Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is the Partner Organisations 2020

Electronic Supporting Information (ESI)

Preparation of an interpenetrating bimetal metalorganic framework via metal metathesis used for promoting gas adsorption[†]

Feifei Zhang^a, Yingying Zhang^a, Xiaoqing Wang^{a,b*}, Jinping Li^{a,b,c} and Jiangfeng Yang^{a,b,c*}

^a Research Institute of Special Chemicals, College of Chemistry and Chemical Engineering, Taiyuan

University of Technology, Taiyuan 030024, Shanxi, China

^b Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, China

^c Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030002, Shanxi,

China

*Corresponding author: E-mail: <u>wangxiaoqing@tyut.edu.cn</u>, <u>yangjiangfeng@tyut.edu.cn</u>

Experimental Section

1. Raw materials

Scandium nitrate hydrate (Sc(NO₃)₃·xH₂O, 99%), chromic chloride hexahydrate (CrCl₃·6H₂O, 99%) and biphenyl dicarboxylic acid (BPDC-H₂, 98%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. N, N-dimethylformamide (DMF, 99%), acetone (CH₃COCH₃, 99%) and hydrochloric acid (HCl, 36%) provided by Sinopharm Chemical Reagent Co., Ltd. The above reagents were used directly without further purification.

2. Fitting of pure component isotherms

The single-component CO₂, N₂O and C₂H₂ and adsorption isotherms of MIL-126(Sc) and MIL-126(Cr/Sc) were fitted using the dual-site Langmuir-Freundlich (DSLF) model, and R² was greater than 0.9999.

$$q = q_1 \frac{b_1 P^{1/n_1}}{1 + b_1 P^{1/n_1}} + q_2 \frac{b_2 P^{1/n_2}}{1 + b_2 P^{1/n_2}}$$
(1)

Where q is the equilibrium adsorbed amount of an adsorbent (mmol/g); q_1 and q_2 are the saturation uptakes of site 1 and site 2 (mmol/g); b_1 and b_2 are the affinity coefficients of site 1 and site 2 (1/bar); n_1 and n_2 are the corresponding deviations from an ideal homogeneous surface.

3. Qst calculation

The Qst of MIL-126(Sc) and MIL-126(Cr/Sc) with CO₂, N₂O and C₂H₂ were calculated using the C_2H_2 and CO₂ single-component adsorption isotherms at 273 K and 298 K via the Clausius-Clapeyron equation.

$$In\frac{p_2}{p_1} = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$
(2)

In the above equation, P represents the pressure, the unit is bar, T is the temperature in K, and R is the

gas constant (8.314).

Supporting Table and Figures

Fig. S1 Rietveld-refined XRD pattern of MIL-126(Sc) (Rwp = 4.73%, Rp = 3.56%, GOF = 1.06, a =b=21.91Å, c = 36.35 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 90^{\circ}$). The black circles and red lines represent experimental data and calculated values, respectively.

Fig. S2 Change of metal ratio (n/n_{total} %) in MIL-126 for different exchange times under standard conditions. The exchange time is 3 h for one exchange process. Obviously, the exchange ratio of Cr(III) increased rapidly in the first 3 times and then showed no obvious change.

Fig. S3 PXRD (a), N_2 adsorption-desorption isotherms at 77 K (b) and pore size distribution (c) of MIL-126(Sc) and the modified materials.

Fig. S4 (a) CO_2 adsorption-desorption isotherms at 298 K of MIL-126(Sc) and the modified materials. (b) CO_2 adsorption recycles of MIL-126(Cr/Sc) at 298 K and 1 bar. Note: MIL-126(Cr_{0.61}Sc_{0.39}) is marked as MIL-126(Cr/Sc) for clarity in this work.

Fig. S5 (a) N_2O adsorption-desorption isotherms at 298 K of MIL-126(Sc) and the modified materials. (b) N_2O adsorption recycles of MIL-126(Cr/Sc) at 298 K and 1 bar.

Fig. S6 (a) C_2H_2 adsorption-desorption isotherms at 298 K of MIL-126(Sc) and the modified materials. (b) C_2H_2 adsorption recycles of MIL-126(Cr/Sc) at 298 K and 1 bar.

