(Y) calculated by NLDFT.

Low pressure CO₂, sorption isotherms, determination of heat of adsorption.

Heat of adsorption: To calculate heats of adsorptions, the corresponding adsorption isotherms at three different temperatures (273 K, 283K and 293 K) were simultaneously fitted using the virial type^{6,7} Equation 1:

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$
⁽¹⁾

The heat of adsorption at zero coverage was calculated from Equation 2, where as a function of surface coverage, from Equation 3:

$$Q_{st} = -Ra_o$$

$$Q_{st}(N) = -R\sum_{i=0}^{m} a_i N^i$$
(2)
(3)

For the determination of the isosteric heat of adsorption using the Clausious - Clapeyron equation a commercially available software, ASiQwin (version 3.01) purchased from Quantachrome, was used.

Figure S15: CO₂ adsorption isotherm of UCY-15(Y) at 273 K, 283K and 298 K.

Figure S16: Virial type fitting of CO₂ adsorption isotherms of **UCY-15**(Y) at 273 K, 283 K and 298 K according to equation 1.

Figure S17: CO₂ isosteric heat of adsorption in UCY-15(Y) as a function of surface coverage.

Photoluminescence Studies

Figure S18: Normalized solid state excitation ($\lambda_{em} = 433 \text{ nm}, 23095 \text{ cm}^{-1}$) and emission spectra ($\lambda_{exc} = 325 \text{ nm}$) of the as synthesized compounds **UCY-15**(Y) and **UCY-15**(Gd) and excitation ($\lambda_{em} = 427 \text{ nm}$) and emission spectra ($\lambda_{exc} = 338 \text{ nm}$) of Na₂SDBA.

Figure S19: The decay of a) UCY-15(Eu) and b) UCY-15(Tb) at the indicated $\lambda_{em.}$

In the case of UCY-15(Eu), it is possible to calculate the radiative lifetime, τ_R , of Eu³⁺ from the analysis of the lanthanide emission profile using eqn. (1)⁸ where $A_{MD,0}$ is the probability of spontaneous emission of the ${}^5D_0 \rightarrow {}^7F_1$ transition *in vacuo* (14.65 s⁻¹), *n* is the refractive index of the material (estimated at 1.5⁹) and ${}^{I_{tot}/I_{MD}}$ is the ratio of the total integrated intensity of the Eu³⁺ emission to the area of the ${}^5D_0 \rightarrow {}^7F_1$ band. With the use of eqn. (2) we obtained a value of $\tau_R^{Eu} = 2.66$ ms which led to an estimated value for the emission quantum yield of the Eu³⁺ ion, $\Phi_{Eu}^{Eu} = \tau_{obs}/\tau_R$, of *ca*. 38%.

$$\frac{1}{\tau_R} = A_{MD,0} n^3 \left(\frac{I_{tot}}{I_{MD}} \right)$$
(2)

Thin film characterisation and sensing studies

Figure S20: μ-XRD diffractogram of UCY-15(Y)@PDMS.

Figure S21: Photoluminescence emission spectra of UCY-15(Y)@PDMS films before (black line) and after (red line) exposure to saturated vapours of the indicated analytes.

Figure S22: Photoluminescence emission spectra of UCY-15(Eu)@PDMS films before (black line) and after (red line) exposure to saturated vapours of the indicated analytes.

Figure S23: Photoluminescence emission spectra of **UCY-15**(Tb)@PDMS films before (black line) and after (red line) exposure to saturated vapours of the indicated analytes.

Figure S24: Powder X-ray diffraction patterns of the compound UCY-15(Y) and doped analogues UCY-15($Y_{100-x-y}Eu_xTb_y$) (x, y = 5, 7.5, 10) along with the simulated pattern from single crystal data of UCY-15(Y).

