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Experimental Section

Synthesis. Ba (99.9%), Ga2S3 (99.9%), HgS (99%), BaCl2 (99.5%), and S (99.9%) were purchased 

from Beijing Hawk Science and Technology Co. Ltd. (China), all the reagents were commercially 

purchased without further refinement. For the preparation of [Ba4Cl2][HgGa4S10], reactants of Ba 

(3 mmol), Ga2S3 (2 mmol), HgS (1 mmol), BaCl2 (1.5 mmol), S (3.5 mmol) were firstly loaded into 

a graphite crucible and then they are sealed into the silica tube and flame-sealed under 10–3 Toor. 

The tube was placed in a temperature-controlled furnace with the following heating process: firstly, 

the temperature was raised to 750 °C at a rate of 5 °C/h and kept at this temperature for 100 h. 

Subsequently, the furnace was slowly cooled down to 300 °C at a rate of 3 °C/h. Finally, the furnace 

was turned off and cooled down to room temperature. N, N−dimethylformamide (DMF) solvent 

was chosen to wash the products. Finally, many millimeter-level pale-yellow crystals of 

[Ba4Cl2][HgGa4S10] were obtained with yields of ∼80%, and all of them are stable under air and 

moisture conditions for at least 3 months.

Crystal structure determination. Powder X-ray diffraction (PXRD) pattern was collected setting 

from the 2θ range 10-70° with a step width size of 0.01° and a step time of 2 s on an automated 

SmartLab 3KW powder X-ray diffractometer using Cu-Kα radiation (λ = 1.54057 Å) radiation. The 

purity of compound [Ba4Cl2][HgGa4S10] was verified by PXRD with the results as shown in Figure 

S1 (Supporting Information online). The crystal structure of [Ba4Cl2][HgGa4S10] was determined 

by single-crystal XRD on a Bruker SMART APEX III CCD diffractometer using Mo Kα radiation 

(λ = 0.71073 Å) at 296(2) K and the data was integrated with the SAINT program.1 All calculations 

were implemented with programs from the SHELXTL crystallographic software package.2 Their 

crystal structures were solved by direct methods using SHELXS and refined with full-matrix least-

squares methods on F2 with anisotropic thermal parameters for all atoms.3 Crystal data and structure 

refinement parameters were given in Table S1 (Supporting Information online). Some structural 

parameters including interatomic distances and angles, final refined atomic positions and isotropic 

thermal parameters are listed in Table S2 and Table S3, respectively.

Energy-Dispersive Spectroscopy. Microprobe elemental analyses and the elemental distribution 

maps were measured on a field-emission scanning electron microscope (Quanta FEG 250) made by 

FEI. 

UV−Vis−NIR Diffuse reflectance. The UV−Vis−NIR optical diffuse reflectance spectrum of 

[Ba4Cl2][HgGa4S10] in the range of 200−2500 nm was measured on Shimadzu SolidSpec-3700DUV 

with BaSO4 as a reference. The band gap was estimated on basis of the absorption spectrum that 

was derived from the reflection spectrum using the Kubelka-Munk formula.4

IR and Raman spectroscopy. The IR spectrum was measured on a Nicolet iS50 Fourier transform 

IR spectrometer with ATR in the range of 4000−400 cm−1. The Raman spectrum of 
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[Ba4Cl2][HgGa4S10] in the range of 1000−10 cm−1 was recorded on WITec alpha300R.

Second-harmonic generation measurement. The SHG signals of [Ba4Cl2][HgGa4S10] and 

benchmark AGS were investigated under incident laser radiation of 2090 nm by modified Kurtz-

Perry method, respectively.5 Samples [Ba4Cl2][HgGa4S10] and AGS were sieved into several 

distinct particle size ranges (54−75, 75−100, 100−125, 125−150, 150−180, and 180−250 μm) for 

the PM measurements. The SHG signals were detected by a charge-coupled device. The second 

harmonic efficiency of the [Ba4Cl2][HgGa4S10] powder was compared to that of AGS powder with 

the same particle size.

