Electronic Supporting Information

An excellent multifunctional photocatalyst cooperated by polyoxometalate-viologen framework for CEES oxidation, Cr(VI)

reduction and dyes decolorization under different light regimes

Lin Yang, Zhong Zhang,* Chaonan Zhang, Shuang Li, Guocheng Liu and Xiuli Wang*

College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, China. E-mail: zhangzhong666@126.com (Zhong Zhang), wangxiuli@bhu.edu.cn (Xiuli Wang)

Table S1 Crystallographic data for BHU-1			
Empirical formula	$C_{36}H_{38}CoMo_4N_4O_{22}$		
Formula weight	1321.39		
Crystal system	triclinic		
Space group	<i>P</i> -1		
a (Å)	12.6447(13)		
b (Å)	13.9655(13)		
c (Å)	14.9485(14)		
α (°)	63.048(2)		
β (°)	67.079(2)		
γ (°)	69.823(2)		
V (ų)	2121.2(4)		
Z	2		
D _c (g/cm ³)	1.984		
M (mm⁻¹)	1.616		
F(000)	1246.0		
Reflections collected	12226		
Unique reflections	7502		
R _{int}	0.0364		
GOF	0.971		
$R_1^a[I \ge 2\sigma(I)]$	0.0424		
wR ₂ ^b (all data)	0.0989		
$aR_{l} = \sum F_{o} - F_{c} / \sum F_{o} ; bwR_{2} = \sum [n]$	$w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]^{1/2}$		

	<u> </u>			
Co(1)-O(4)#2	2.024(4)	O(1)-Co(1)-N(1)#3	94.83(17)	
Co(1)-O(1)	Co(1)-O(1) 2.100(4) O(1)-Co(1)-N(3)#4		88.90(18)	
Co(1)-O(3)	Co(1)-O(3) 1.993(4) O(3)-Co(1)-O(4)#2		122.61(17)	
Co(1)-O(2)	2.363(4)	O(3)-Co(1)-O(1)	89.74(17)	
Co(1)-N(1)#3	2.164(5)	O(3)-Co(1)-O(2)	146.56(17)	
Co(1)-N(3)#4	2.203(5)	O(3)-Co(1)-N(1)#3	92.97(17)	
O(4)#2-Co(1)-O(1)	146.74(16)	O(3)-Co(1)-N(3)#4	88.01(17)	
O(4)#2-Co(1)-O(2)	88.58(16)	N(1)#3-Co(1)-O(2)	98.50(16)	
O(4)#2-Co(1)-N(1)#3	91.25(17)	N(1)#3-Co(1)-N(3)#4	176.15(19)	
O(4)#2-Co(1)-N(3)#4	85.09(17)	N(3)#4-Co(1)-O(2)	82.64(16)	
O(1)-Co(1)-O(2)	58.18(15)			
Symmetry code for BHU-1 : ^{#2} -X,2-Y,1-Z; ^{#3} -1+X,+Y,1+Z; ^{#4} +X,+Y,-1+Z				

Table S2 Bond lengths $[{\rm \AA}]$ and angles $[^{\circ}]$ for BHU-1

 Table S3 Bond Valence Sum (BVS) calculations of all Mo, Ni and selected O atoms in BHU-1

	1	505	
Mo1	5.96	01	1.78
Mo2	6.03	02	1.64
Mo3	6.02	03	1.86
Mo4	5.85	04	1.86
Co1	1.82		

