Tandem ZnCo-porphyrin Metal-Organic Frameworks for Enhanced Photoreduction of CO₂

Xuyang Chen^a, Meiyu Cong^a, Ming Tang^{a,b}, Jinxuan Liu^a, Shaoyun Chen^a, and Yan Gao^{a*}

^a State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian 116024, China

^bNorth Huajin Chemical Industries Group Corporation, Panjin 124000, China

Figure S1. The MS of CoTCPP and ZnTCPP molecules.

Table	S1	ICP	results	of ZnCo-BMOF.

ICP	Zn (%)	Co (%)
Zn-MOF	11.22	0
Zn ₂₀ Co ₁ -MOF	10.95	0.06
Zn ₁₀ Co ₁ -MOF	10.80	0.13
Zn ₁ Co ₁ -MOF	8.67	2.51
Co-MOF	8.13	3.58

The content of C, N, H, and O in Zn₁₀Co₁-BMOF were 53.66%, 7.67%, 4.303%, 21.08%, respectively.

Figure S2. SEM image of Zn₁₀Co₁-BMOF.

Figure S3. TEM image of $Zn_{10}Co_1$ -BMOF and corresponding to EDS mapping images.

Figure S4. EDS elemental mapping images of HAADF-STEM image.

Figure S5. (a) XPS survey of Zn₁₀Co₁-BMOF and Zn-MOF (b) XPS of O 1s; (c) XPS of C1s.

Figure S6. (a) UV-vis spectra of Zn-MOF, $Zn_{20}Co_1$ -BMOF, $Zn_{10}Co_1$ -BMOF, Zn_1Co_1 -BMOF and Co-MOF; (b) N₂ adsorption isotherms of $Zn_{10}Co_1$ -BMOF; (c) CO₂ adsorption of $Zn_{10}Co_1$ -BMOF; (d) Thermogravimetric (TG) analysis of $Zn_{10}Co_1$ -BMOF.

Figure S7. H_2 production comparisons between $Zn_{10}Co_1$ -BMOF nanosheets and Zn-MOF/Co-MOF system for photocatalytic CO_2 reduction 6 h.

^a The selectivity of CO by Zn₁₀Co₁-BMOF was 61.7%.

Table S2 The comparison of photocatalytic performance for CO₂ reduction of in one MOF platform.

Catabat	Product	Evolution rate	Deference
Catalyst		(µ mol g ⁻¹ h ⁻¹)	Kelerence
$(C_{\alpha}/\mathbf{D}_{\alpha})$ U($O_{\alpha}/\mathbf{D}_{\alpha}$)	СО	282.5	Appl. Catal. B, 2019, 245,
$(Co/Ku)_{2.4}$ -OIO-O/(opydc)	H_2	570.1	496–501
MOF-525-Co	CH4 CO	36.67 200.6	Angew. Chem. Int. Ed. , 2016, 55, 14310
PCN-222	HCOO-	60	J. Am. Chem. Soc., 2015, 137, 13440
Ru-MOF-253-Re	CO HCOO ⁻ H ₂	111.5 475 5.5	Inorg. Chem., 2018, 57, 8276
Zn ₁₀ Co ₁ -BMOF	CO H ₂	129.6 80.3	This work

Table S3 Control experiments for photocatalytic CO₂ reduction

Condition	CO (µmol)	H ₂ (µmol)
Normal reaction	7.78	4.81
Without catalyst	0.07	/
Ar instead of CO ₂	/	/
Without PS	0.15	0.19
Without BIH	/	/
Without TEOA	0.75	1.86
In the dark	/	/
Without bpy	/	/

Figure S8. Zn₁₀Co₁-BMOF before and after 6 h photocatalytic CO₂ reduction (a) XRD; (b) XPS survey; (c) Co 2p XPS; (d) Zn 2p XPS image.

ICP	Zn (%)	Co (%)
Before	10.80	0.13
After	9.92	0.11

Table S4 ICP results of $Zn_{10}Co_1$ -BMOF before and after photocatalysis.

Figure S9. (a) and (b) Mott-Schottky measurements of Zn-MOF and Co-MOF; (c) and (d) UV–vis spectra of Zn-MOF and Co-MOF.