Fig. S7 DSLF fit of CO₂ adsorption isotherms in MIL-126(Sc) and MIL-126(Cr/Sc).

Fig. S8 DSLF fit of N₂O adsorption isotherms in MIL-126(Sc) and MIL-126(Cr/Sc).

Fig. S9 DSLF fit of C₂H₂ adsorption isotherms in MIL-126(Sc) and MIL-126(Cr/Sc).

Fig. S10 Elemental mapping images and element analysis for MIL-126(Sc) and MIL-126(Cr/Sc) by EDX.

Fig. S11 Local XPS spectra of MIL-126(Sc) and MIL-126(Cr/Sc): Sc 2p and Cr 2p spectra.

Fig. S12 FTIR spectra of MIL-126(Sc) and MIL-126(Cr/Sc).

Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is ${\rm \odot}$ the Partner Organisations 2020

	Eo/eV	Ecr_atom/eV	Esc_atom/eV	ΔE/eV
CroSc3	-165.40			
Cr1Sc2	-163.32	-0.88	-1.82	1.14
Cr2Sc1	-161.65	-0.88	-1.82	1.88
Cr3Sco	-160.30	-0.88	-1.82	2.28

Fig. S13 Formation energy of Cr_nSc_{3-n} (n = 1,2,3). The formation energy value was determined by DFT calculation based on the formula: $\Delta E = E_0(Cr_nSc_{3-n}) + n^*E_{Sc_atom} - n^*E_{Cr_atom} - E_0(Cr_0Sc_3)$.

Fig. S14 The DFT-calculated adsorption configurations of CO_2 on the open metal sites in MIL-126 with different Cr content using a cluster model (Cr: light purple; Sc: cyan; C: grey; O: red).

Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is the Partner Organisations 2020

Adsorbents	T. T. ^[a]	q_1	b ₁	\mathbf{n}_1	q ₂	b ₂	n ₂
MIL-126(Cr/Sc)	273	1.76E1	1.98E1	1.61	3.01E3	3.16E-2	1.12
MIL-126(Cr/Sc)	298	2.71E2	2.42E-1	0.91	1.75E1	1.35E1	1.30
MIL-126(Sc)	273	2.26E2	0.39E-1	0.94	4.72E0	1.58E1	0.91
MIL-126(Sc)	298	1.20E1	0.39E-1	0.81	6.79E0	5.37E0	1.04

Table S1. DSLF fit parameters for CO_2 in MIL-126(Cr/Sc) and MIL-126(Sc).

Table S2. DSLF fit parameters for N_2O in MIL-126(Cr/Sc) and MIL-126(Sc).

Adsorbents	Gas	q_1	b_1	n_1	q_2	b ₂	n ₂
MIL-126(Cr/Sc)	273	2.15E1	9.55E0	1.93	2.56E5	4.15E-4	1.08
MIL-126(Cr/Sc)	298	2.02E1	8.93E0	1.59	4.54E2	1.49E-1	0.95
MIL-126(Sc)	273	1.16E1	1.08E1	0.94	2.01E2	5.63E-1	0.87
MIL-126(Sc)	298	1.55E2	4.42E-1	0.85	7.48E0	7.74E0	0.97

Table S3. DSLF fit parameters for C₂H₂ in MIL-126(Cr/Sc) and MIL-126(Sc).

Adsorbents	Gas	q_1	b_1	n_1	q_2	b ₂	n ₂
MIL-126(Cr/Sc)	273	3.82E4	1.66E-3	2.70	1.55E3	1.00E-2	0.80
MIL-126(Cr/Sc)	298	2.07E1	5.59E0	1.71	1.31E5	5.37E-4	1.05
MIL-126(Sc)	273	9.94E1	1.22E0	1.30	1.75E2	6.40E-1	0.70
MIL-126(Sc)	298	4.14E0	8.94E0	1.13	6.16E2	1.14E-1	1.07

[a]: "T. T." stands for test temperature, the unit is "K".

