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Materials and Instrumentation: All solvents and reagents were commercially available A.R.             
grade and used without further purification unless otherwise noted. Preparation of stock solutions: 
All the analytic nitro explosives solutions were prepared by separately dissolving each of them in 
DMAC with a concentration of 0.1 M and 0.01M. Luminescence spectra were measured using a 
Hitachi F-7000 luminescence spectrometer. Fluorescent quantum yield was determined by an 
absolute method using an integrating sphere on FLS920 of Edinburgh Instrument. UV-visible 
spectra were recorded using an Agilent Cary 5000 spectrophotometer. The FT-IR spectra were 
recorded from KBr pellets in the range from 4000 to 500 cm−1 on a Bruker VERTEX 70 
spectrometer. Powder X-Ray diffraction (PXRD) patterns were collected with a PAN alytical 
X'Pert Pro Diffractometer operated at 40 kV and 40 mA with Cu Kα radiation. Thermogravimetric 
analyses (TGA) were obtained on a NETZSCH STA 449 F3 Jupiter® under a N2 atmosphere.

X-ray Structural Crystallography: The single-crystal X-ray diffraction data was collected on a 
XtaLAB Synergy R, DW system, HyPix diffractometer. The crystal was kept at 149.99(10) K 
during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure 
solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package 
using Least Squares minimisation.
1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. 
Cryst. 42, 339-341.
2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Calculations of Luminescent Quantum Yield: Luminescent quantum yield data was 
measured in the solid state at 298K, and the emission was monitored from 450 to 650
nm. The overall luminescent quantum yields of the solid-state samples were 
determined by an absolute method using an integrating sphere on FLS920 of 
Edinburgh Instrument (150 mm diameter, BaSO4 coating) and acquired using the 
following equation:
Φoverall = (AH) / (RST - RH) (S1)
where AH is the area under emission spectrum of the sample and RST and RH are diffuse
reflectance of the reflecting standard and the sample, respectively[1-2].



Additional Figures and Schemes:

Scheme S1. Synthesis of L

Fig S1. 1H NMR spectra of L2- recorded in DMSO. 



Fig S2. 13C NMR spectra of L2- recorded in DMSO.

Fig S3. IR spectra of the Ln-MOFs and the ligand.



Fig S4. The PXRD patterns of the Ln-MOF (Ln = Eu, Tb, Gd) and the Eu-MOF after five cycles 
experiment for detecting PA and temperature sensing.  

Fig S5. TGA plot of the Ln-MOF (Ln = Eu, Tb, Gd)



Fig S6. (a) The solid-state excitation spectrum of the ligand at room temperature (λem = 472 nm). 
(b) The solid-state emission spectrum of the ligand at room temperature (λex = 365 nm).

Fig S7. The optimized geometry of the free ligand

Fig S8. (a) UV-Vis absorption spectrum of the ligand. (b) phosphorescence spectrum of the Gd-
MOF at 77K.

 



Fig S9. (a) The solid-state excitation spectrum of the Eu-MOF at room temperature (λem = 614 
nm). (b) The solid-state emission spectrum of the Eu-MOF at room temperature (λex = 365 nm).

Fig S10. (a) The solid-state excitation spectrums of the Tb-MOF and Gd-MOF at room 
temperature (λem = 468 nm). (b) The solid-state emission spectrums of the Tb-MOF and Gd-MOF 

at room temperature (λex = 365 nm).

Fig S11. The luminescence spectra of the Eu-MOF in different organic solvents. 



Fig S12. (a) The luminescence spectra of the Eu-MOF recorded with different concentrations of p-
nitrophenol (0-0.5 mM) in DMAC. (b) SV plot of I0/I vs increasing concentrations of p-

nitrophenol.

Fig S13. (a) The luminescence spectra of the Eu-MOF recorded with different concentrations of 3-
nitroaniline (0-0.5 mM) in DMAC. (b) SV plot of I0/I vs increasing concentrations of 3-

nitroaniline.

Fig S14. (a) The luminescence spectra of the Eu-MOF recorded with different concentrations of 
m-dinitrobenzene (0-0.5 mM) in DMAC. (b) SV plot of I0/I vs increasing concentrations of m-

dinitrobenzene.



Fig S15. (a) The luminescence spectra of the Eu-MOF recorded with different concentrations of 
nitrobenzene (0-0.5 mM) in DMAC. (b) SV plot of I0/I vs increasing concentrations of 

nitrobenzene.

Fig S16. (a) The luminescence spectra of the Eu-MOF recorded with different concentrations of p-
nitrotoluene (0-0.5 mM) in DMAC. (b) SV plot of I0/I vs increasing concentrations of p-

nitrotoluene.

Fig S17. Reproducibility of the quenching ability of the Eu-MOF in DMAC and in the presence of 
PA (0.1 mM). (a) The luminescence spectra of the Eu-MOF in DMAC before and after adding PA; 
(b) Luminescence intensity at 617 nm before and after adding PA.



Fig S18. The UV-Vis absorption spectra of nitro explosives in DMAC.

Fig S19. (a)The luminescence decay profiles of the Eu-MOF. (b-g) The luminescence decay 
profiles of the Eu-MOF mixed with 0.1 mM nitro explosives (PA, p-nitrophenol, 3-nitroaniline, 

m-dinitrobenzene, nitrobenzene, p-nitrotoluene). 