Laser damage threshold measurement. The LDTs of the [Ba4Cl2][HgGa4S10] and AGS powder 

at the particle size range of 100−125 μm were evaluated under using high-power laser irradiation of 

1064 nm (pulse width τp = 10 ns) by the single-pulse method.6 The measurement processes were 

performed by gradually increasing the laser power until the damaged spot was observed under a 

microscope. The damage thresholds were derived from the equation I(threshold) = E/(πr2τp), where E 

is the laser energy of a single pulse, r is the spot radius, and τp is the pulse width.

Computational Methods. The electronic band structures, the partial density of states, optical 

properties, overlap populations, and electron localization function (ELF) for [Ba4Cl2][HgGa4S10] 

were carried out using the CASTEP package based on density functional theory (DFT).7, 8 

Generalized gradient approximation (GGA) parametrized by Perdew-Burke-Ernzerhof (PBE) 

functional was chosen for the exchange-correlation energy, and the pseudopotential was set as 

norm-conserving pseudopotential (NCP).9 The valence electrons were set as: Ba 4d105p66s2, Hg 

5d106s2, Ga 4s24p1, S 3s23p4, and Cl 3s23p5. The plane-wave energy cutoff value was set at 860.0 

eV. The numerical integration of the Brillouin zone was performed using 4 × 4 × 2 Monkhorst-Pack 

κ-point meshes.10

The SHG coefficients were calculated from the band wave functions using the so-called length-

gauge formalism derived by Aversa and Sipe at a zero-frequency limit. The static second-order 

nonlinear susceptibilities χαβγ
(2) can be reduced as:11, 12

χαβγ
(2)= χαβγ

(2) (VE)+ χαβγ
(2) (VH)    (1),
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Virtual-Hole (VH), Virtual-Electron (VE) and Two-Band (TB) processes play an important role in 

the total SHG coefficient χ(2). The TB process can be neglected owing to little contribution for SHG. 

The formulas for calculating χαβγ
(2) (VE) and χαβγ

(2) (VH) are as follows:

χαβγ
(2) (VE)     (2),

=
𝑒3
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Here, α, β, γ are Cartesian components, v and v′ denote valence bands, c and c′ refer to conduction 

bands, and P(αβγ) denotes the full permutation. The band energy difference and momentum matrix 

elements are denoted as ℏωij and Pij
α, respectively. As we know, the virtual electron (VE) progresses 

of occupied and unoccupied states are the main contribution to the overall SHG effect.13
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Figure S1. Experimental and calculated XRD patterns for [Ba4Cl2][HgGa4S10].
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Figure S2. EDS of [Ba4Cl2][HgGa4S10].
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Figure S3. Calculated band structure of [Ba4Cl2][HgGa4S10].



S8

Figure S4. Projected density of states of [Ba4Cl2][HgGa4S10]
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Figure S5. Three-dimensional diagram presenting the balanced performance of the LDT, SHG 
response, and band gap for chalcohalides.
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Table S1. Local dipole moments for the [GaS4], [HgS4] and [GaSe4] tetrahedra within a unit cell 
for [Ba4Cl2][HgGa4S10], [Ba4Cl2][ZnGa4S10], [RbBa2Cl][Ga4S8], [Ba4Cl2][ZnGa4Se10], 
[Ba4Cl2][CdGa4Se10], and [CsBa3Cl2][Ga5Se10].

Compounds Tetrahedra Bonds a b c debye

GaS4 tetrahedron Ga-S 0.38 2.29 -1.89 2.99
[Ba4Cl2][HgGa4S10]

HgS4 tetrahedron Hg-S 0.0 0.0 0.0 0

[Ba4Cl2][ZnGa4S10] GaS4 tetrahedron Ga-S 0.26 2.25 1.83 2.91

[RbBa2Cl][Ga4S8] GaS4 tetrahedron Ga-S 1.02 1.32 0.98 1.93

[Ba4Cl2][ZnGa4Se10] GaSe4 tetrahedron Ga-Se -0.14 1.68 -1.76 2.44

[Ba4Cl2][CdGa4Se10] GaSe4 tetrahedron Ga-Se -0.22 1.61 -1.73 2.37

[CsBa3Cl2][Ga5Se10] GaSe4 tetrahedron Ga-Se 0.19 -1.64 1.42 2.17



S11

Table S2. Comparisons of [Ba4Cl2][HgGa4S10] with other chalcohalides NLO materials on the Band 
gap, Laser-induced damage threshold, and SHG responses.