Table S4. Summary of the adsorption uptake (298 K,	1bar), selectivity	and heat of	f adsorption of	data for top-	performing
C_2H_2 -selective materials.					

Adsorbents	$C_2H_2(cm^3g^{-1})$	Qst (kJmol ⁻¹) ^a	Ref.
MOF-OH	68	17	1
MOF-NH ₂	60	16	1
ATC-Cu	112	79	2
FeNi-M'MOF	96	27	3
JCM-1	75	37	4
DICRO-4-Ni-i	43	37	5
HOF-3a	47	19	6
Cul@UiO-66-(COOH) ₂	51	74	7
ZJU-74a	86	45	8
Zn2(bpy)(btec)	55	29	9
NKMOF-1-Ni	61	60	10
UTSA-74a	107.4	31	11
FJU-36a	56	33	12
SIFSIX-21-Ni	91	38	13
MUF-17	67	49	14
Zn-MOF-74	122 ^b	31	10
CAU-10	90	27	15
UTSA-300a	69	57	16
Cu@FAU	79.5	50	17
1a	79.5	28.2	18
FJU-90a	180	25	19
MIL-126(Cr/Sc)	88	37	This work

[a] Qst at Zero Coverage for C₂H₂. [b] obtained at 295 K.

Adsorbents	BET (m ² g ⁻¹)	Thermal stability (°C)	Ref.
MIL-126(Cr/Sc)	1354	450	This work
Cr-SXU-1	4036	420	20
TYUT-96Cr	632	375	21
PCN-333(Cr)	2548	300	22
PCN-426(Cr)	3155	300	23
MIL-100(Cr)	1950	300	21
MIL-101(Cr)-NDC	2100	300	24
MIL-101(Cr)	4100	275	25

Table S5. Comparison of thermal stability of Cr-based tricyclic MOFs.

	S _A BET	CO ₂ uptake	CO ₂ uptake	Q _{st}	
Sample	(cm ³ /g)	(cm ³ /g) 273 K	(cm ³ /g) 298 K	(kJ/mol)	Ref.
ZJU-12	2316	237	131	28	26
CPM-231	1140	232	152	20	27
Mg-MOF-74	1495	229	180	47	28
Cu(TDPTA)	1938	227	131	42	29
MFM-188	2568	216	121	21	30
Cu-tpbtm	3160	217	119	26	31
CPM-200-Fe/Mg	1459	208	127	34	32
NOTT-125	2471	204	93	25	33
SIFSIX-1-Cu	1468	183	118	27	34
CPM-733-dps	1883	238	124	27	35
CPM-733	1328	171	87	24	35
ZSM-5	420	/	33	/	36
13X	488	/	38	/	37
AC	/	/	49	/	38
UIO-66	1525	/	40	25	39
MOF-5	2304	/	47	34	40
MIL-100(Cr)	2153	/	52	/	41
MIL-126(Cr/Sc)	1354	109	69	40	This work

Table S6. Summary of some top-performing MOFs for CO_2 adsorption at 1 bar or 1 atm as no	ted.
---	------

	S _A BET	N ₂ O uptake	N ₂ O uptake	Q _{st}	
Sample	(cm ³ /g)	(cm ³ /g) 273 K	(cm ³ /g) 298 K	(kJ/mol)	Ref.
MOF-5	839	/	20.40	/	42
Ni-MOF	447	77	63.00	26	43
ZIF-7	312	/	56.01	/	44
UIO-66	1390	/	96.60	/	45
ZIF-8	1630	/	31.10	/	45
HKUST-1	1850	/	87.60	/	45
MIL-100Cr	2118	184.5	129.40	80	45
ELM-11	621	100.8	89.60	32	46
ELM-12	706	78.4	67.20	36	46
MIL-53Al	1519	56	60.48	25	46
MIL-100Fe-300	2227	140	105.27	37	47
MIL-126(Cr/Sc)	1354	125	77	31	This work

Table S7. Summary of some top-performing MOFs for N₂O adsorption at 1 bar or 1 atm as noted.