1-BVS

Table S4 The reported complexes based on POMs and viologen ligands

Compound	Dimension	Ref
Co ₂ (bpdo) ₄ (H ₂ O) ₆](α-GeW ₁₂ O ₄₀)}·4H ₂ O	1D	[1]
$[Co_{5}(bpdo)_{5}(H_{2}O)_{18}][Co_{4}(H_{2}O)_{2}(B-\alpha-PW_{9}O_{34})_{2}]\cdot bpdo\cdot 10H_{2}O$	2D	
[Cu ₂ (CPBPY) ₄ (H ₂ O) ₂][PW ₁₂ O ₄₀][OH]·6H ₂ O	2D	[2]
[Cu ₂ (H ₂ O) ₃ (CPBPY) ₂ (CuHPW ₁₁ O ₃₉)]·7H ₂ O	1D	[3]
$(Bpyen)_{2}(Mo_{8}O_{26})]\cdot 2H_{2}O$	0D	[4]
[(Pbpy) ₂ (Mo ₈ O ₂₆)]·4H ₂ O		
[Ag ^l (bmypd) _{0.5} (β-Mo ₈ O ₂₆) _{0.5}]	2D	[5]
$[Ag_{2}^{I}(bypy)_{4}(HSiW_{12}O_{40})_{2}] \cdot 14H_{2}O$	0D	
[Ag ^l (bypy)(γ-Mo ₈ O ₂₆) _{0.5}]	2D	
$[Cu(PBPY)_2[SiW_{12}O_{40}]$	1D	[6]
(Me ₂ NH ₂) ₃ [PW ₁₁ ZnO ₄₀]	0D	[7]
[δ-Mo ₈ O ₂₆](L) ₂ ·2H ₂ O	0D	[8]
[(AV ²⁺)(p-AV)(EuW ₁₀ O ₃₆)] _n ·2nH ₂ O	1D	[9]
(AV ²⁺)[H ₂ W ₁₂ O ₄₀]·5H ₂ O	0D	

(C ₁₄ H ₁₁ N ₄₀) ₂ [Mo ₈ O ₂₆]	0D	[10]
$\{[Co_2(bpdo)_4(H_2O)_6](\alpha-GeW_{12}O_{40})\}\bullet 4(H_2O)\}_n$	1D	[11]

Entry	H_2O_2	Catal.	Solvent	Light	Time	Conv.	Sele.
	(mmol)	(µmol)			(min)	(%)	(%)
1	0.5	4	C_2H_5OH	Visible	5	98	97
2	0.5	4	CH₃CN	Visible	5	10	67
3	0.5	4	CH_2CI_2	Visible	5	9	14
4	0.5	4	C_2H_5OH	Visible	1	38	86
5	0.5	4	C_2H_5OH	Visible	2	67	92
6	0.5	4	C_2H_5OH	Visible	3	84	94
7	0.5	4	C_2H_5OH	Visible	4	92	95
8	0.5	4	C_2H_5OH	Visible	5	98	97

 Table S5 Conversion and selectivity of the oxidation of CEES to CEESO in every 1 min and under

 different solvents

Table S6 The concentration of Co ions in the solution after the photocatalytic reaction

Cycles	Co ions concentration (ppm)
1	0.223
2	0.275
3	0.237

Fig. S1 The XPS spectra of 1: a) Co 2p, b) Mo 3d, c) O 1s and d) N 1s.

Fig. S2 The EPR spectrum of BHU-1.

The high resolution XPS spectra for Co 2p appear at 780.7 and 796.7 eV corresponding to Co $2p_{3/2}$ and Co $2p_{1/2}$ and obvious shake-up satellite features for Co $2p_{3/2}$ and Co $2p_{1/2}$ were also observed at 785.9 and 801.9 eV, respectively [12, 13]. The peaks of Mo 3d at 235.6 eV and 232.4 eV are assigned to Mo $3d_{5/2}$ and $3d_{3/2}$ orbitals of Mo⁶⁺ [14]. The O 1s state always contains low binding energy peak (LP) and high binding energy peak (HP) centred nearly at 530.4 and 531.4 eV [15]. The XPS N 1s spectra can be divided into 398.0 eV, 399.3 eV, which may be related to the N of pyridine and quaternary ammonium salt, the extra small peak at 401.9 eV corresponds to the nitrogen atom of the pyridyl radical with the EPR spectrum has a typical weak signal for the bipyridinium radical [16-19].