Figure S25: Normalized solid state emission spectra ($\lambda_{exc} = 325$ nm) of the as synthesized compounds UCY-15(Y_{100-x-y}Eu_xTb_y) (x, y = 5, 7.5, 10). In each luminescence spectrum a broad band at ~430nm due to SDBA²⁻ emission as well as sharp bands at 578, 591, 613, 651, 699 nm due to Eu³⁺and 487, 543 and 582 nm due to Tb³⁺ ions, are observed.

Figure S26: Chromaticity coordinates (CIE 1931) calculated from the corrected emission profiles of **UCY-15**(Y), **UCY-15**(Eu), **UCY-15**(Tb) and **UCY-15**($Y_{100-x-y}Eu_xTb_y$) (x, y = 5, 7.5, 10). This figure shows that the combination of the luminescence from SDBA²⁻, Eu³⁺ and Tb³⁺ results in an analogue emitting white light with coordinates (0.339, 0.337).

Compound	Coordinates	
$\mathbf{UCY-15}(\mathbf{Y}_{100-x-y}\mathbf{Eu}_{x}\mathbf{Tb}_{y})$	Х	У
UCY-15 (Y ₉₀ Eu ₅ Tb ₅)	0.31	0.311
UCY-15(Y _{87.5} Eu ₅ Tb _{7.5})	0.268	0.226
UCY-15 (Y ₈₅ Eu ₅ Tb ₁₀)	0.324	0.337
UCY-15(Y _{87.5} Eu _{7.5} Tb ₅)	0.339	0.337
UCY-15 (Y ₈₅ Eu ₁₀ Tb ₅)	0.362	0.335
UCY-15(Y ₈₅ Eu _{7.5} Tb _{7.5})	0.339	0.3108

Table S4: Chromaticity coordinates of the UCY-15($Y_{100-x-y}Eu_xTb_y$) (x, y = 5, 7.5, 10) doped compounds.

Figure S27: Digital photographs of UCY-15(RE) under a conventional UV lamp operating at 365nm. From left to right: UCY-15(Eu), UCY-15($Y_{90}Eu_5Tb_5$), UCY-15($Y_{87.5}Eu_5Tb_{7.5}$), UCY-15($Y_{85}Eu_5Tb_{10}$), UCY-15($Y_{87.5}Eu_{7.5}Tb_5$), UCY-15($Y_{85}Eu_{10}Tb_5$), UCY-15($Y_{85}Eu_{7.5}Tb_{7.5}$) and UCY-15(Tb).

Figure S28: SEM-EDX mapping of UCY-15 samples: a) $Y_{90}Eu_5Tb_5$, b) $Y_{87.5}Eu_5Tb_{7.5}$, c) $Y_{85}Eu_5Tb_{10}$, d) $Y_{87.5}Eu_{7.5}Tb_5$, e) $Y_{85}Eu_{10}Tb_5$ and f) $Y_{85}Eu_{7.5}Tb_{7.5}$. In all cases, the images of the individual metal ions and the overlay correspond to the region of interest (ROI) mapped in the crystal shown in the left images. The equivalence of the scale bar is 50 μ m.

	Theoretical (%)			Experimental (%)		
	Y (100-x-y)	Eu (x)	Tb (y)	Y	Eu	Tb
UCY-15(Y ₉₀ Eu ₅ Tb ₅)	90	5	5	90.0±0.1	5±0.5	5±0.1
UCY-15(Y _{87.5} Eu ₅ Tb _{7.5})	87.5	5	7.5	88.7±2.1	5.5±0.8	5.8±0.3
UCY-15(Y ₈₅ Eu ₅ Tb ₁₀)	85	5	10	86.0±1.4	5.7±0.8	7.4±1.3
UCY-15(Y _{87.5} Eu _{7.5} Tb ₅)	87.5	7.5	5	87.0±0.1	8.5±1.8	4.8±2.0
UCY-15(Y ₈₅ Eu ₁₀ Tb ₅)	85	10	5	84.3±1.5	10.8±1.4	5.2±3.1
UCY-15(Y ₈₅ Eu _{7.5} Tb _{7.5})	85	7.5	7.5	86.0±0.1	7.5±0.7	7.0±0.1

Table S5: The (%) ratio of Y^{3+} , Eu^{3+} and Tb^{3+} ions of UCY-15($Y_{100-x-y}Eu_yTb_x$) based on EDX results. The error was estimated through the standard deviation (σ) of three independent measurements.