Table S8. Adsorption energies of MIL-126(Sc) and MIL-126(Cr/Sc) for the selected gas molecules.

	Adsorption energy (eV)			
Gas molecules	MIL-126(Sc)	MIL-126(Cr/Sc)		
CO_2	-0.31	-0.37		
C_2H_2	-0.37	-0.58		
N ₂ O	-0.28	-0.39		

	Chemical ^[a] Composition	Relative Molecular Mass	Unsaturated metal Sites ^[b] (mmol/g)
MIL-126(Sc) ⁴⁸	Sc ₃ O[BPDC] ₃ X	913.14	2.19
MIL-126(Cr/Sc)	Cr _{1.83} Sc _{1.17} O[BPDC] ₃ X	925.95	2.16

Table S9. Theoretical calculated concentration of unsaturated metal sites

[a]: Coordination water molecule and water in pores were ignored. [b]: Concentration of unsaturated metal sites was calculated based on the relative molecular mass and the percentage of unsaturated metal sites values reported in previous work. X=OH⁻ or Cl⁻, here, Cl⁻ was used for the calculation of the relative molecular mass.

References

- W. Gong, H. Cui, Y. Xie, Y. Li, X. Tang, Y. Liu, Y. Cui and B. Chen, Efficient C₂H₂/CO₂ Separation in Ultramicroporous Metal-Organic Frameworks with Record C₂H₂ Storage Density, *J. Am. Chem. Soc.*, 2021, 143, 14869-14876.
- Z. Niu, X. Cui, T. Pham, G. Verma, P. C. Lan, C. Shan, H. Xing, K. A. Forrest, S. Suepaul, B. Space, A. Nafady, A.
 M. Al-Enizi and S. Ma, A MOF-based Ultra-Strong Acetylene Nano-trap for Highly Efficient C₂H₂/CO₂ Separation,
 Angew. Chem. Int. Ed., 2021, 60, 5283-5288.
- 3 J. Gao, X. Qian, R.-B. Lin, R. Krishna, H. Wu, W. Zhou and B. Chen, Mixed Metal-Organic Framework with Multiple Binding Sites for Efficient C₂H₂/CO₂ Separation, *Angew. Chem. Int. Ed.*, 2020, **59**, 4396-4400.
- 4 J. Lee, C. Y. Chuah, J. Kim, Y. Kim, N. Ko, Y. Seo, K. Kim, T. H. Bae and E. Lee, Separation of Acetylene from Carbon Dioxide and Ethylene by a Water-Stable Microporous Metal-Organic Framework with Aligned Imidazolium Groups inside the Channels, *Angew. Chem. Int. Ed.*, 2018, **57**, 7869-7873.
- 5 H. S. Scott, M. Shivanna, A. Bajpai, D. G. Madden, K.-J. Chen, T. Pham, K. A. Forrest, A. Hogan, B. Space, J. J. Perry and M. J. Zaworotko, Highly Selective Separation of C₂H₂ from CO₂ by a New Dichromate-Based Hybrid Ultramicroporous Material, *ACS Appl. Mat. Interfaces*, 2017, 9, 33395-33400.