Fig. S3 Two types of coordination modes of bcbpy ligand: a) mode I, b) mode II.

Fig. S4 The hydrogen-bond [C5-H5···O11: 2.982(10) Å] interaction between $[\theta$ -Mo₈O₂₆]⁴⁻ clusters and $[Co_2(bcbpy)_8]^{4+}$.

Fig. S5 Branches 1-8 in $[Co_2(bcbpy)_8]^{4+}$.

Fig. S6 IR spectrum of BHU-1.

Fig. S7 Comparison of the experimental and simulated PXRD patterns of BHU-1.

Fig. S10 Mott-Schottky plot of BHU-1.

Fig. S11 EIS Nyquist plots of the BHU-1 in 0.5 mol/L Na₂SO₄ solution under visible light irradiation.

Fig. S12 The conversion and selectivity of CEES to CEESO after 3 cycles.

Fig. S13 The a) IR and b) PXRD spectra of BHU-1 before and after 3 cycles for the oxidation of CEES.

Fig. S14 Absorption spectra of the reduction of $Cr_2O_7^{2-}$ a) in the dark and b) without C_2H_5OH .

Fig. S15 The a) Co, b) O, c) Mo, d) N XPS spectra of BHU-1 before and after photoreduction.

Fig. S16 The decolorization rate of RhB under visible light irradiation after 3 cycles.

Fig. S17 a-c) Absorption spectra of the MB solution in the presence of BHU-1 under full spectrum, visible, and NIR light irradiation, respectively.

Fig. S18 Absorption spectra of the RhB solution in the presence of C_2H_5OH under the visible light irradiation.

Fig. S19 a-c) The linear plot of $ln(c_0/c)$ vs. reaction time (t) of CEES, Cr(VI) and RhB. d) Absorption spectra of the reduction of $Cr_2O_7^{2-}$ under visible light irradiation every 5 min.

Fig. S20 EPR spectra of DMPO-adducts: a) $\cdot O_2^-$ and b) $\cdot OH$ for **BHU-1**.

References

[1] Y. R. Huang, X. L. Lin, B. Chen, H. D. Zheng, Z. R. Chen, H. H. Li and S. T. Zheng, Thermalresponsive polyoxometalate-metalloviologen hybrid: reversible intermolecular three-Component reaction and temperature-regulated resistive switching behaviors, *Angew. Chem. Int. Ed.*, 2021, **60**, 16911-16916.

[2] X. J. Sun, J. Zhang and Z. Y. Fu, Polyoxometalate cluster sensitized with copper-viologen framework for efficient degradation of organic dye in ultraviolet, visible, and near-infrared light, *ACS Appl. Mater. Interfaces*, 2018, **10**, 35671-35675.

[3] X. J. Sun, J. Zhang, A. D. Tan and Z. Y. Fu, A highly efficient near-infrared-activated photocatalyst based on an electron-deficient copper-viologen-polyoxometalate framework with a copper {Cu3} cluster decorated phosphotungstate as a building block, *Cryst. Grow. Des.*, 2019,

19, 6845-6849.

[4] L. Li, J. R. Wang, Y. Hua, Y. Guo, C. Fu, Y. N. Sun and H. Zhang, "Reversible" photochromism of polyoxomolybdate–viologen hybrids without the need for proton transfer, *J. Mater. Chem. C*, 2019, **7**, 38-42.

[5] J. Ying, L. Jin, C. X. Sun, A. X. Tian and X. L. Wang, A series of polyoxometalate-viologen photochromic materials for UV probing, amine detecting and inkless and erasable printing, *Chem. Eur. J.*, 2022, **28**, e202103268.

[6] X. J. Sun, J. Zhang, X. Z. Yuan and Z. Y. Fu, A silicotungstate-based copper–viologen hybrid photocatalytic compound for efficient degradation of organic dyes under visible light, *CrystEngComm*, 2019, **21**, 5563-5567.