Figure S29: Digital photographs of UCY-15(RE)@PDMS films illuminated with UV light (λ ex=300-375 nm). Top from left to right: UCY-15(Y), UCY-15(Eu) and UCY-15(Tb); bottom from left to right: UCY-15(Y₉₀Eu₅Tb₅), UCY-15(Y_{87.5}Eu₅Tb_{7.5}), UCY-15(Y₈₅Eu₅Tb₁₀), UCY-15(Y_{87.5}Eu_{7.5}Tb₅), UCY-15(Y₈₅Eu₁₀Tb₅) and UCY-15(Y₈₅Eu_{7.5}Tb_{7.5}).

Figure S30: Photoluminescence emission spectra of UCY-15(Y_{87.5}Eu₅Tb_{7.5})@PDMS before (black line) and after (red line) exposure to saturated vapours of the selected analytes.

Analyte	Gas concentration ³	Quenching (%)	Normalized response (ppb ⁻¹)
TNT	7.23 ppb	78	10.8
TNP	0.98 ppb	16.9	17.2
DNT	346 ppb	82	0.2
DNB	1.16 ppm	30	0.03
DMNB	2.59 ppm	24.5	0.01

Table S6: Relative photoluminescence change (quenching, %) of UCY-15($Y_{87.5}Eu_5Tb_{7.5}$)@PDMS upon exposure to the different nitro-compounds. The concentration (v/v) was calculated at room temperature (25°C).

Figure S31: Photoluminescence emission spectra of UCY-15($Y_{87.5}Eu_5Tb_{7.5}$)@PDMS before (black line) and after (red line) 5 min exposure to saturated vapours of the selected analytes.

References

- S. Park, J. Lee, S. G. Cho, E. M. Goh, S. Lee, S.-S. Koh and J. Kim, Mass Spectrometric Analysis of Eight Common Chemical Explosives Using Ion Trap Mass Spectrometer, *Bull. Korean Chem. Soc.*, 2013, 34, 3659.
- G. R. Peterson, W. P. Bassett, B. L. Weeks and L. J. Hope-Weeks, Phase pure triacetone triperoxide: The influence of ionic strength, oxidant source, and acid catalyst, *Cryst. Growth Des.*, 2013, 13, 2307.
- J. P. Vizuet, M. L. Mortensen, A. L. Lewis, M. A. Wunch, H. R. Firouzi, G. T. McCandless and K. J. Balkus, Fluoro-Bridged Clusters in Rare-Earth Metal–Organic Frameworks, J. Am. Chem. Soc., 2021, 143, 17995.
- 4. K. O. Christe and W. W. Wilson, Nuclear magnetic resonance spectrum of the fluoride anion, *J. Fluor. Chem.*, 1990, **46**, 339.
- W. He, F. Du, Y. Wu, Y. Wang, X. Liu, H. Liu and X. Zhao, Quantitative 19F NMR method validation and application to the quantitative analysis of a fluoropolyphosphates mixture, *J. Fluor. Chem.*, 2006, **127**, 809.
- L. Czepirski and J. JagieŁŁo, Virial-type thermal equation of gas—solid adsorption, *Chem. Eng. Sci.*, 1989, 44, 797.
- K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Carbon Dioxide Capture in Metal–Organic Frameworks, *Chem. Rev.*, 2012, **112**, 724.
- M. H. V Werts, R. T. F. Jukes and J. W. Verhoeven, The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes, *Phys. Chem. Chem. Phys.*, 2002, 4, 1542.
- N. M. Shavaleev, S. V Eliseeva, R. Scopelliti and J.-C. G. Bünzli, N-Aryl Chromophore Ligands for Bright Europium Luminescence, *Inorg. Chem.*, 2010, 49, 3927.