- 6 P. Li, Y. He, Y. Zhao, L. Weng, H. Wang, R. Krishna, H. Wu, W. Zhou, M. O'Keeffe, Y. Han and B. Chen, A Rod-Packing Microporous Hydrogen-Bonded Organic Framework for Highly Selective Separation of C₂H₂/CO₂ at Room Temperature, *Angew. Chem. Int. Ed.*, 2015, **54**, 574-577.
- L. Zhang, K. Jiang, L. Yang, L. Li, E. Hu, L. Yang, K. Shao, H. Xing, Y. Cui, Y. Yang, B. Li, B. Chen and G. Qian,
 Benchmark C₂H₂/CO₂ Separation in an Ultra-Microporous Metal-Organic Framework via Copper(I)-Alkynyl
 Chemistry, *Angew. Chem. Int. Ed.*, 2021, 60, 15995-16002.
- 8 J. Pei, K. Shao, J.-X. Wang, H.-M. Wen, Y. Yang, Y. Cui, R. Krishna, B. Li and G. Qian, A Chemically Stable Hofmann-Type Metal-Organic Framework with Sandwich-Like Binding Sites for Benchmark Acetylene Capture, *Adv. Mater.*, 2020, **32**.
- 9 Y. Chen, Y. Du, Y. Wang, R. Krishna, L. Li, J. Yang, J. Li and B. Mu, A stable metal-organic framework with wellmatched pore cavity for efficient acetylene separation, *AlChE J.*, 2021, **67**.
- Y.-L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K.-J. Chen, K. A. Forrest, B. Space, P. Cheng, M. J. Zaworotko and Z. Zhang, Robust Ultramicroporous Metal-Organic Frameworks with Benchmark Affinity for Acetylene, *Angew. Chem. Int. Ed.*, 2018, 57, 10971-10975.
- F. Luo, C. Yan, L. Dang, R. Krishna, W. Zhou, H. Wu, X. Dong, Y. Han, T.-L. Hu, M. O'Keeffe, L. Wang, M. Luo,
 R.-B. Lin and B. Chen, UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for
 Highly Selective Gas Separation, J. Am. Chem. Soc., 2016, 138, 5678-5684.
- 12 L. Liu, Z. Yao, Y. Ye, L. Chen, Q. Lin, Y. Yang, Z. Zhang and S. Xiang, Robustness, Selective Gas Separation, and Nitrobenzene Sensing on Two Isomers of Cadmium Metal-Organic Frameworks Containing Various Metal-O-Metal Chains, *Inorg. Chem.*, 2018, **57**, 12961-12968.
- 13 N. Kumar, S. Mukherjee, N. C. Harvey-Reid, A. A. Bezrukov, K. Tan, V. Martins, M. Vandichel, T. Pham, L. M. van Wyk, K. Oyekan, A. Kumar, K. A. Forrest, K. M. Patil, L. J. Barbour, B. Space, Y. Huang, P. E. Kruger and

- M. J. Zaworotko, Breaking the trade-off between selectivity and adsorption capacity for gas separation, *Chem*, 2021, 7, 3085-3098.
- 14 O. T. Qazvini, R. Babarao and S. G. Telfer, Multipurpose Metal-Organic Framework for the Adsorption of Acetylene: Ethylene Purification and Carbon Dioxide Removal, *Chem. Mater.*, 2019, **31**, 4919-4926.
- 15 J. Pei, H.-M. Wen, X.-W. Gu, Q.-L. Qian, Y. Yang, Y. Cui, B. Li, B. Chen and G. Qian, Dense Packing of Acetylene in a Stable and Low-Cost Metal-Organic Framework for Efficient C₂H₂/CO₂ Separation, *Angew. Chem. Int. Ed.*, 2021, **60**, 25068-25074
- 16 R.-B. Lin, L. Li, H. Wu, H. Arman, B. Li, R.-G. Lin, W. Zhou and B. Chen, Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material, J. Am. Chem. Soc., 2017, 139, 8022-8028.
- S. Liu, X. Han, Y. Chai, G. Wu, W. Li, J. Li, I. da Silva, P. Manuel, Y. Cheng, L. L. Daemen, A. J. Ramirez-Cuesta,
 W. Shi, N. Guan, S. Yang and L. Li, Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite,
 Angew. Chem. Int. Ed., 2021, 60, 6526-6532.
- 18 W.-J. Shi, Y.-Z. Li, J. Chen, R.-H. Su, L. Hou, Y.-Y. Wang and Z. Zhu, A new metal-organic framework based on rare Zn4F4 cores for efficient separation of C₂H₂, *Chem. Commun.*, 2021, 57, 12788-12791.
- 19 Y. Ye, Z. Ma, R.-B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang and B. Chen, Pore Space Partition within a Metal-Organic Framework for Highly Efficient C₂H₂/CO₂ Separation, *J. Am. Chem. Soc.*, 2019, **141**, 4130-4136.
- 20 J.-H. Wang, Y. Zhang, M. Li, S. Yan, D. Li and X.-M. Zhang, Solvent-Assisted Metal Metathesis: A Highly Efficient and Versatile Route towards Synthetically Demanding Chromium Metal-Organic Frameworks, *Angew. Chem. Int. Ed.*, 2017, **56**, 6478-6482.
- 21 F. Zhang, H. Shang, L. Wang, Y. Wang, J. Yang, Y. Xia, H. Li, L. Li and J. Li, Construction of a Porous Metal-Organic Framework with a High Density of Open Cr Sites for Record N₂/O₂ Separation, *Adv. Mater.*, 2021, 33.
- 22 X. Lian, D. Feng, Y.-P. Chen, T.-F. Liu, X. Wang and H.-C. Zhou, The preparation of an ultrastable mesoporous