Compound
Space 
group

Band gap
(eV)

Laser-induced 
damage threshold 

(× AGS, MW/cm2)

dij

(× AGS, pm/V)

1. Li[LiCs2Cl][Ga3S6]15 Pna21 4.18 4.1 0.7
2. [KBa3Cl2][Ga5Se10]16, 17 I(-)4 3.25 9.7 0.9
3. [RbBa3Cl2][Ga5S10]18 Pmn21 3.30 11.0 1.0
4. [CsBa3Cl2][Ga5S10]18 Pmn21 3.35 12.0 0.9
5. [K3Cl][Ga3PS8]19 Pmn21 3.60 39.0 1.0
6. [Rb3Cl][Ga3PS8]19 Pmn21 3.65 37.0 1.1
7. [K3Br][Ga3PS8]19 Pm 3.85 32.0 1.2
8. [Rb3Br][Ga3PS8]19 Pm 3.50 31.0 2.0
9. [Ba4Cl2][ZnGa4Se10]17 I(-)4 3.08 17.0 1.6
10. [Ba4Cl2][ZnGa4S10]20 I(-)4 3.85 51.0 1.1
11. NaBa4Ge3S10Cl21 P63 3.49 20.0 0.33
12. AgGaS2

14 I(-)42d 2.7 20.33 MW/cm2 2.73 pm/V
13. [Ba4Cl2][HgGa4S10] I(-)4 2.95 15.0 1.5
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Table S3. Crystallographic Data and Refinement Details for [Ba4Cl2][HgGa4S10].

Empirical formula [Ba4Cl2][HgGa4S10]

Formula weight 1420.33

Temperature (K) 296(2)

Crystal system tetragonal

Space group I (no.82)

Z 2

a (Å) 8.308 (2)

c (Å) 15.272 (4)

V (Å3) 1054.0 (7)

Dc (g cm-3) 4.475

μ (mm-1) 20.849

F(000) 1244

Crystal size 0.054 x 0.051 x 0.049 mm3

Radiation Mo-Kα (λ = 0.71073)

2θ range(°) 2.67 to 27.08

Reflections collected 2457

Indep. Reflns/ Rint 1158/0.0565

GOOF on F2 0.982

R1, wR2 (I >2σ(I))a 0.0416, 0.0783

R1, wR2 (all data) 0.0495, 0.0830

largest diff. peak and hole (e·Å−3) 1.104, -1.403

aR1 = Σ||Fo|—|Fc||/Σ|Fo|, bwR2 = Σw(Fo
2—Fc

2)2/Σw(Fo
2)2]1/2.
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Table S4. Atomic coordinates (  104) and equivalent isotropic displacement parameters (Å2  103) 
for [Ba4Cl2][HgGa4S10]. Ueq is defined as one-third of the trace of the orthogonalized Uij tensor.

Atom BVSa Wyckoff x y z Ueq(Å)

Ba(1) 1.93 8g 6443.2(2) 2697.1(2) 6397.9(1) 0.023(1)

Hg(1) 2.16 2c 5000.0 0.0 2500.0 0.024(1)

Ga(1) 3.07 8g 8117.0(3) 1106.0(3) 4161.1(1) 0.013(1)

S(1) 1.80 8g 10000.0 0.0 3270.0(4) 0.023(2)

S(2) 2.07 8g 6406.0(6) 2352.0(6) 3249.0(3) 0.017(1)

S(3) 1.95 4e 9265.0(6) 3122.0(6) 4949.0(3) 0.016(1)

Cl(1) 1.52 2b 5000.0 0.0 7500.0 0.018(2)

Cl(2) 1.30 2d 5000.0 5000.0 5000.0 0.020(2)

aBond valence state was calculated using the empirical formula 

Vi=ΣSij=Σexp[(r0−rij)/0.37], where Sij is the bond valence associated with bond 

lengths rij and r0.22
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Table S5. Selected distances (Å) and angles (degrees) for [Ba4Cl2][HgGa4S10].
Ba(1)-Cl(1) 3.0481(13) S(3)-Ba(1)-S(2)#3 141.20(11)