[7] L. Li, Y. C. Zou, Y. Hua, X. N. Li, Z. H. Wang and H. Zhang, Polyoxometalate-viologen photochromic hybrids for rapid solar ultraviolet light detection, photoluminescence-based UV probing and inkless and erasable printing, *Dalton Trans*, 2020, **49**, 89-94.

[8] X. X. Song, H. F. Fu, P. Wang, H. Y. Li, Y. Q. Zhang and C. C. Wang, The selectively fluorescent sensing detection and adsorptive removal of Pb^{2+} with a stable [δ -Mo₈O₂₆]-based hybrid, *J. Colloid Interface Sci.*, 2018, **532**, 598-604.

[9] D. F. Shen, S. Li, H. Liu, W. Jiang, Q. Zhang and G. G. Gao, A durable and fast-responsive photochromic and switchable luminescent polyviologen–polyoxometalate hybrid, *J. Mater. Chem. C*, 2015, **3**, 12090-12097.

[10] L. Li, Y. Hua, Y. Guo, G. S. Zhang, X. N. Li and H. Zhang, Viologen as a colour modulator in photochromism of polyoxomolybdate–viologen hybrids, *Eur. J. Inorg. Chem.*, 2018, **33**, 3757-3760.

[11] B. Chen, Y. R. Huang, K. Y. Song, X. L. Lin, H. H. Li and Z. R. Chen, Molecular nonvolatile memory based on $[\alpha$ -GeW₁₂O₄₀]⁴⁻/metalloviologen hybrids can work at high temperature monitored by chromism, *Chem. Mater.*, 2021, **33**, 2178-2186.

[12] E. B. Castro, C. A. Gervasi, Electrodeposited Ni-Co-oxide electrodes: characterization and kinetics of the oxygen evolution reaction, *Int. J. Hydrogen Energy*, 2000, **25**, 1163-1170.

[13] H. M. Liu, G. L. Wei, Z. Xu, P. Liu and Y. Li, Quantitative analysis of Fe and Co in Cosubstituted magnetite using XPS: The application of non-linear least squares fitting (NLLSF), *Appl. Surf. Sci.*, 2016, **389**, 438-446.

[14] X. X. Song, H. F. Fu, P. Wang, H. Y. Li, Y. Q. Zhang and C. C. Wang, The selectively fluorescent sensing detection and adsorptive removal of Pb^{2+} with a stable [δ -Mo₈O₂₆]-based hybrid, *J. Colloid Interface Sci.*, 2018, **532**, 598–604.

[15] R. Li, L. y. Liu, B. M. Ming, Y. H. Ji and R. Z. Wang, Oxygen vacancy effect on photoluminescence of KNb₃O₈ nanosheets, *Appl. Surf. Sci.*, 2018, **439**, 983-990.

[16] Z. Ren, Y. Liu, Y. Lyu, X. G. Song, C. Y. Zheng, S. Q. Feng, Z. Jiang and Y. J. Ding, Single-atom Rh based bipyridine framework porous organic polymer: A high active and superb stable catalyst for heterogeneous methanol carbonylation, *J. Catal.*, 2019, **369**, 249-256.

[17] J. Y. Jung, Y. L. Hong, J. G. Kim, M. J. Kim, Y. K. Kim and N. D. Kim, New insight of tailor-made graphene oxide for the formation of atomic Co-N sites toward hydrogen evolution reaction, *Appl. Surf. Sci.*, 2021, **563**, 150254.

[18] Y. X. Cui, L. Y. Yin, X. Y. Sun, N. Zhang, N. Gao and G. S. Zhu, A universal and reversible wet adhesive via straightforward aqueous self-assembly of polyethylenimine and polyoxometalate, *ACS Appl. Mater. Interfaces*, 2021, **13**, 47155–47162.

[19] X. D. Yang, L. Sun, C. Chen, Y. J. Zhang and J. Zhang, Anion-controlled photochromism of two bipyridinium-based coordination polymers and nondestructive luminescence readout, *Dalton Trans.*, 2017, **46**, 4366-4372.