Cr(III)-MOF via reductive labilization, Chem. Sci., 2015, 6, 7044-7048.

- 23 T.-F. Liu, L. Zou, D. Feng, Y.-P. Chen, S. Fordham, X. Wang, Y. Liu and H.-C. Zhou, Stepwise Synthesis of Robust Metal-Organic Frameworks via Postsynthetic Metathesis and Oxidation of Metal Nodes in a Single-Crystal to Single-Crystal Transformation, *J. Am. Chem. Soc.*, 2014, **136**, 7813-7816.
- A. Sonnauer, F. Hoffmann, M. Froeba, L. Kienle, V. Duppel, M. Thommes, C. Serre, G. Ferey and N. Stock, Giant Pores in a Chromium 2,6-Naphthalenedicarboxylate Open-Framework Structure with MIL-101 Topology, *Angew. Chem. Int. Ed.*, 2009, 48, 3791-3794.
- 25 G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble and I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, *Science*, 2005, **309**, 2040-2042.
- 26 X. Duan, Y. Cui, Y. Yang and G. Qian, A novel methoxy-decorated metal-organic framework exhibiting high acetylene and carbon dioxide storage capacities, *CrystEngComm*, 2017, **19**, 1464-1469.
- 27 Q.-G. Zhai, X. Bu, C. Mao, X. Zhao, L. Daemen, Y. Cheng, A. J. Ramirez-Cuesta and P. Feng, An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials, *Nat. Commun.*, 2016, **7**.
- 28 S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores, *J. Am. Chem. Soc.*, 2008, **130**, 10870-10871.
- B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu, N. Nijem, Y. J. Chabal, Z. Lai,
 Y. Han, Z. Shi, S. Feng and J. Li, Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO₂
 by Dual Functionalization of a rht-Type Metal-Organic Framework, *Angew. Chem. Int. Ed.*, 2012, **51**, 1412-1415.
- 30 F. Moreau, I. da Silva, N. H. Al Smail, T. L. Easun, M. Savage, H. G. W. Godfrey, S. F. Parker, P. Manuel, S. Yang and M. Schroeder, Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal-organic framework, *Nat. Commun.*, 2017, 8.
- 31 B. Zheng, J. Bai, J. Duan, L. Wojtas and M. J. Zaworotko, Enhanced CO₂ Binding Affinity of a High-Uptake rht-

Type Metal-Organic Framework Decorated with Acylamide Groups, J. Am. Chem. Soc., 2011, 133, 748-751.