Ba(1)-Cl(2) 3.1073(13) S(2)#1-Ba(1)-S(2)#3 94.03(12)

Ba(1)-S(3) 3.243(5) S(2)#2-Ba(1)-S(2)#3 112.89(9)

Ba(1)-S(2)#1 3.284(6) Cl(1)-Ba(1)-S(3)#4 76.62(8)

Ba(1)-S(2)#2 3.345(5) Cl(2)-Ba(1)-S(3)#4 97.84(8)

Ba(1)-S(2)#3 3.521(5) S(3)-Ba(1)-S(3)#4 67.46(14)

Ba(1)-S(3)#4 3.534(5) S(2)#1-Ba(1)-S(3)#4 145.21(12)

Ba(1)-S(1)#5 3.644(5) S(2)#2-Ba(1)-S(3)#4 115.30(12)

Hg(1)-S(2)#8 2.548(5) S(2)#3-Ba(1)-S(3)#4 111.02(12)

Hg(1)-S(2)#9 2.548(5) Cl(1)-Ba(1)-S(1)#5 79.82(5)

Hg(1)-S(2)#10 2.548(5) Cl(2)-Ba(1)-S(1)#5 95.11(7)

Hg(1)-S(2) 2.548(5) S(3)-Ba(1)-S(1)#5 135.75(9)

Ga(1)-S(2) 2.244(5) S(2)#1-Ba(1)-S(1)#5 58.58(8)

Ga(1)-S(1) 2.267(4) S(2)#2-Ba(1)-S(1)#5 61.25(10)

Ga(1)-S(3) 2.272(5) S(2)#3-Ba(1)-S(1)#5 56.70(8)

Ga(1)-S(3)#4 2.290(5) S(3)#4-Ba(1)-S(1)#5 156.07(9)

Cl(1)-Ba(1)-Cl(2) 132.86(5) S(2)#8-Hg(1)-S(2)#9 101.63(8)

Cl(1)-Ba(1)-S(3) 137.82(10) S(2)#8-Hg(1)-S(2)#10 101.63(8)

Cl(2)-Ba(1)-S(3) 75.12(9) S(2)#9-Hg(1)-S(2)#10 126.65(19)

Cl(1)-Ba(1)-S(2)#1 135.96(8) S(2)#8-Hg(1)-S(2) 126.65(19)

Cl(2)-Ba(1)-S(2)#1 69.68(8) S(2)#9-Hg(1)-S(2) 101.63(8)

S(3)-Ba(1)-S(2)#1 77.86(12) S(2)#10-Hg(1)-S(2) 101.63(8)

Cl(1)-Ba(1)-S(2)#2 74.60(9) S(2)-Ga(1)-S(1) 104.58(18)

Cl(2)-Ba(1)-S(2)#2 142.60(10) S(2)-Ga(1)-S(3) 104.76(19)

S(3)-Ba(1)-S(2)#2 101.06(12) S(1)-Ga(1)-S(3) 109.06(17)

S(2)#1-Ba(1)-S(2)#2 73.13(15) S(2)-Ga(1)-S(3)#4 113.1(2)

Cl(1)-Ba(1)-S(2)#3 72.02(9) S(1)-Ga(1)-S(3)#4 113.30(16)

Cl(2)-Ba(1)-S(2)#3 66.58(8) S(3)-Ga(1)-S(3)#4 111.50(13)

Symmetry transformations used to generate equivalent atoms: 

#1 -x+1,-y,z    #2 -y+1/2,x-1/2,-z+1/2    #3 y+1/2,-x+1/2,-z+1/2      
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#4 x-1/2,y-1/2,z-1/2    #5 -x+3/2,-y+1/2,z-1/2      

#6 y,-x+1,-z+1    #7 -y+1,x-1,-z+1    #8 y+1/2,-x+1/2,-z+3/2      

#9 -y+1/2,x-1/2,-z+3/2    #10 -y+1,x,-z+1    #11 -x+3/2,-y+1/2,z+1/2      

#12 x-1/2,y+1/2,z+1/2    #13 -x+1,-y+1,z    #14 x+1/2,y+1/2,z+1/2      

#15 y+1,-x+1,-z+1    #16 -x+2,-y,z    #17 x+1/2,y-1/2,z-1/2      
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