Fig S20. The SEM image of the Eu-MOF before (a) and after (b) detecting PA.

Table S1 Crystal data and structure refinement for the Eu-MOF

Compound Eu-MOF
Empirical formula C91H84.5Eu2N9O25

Formula weight 2008.09
Temperature/K 149.99(10)
Crystal system monoclinic
Space group P21/c
a/Å 17.6657(4)
b/Å 42.3715(9)
c/Å 11.9739(3)
α/° 90
β/° 96.227(2)
γ/° 90
Volume/Å3 8909.8(4)
Z 4
ρcalcg/cm3 1.497
μ/mm-1 1.476
F(000) 4078.0



Crystal size/mm3 0.11 × 0.08 × 0.06
Radiation Mo Kα (λ = 0.71073)
2Θ range for data collection/° 3.554 to 62.002
Index ranges -23 ≤ h ≤ 20, -58 ≤ k ≤ 50, -16 ≤ l ≤ 13
Reflections collected 70046
Independent reflections 22526 [Rint = 0.0440, Rsigma = 0.0515]
Data/restraints/parameters 22526/12/1177
Goodness-of-fit on F2 1.047
Final R indexes [I>=2σ (I)] R1 = 0.0428, wR2 = 0.0938
Final R indexes [all data] R1 = 0.0624, wR2 = 0.1014

aR1 = Σ(|Fo| - |Fc|) /Σ|Fo|; wR2 =|Σw(|Fo|-|Fc|2) /ΣwFo2]1/2

Table S2 The bond length for the Eu-MOF
Atom Atom Length/Å

Eu(01) O(11) 2.330(2)

Eu(01) O(12) 2.342(2)

Eu(01) O(13) 2.337(3)

Eu(01) O(18)2 2.385(2)

Eu(01) O(19)3 2.375(2)

Eu(01) O(20)2 2.386(3)

Eu(01) O(21)3 2.367(3)

Eu(02) O(1)5 2.425(2)

Eu(02) O(2)5 2.520(2)

Eu(02) O(5) 2.647(2)

Eu(02) O(5)4 2.525(2)

Eu(02) O(6) 2.409(2)

Eu(02) O(7) 2.480(2)

Eu(02) O(8) 2.403(3)



Eu(02) O(9) 2.354(2)

Eu(02) O(10) 2.411(2)

12-X,1-Y,1-Z; 2+X,+Y,-1+Z; 32-X,1-Y,2-Z; 41-X,1-Y,1-Z; 51-X,1-Y,-Z

Table S3. Calculated excited states and HOMO-LUMO energy levels of the 
free ligand

Basic set 6-31G(d)

Triplet (ev) Singlet 
(ev)Excited 

state T1 T2 T3 T4 T5

Ligand
1.4771 

839.39 nm

11913 cm-1

3.1821 

389.63 nm 

25665 cm-1

3.2108 

386.15 nm 

25897 cm-1

3.4753 

356.75 nm 

28031 cm-1

3.6120 

343.26 nm 

29132 cm-1

2.3172 

535.07 nm 

18689 cm-1

Table S4. Comparing the performance of the luminescent MOF 
thermometers in terms of temperature range, maximum relative sensitivity 

(Sr) and corresponding temperature (Tm).
Luminescent MOF

Temperature 

range (K)
Sr (% K-1) Tm (K) Ref.

Eu0.37Tb0.63-BTC-a 313-473 0.68 313 11

Eu-H2FDC 20-320 2.7 170 22

ZJU-88⊃perylene 293-353 1.28 293 33

Nd0.577Yb0.423BDC-F4 293-313 1.20 313 44

Eu0.19Tb0.81PDDI 313-473 0.37 473 55

Eu0.05Tb0.95BDC-OH 313-513 1.55 440 66

Tb0.99Eu0.01(BDC)1.5-(H2O)2 290-320 0.31 318 77

EuTPTC-2OMe 7.78 313

Eu0.05Tb0.95TPTC-2Me
313-473

1.76 353
88

Tb0.80Eu0.20BPDA 298-318 1.19 313 99

TbTPTC 1.05 366

Gd0.985Eu0.015TPTC 0.2 473

Gd0.9995Eu0.0005TPTC

313-473

1.5 473

1010

The Eu-MOF 120-400 2.73 400 This work



Table S5. Comparing the performance of the luminescent MOF detecting 
PA in terms of Ksv.

Luminescent MOF KSV (M-1) Ref.

Eu4L3 2001 1111

TippMn 118000 1212

Eu2L3 2912 1313

LnCPs 2 26000 1414

TbL 4995 1515

Pb-MOF 43300 1616

Zn-MOF 69500 1717

Dy-MOF 85500 1818

The Eu-MOF 53339 This work

Table S6. S-V equations and quenching effect constant (Ksv) of various nitro 

explosives for the Eu-MOF

nitro explosives S-V equation KSV (M-1)

picric acid y = 53.3386x + 0.9377 53339

p-nitrophenol y = 3.6096x + 0.8774 3610

3-nirtoaniline y = 2.1678x + 0.9761 2168

m-dinitrobenzene y = 0.8406x + 0.9854 841

nitrobenzene y = 0.6583x + 1.0466 658

p-nitrotoluene y = 0.7191x + 1.0292 719
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