- 32 Q.-G. Zhai, X. Bu, C. Mao, X. Zhao and P. Feng, Systematic and Dramatic Tuning on Gas Sorption Performance in Heterometallic Metal-Organic Frameworks, *J. Am. Chem. Soc.*, 2016, **138**, 2524-2527.
- 33 N. H. Alsmail, M. Suyetin, Y. Yan, R. Cabot, C. P. Krap, J. Lu, T. L. Easun, E. Bichoutskaia, W. Lewis, A. J. Blake and M. Schroeder, Analysis of High and Selective Uptake of CO₂ in an Oxamide-Containing {Cu₂(OOCR)₄}-Based Metal-Organic Framework, *Chem. Eur. J.*, 2014, **20**, 7317-7324.
- S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora, R. Q. Snurr, P. K. Thallapally, J. Tian, L. Wojtas and M. J. Zaworotko,
 Highly Selective Carbon Dioxide Uptake by Cu(bpy-n)₂(SiF₆) (bpy-1=4,4-Bipyridine; bpy-2=1,2-Bis(4-pyridyl)ethene), *J. Am. Chem. Soc.*, 2012, 134, 3663-3666.
- Y. Wang, X. Jia, H. Yang, Y. Wang, X. Chen, A. N. Hong, J. Li, X. Bu and P. Feng, A Strategy for Constructing Pore-Space-Partitioned MOFs with High Uptake Capacity for C₂ Hydrocarbons and CO₂, *Angew. Chem. Int. Ed.*, 2020, 59, 19027-19030.
- 36 Y. Li, H. Yi, X. Tang, F. Li and Q. Yuan, Adsorption separation of CO₂/CH₄ gas mixture on the commercial zeolites at atmospheric pressure, *Chem. Eng. J.*, 2013, **229**, 50-56.
- J. McEwen, J.-D. Hayman and A. O. Yazaydin, A comparative study of CO₂, CH₄ and N₂ adsorption in ZIF-8,
 Zeolite-13X and BPL activated carbon, *Chem. Phys.*, 2013, 412, 72-76.
- 38 R.-L. Tseng, F.-C. Wu and R.-S. Juang, Adsorption of CO₂ at atmospheric pressure on activated carbons prepared from melamine-modified phenol-formaldehyde resins, *Sep. Purif. Technol.*, 2015, **140**, 53-60.
- 39 Z. Hu, M. Khurana, Y. H. Seah, M. Zhang, Z. Guo and D. Zhao, Ionized Zr-MOFs for highly efficient postcombustion CO₂ capture, *Chem. Eng. Sci.*, 2015, **124**, 61-69.
- Z. Zhao, Z. Li and Y. S. Lin, Adsorption and Diffusion of Carbon Dioxide on Metal-Organic Framework (MOF-5), *Ind. Eng. Chem. Res.*, 2009, 48, 10015-10020.

- 41 L. Li, J. Yang, J. Li, Y. Chen and J. Li, Separation of CO₂/CH₄ and CH₄/N₂ mixtures by M/DOBDC: A detailed dynamic comparison with MIL-100(Cr) and activated carbon, *Microporous Mesoporous Mater.*, 2014, **198**, 236-246.
- 42 D. Saha, Z. Bao, F. Jia and S. Deng, Adsorption of CO₂, CH₄, N₂O, and N₂ on MOF-5, MOF-177, and Zeolite 5A, *Environ. Sci. Technol.*, 2010, **44**, 1820-1826.
- 43 X. Zhang, W. Chen, W. Shi and P. Cheng, Highly selective sorption of CO₂ and N₂O and strong gas- framework interactions in a nickel(II) organic material, *J. Mater. Chem. A*, 2016, **4**, 16198-16204.
- J.-R. Li, R. J. Kuppler and H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, *Chem. Soc. Rev.*, 2009, 38, 1477-1504.
- 45 L. Wang, F. Zhang, C. Wang, Y. Li, J. Yang, L. Li and J. Li, Ethylenediamine-functionalized metal organic frameworks MIL-100(Cr) for efficient CO₂/N₂O separation, *Sep. Purif. Technol.*, 2020, 235.
- 46 L. Wang, Y. Li, Y. Wang, J. Yang, L. Li and J. Li, Research on CO₂-N₂O separation using flexible metal organic frameworks, *Sep. Purif. Technol.*, 2020, 251.
- 47 L. Wang, F. Zhang, J. Yang, L. Li and J. Li, The efficient separation of N₂O/CO₂ using unsaturated Fe²⁺ sites in MIL-100Fe, *Chem. Commun.*, 2021, 57, 6636-6639.
- 48 R. J. Marshall, C. T. Lennon, A. Tao, H. M. Senn, C. Wilson, D. Fairen-Jimenez and R. S. Forgan, Controlling interpenetration through linker conformation in the modulated synthesis of Sc metal-organic frameworks, *J. Mater. Chem. A*, 2018, 6, 1181-1187.