Supplementary Information

In-situ polymerization confining synthesis of ultrasmall MoTe₂

nanoparticles for electrochemical detection of dopamine

Yuting Du, Linxiu Dai*, Fan Yang, Yue Zhang, Changhua An*

Tianjin Key Laboratory of Organic Solar Cell and Photochemical Conversion, School of Chemistry and Chemical Engineering, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China Email: linxiudai@163.com; anchua@ustc.edu

Fig. S1. Structural characterization of the as-obtained Mo@PPy/C. (a-b) TEM and HRTEM images (the inset shows the SAED pattern); (c-f) Element mapping images.

Fig. S2. (a) XRD pattern of Mo/PPy/C; (b) High-resolution XPS spectra of N elements in Mo/PPy/C.

Fig. S3. XRD pattern of NC and bulk MoTe₂.

Fig. S4. XRD patterns of MoTe₂/NC and MoTe₂/C.

Fig. S5. High and low-magnification (inset) SEM images (a) NC and (b) bulk MoTe₂.

Fig. S6. High-resolution XPS of the total and respective elements in MoTe₂/NC. (a) Survey spectrum; (b) Te 3d; (c) C 1s.

Fig. S7. Raman spectra of MoTe₂/NC and NC.

Fig. S8. EIS of different modified electrodes.

Fig. S9. (a) An enlarged image of Fig. 4a; (b) An enlarged image of Fig. 5b.

Fig. S10. DPV curves over MoTe₂/NC for the detection of AA (a) and UA (b) under different concentrations.

Materials	Linear detection range (µM)	LOD (µM)	References
MoS ₂ NSs/N-Gr/GCE	3.2-5680	11.9	1
rGO-Co ₃ O ₄ /GCE	0-30	0.277	2
RGO-ZnO/GCE	1-70	0.33	3
Graphene/Pt-modified GCE	0.03-8.13	0.03	4
S-MoSe ₂ /NSG/Au/MIPs	0.05-1110	0.02	5
Ag-Pt/pCNFs	100-500	0.11	6
Boron-CNT/GCE ^d	0.02-75	0.0014	7
Pt/MWCCNT/GCE	0.061-7.03	0.028	8
Nafion/Te NWs/GCE	0.005-1.0	0.001	9
MoTe ₂ /NC/GCE	0.1-50	0.007	This work

Table S1. Performance comparisons with reported materials for detection of DA.

References

- L. G. Bach, D. M. Nguyen, Q. B. Bui, P. H. Ai-Le and H. T. Nhac-Vu, *Mater. Chem. Phys.*, 2019, 236, 121814.
- 2. A. Numan, M. M. Shahid, F. S. Omar, K. Ramesh and S. Ramesh, *Sens. Actuators, B*, 2017, 238, 1043-1051.
- 3. X. Zhang, Y. Zhang and L. Ma, Sens. Actuators, B, 2016, 227, 488-496.
- 4. C.-L. Sun, H.-H. Lee, J.-M. Yang and C.-C. Wu, *Biosens. Bioelectron.*, 2011, 26, 3450-3455.
- Y. Zang, J. Nie, B. He, W. Yin, J. Zheng, C. Hou, D. Huo, M. Yang, F. Liu, Q. Sun, Y. Qin and H. Fa, *Microchem. J.*, 2020, **156**, 104845.
- 6. Y. Huang, Y.-E. Miao, S. Ji, W. W. Tjiu and T. Liu, ACS Appl. Mater. Interfaces, 2014, 6, 12449-12456.
- C. Deng, J. Chen, M. Wang, C. Xiao, Z. Nie and S. Yao, *Biosens. Bioelectron.*, 2009, 24, 2091-2094.
- 8. Z. Dursun and B. Gelmez, *Electroanalysis*, 2010, **22**, 1106-1114.
- 9. H. Tsai, Z. Lin and H. Chang, *Biosens. Bioelectron.*, 2012, **35**, 479-483.