Supporting information for

Smart intercalation collaborating coordination strategy to construct stable ratiometric fluorescence nanoprobe for detection of anthrax biomarker

Xiaoxiao Niu, Meixiang Wang, Mengyu Zhang, Rui Cao, Zhaodi Liu*, Fuying Hao, Liangquan

Sheng and Huajie Xu*

Supplementary Figures:

- Fig. S1. Absorbance at 350 nm and 394 nm of L as a function of Al³⁺ concentration.
- Fig. S2. Job's plots according to the method for continuous variations. The total concentration of L and Al^{3+} is 100 μ M.
- Fig. S3. Benesi–Hildebrand plot of L with Al³⁺ in ultrapure water.
- **Fig. S4.** ¹HNMR titrations of L and L alone with Al³⁺ ions in DMSO-*d*6.
- Fig. S5. XRD patterns of Mg-Al-LDHs, Mg-Al-Eu-LDHs and L@Mg-Al-Eu-LDHs.
- Fig. S6. SEM images of Mg-Al-LDHs.
- Fig. S7. SEM images of Mg-Al-Eu-LDHs.
- Fig. S8. SEM images of L@Mg-Al-Eu-LDHs.
- Fig. S9. N₂ sorption isotherms and pore-size distribution of L@Mg-Al-Tb-LDHs and L@Mg-Al-Eu-LDHs.
- Fig. S10. TEM images of L@Mg-Al-Eu-LDHs.
- Fig. S11. HRTEM images of L@Mg-Al-Eu-LDHs.
- Fig. S12. Elemental mapping images of L@Mg-Al-Eu-LDHs.
- Fig. S13. XPS spectrum of L@Mg-Al-Tb-LDHs.
- Fig. S14. XPS spectrum of L@Mg-Al-Eu-LDHs.
- Fig. S15. Fluorescence spectra of L, Mg-Al-Eu-LDHs and L@Mg-Al-Eu-LDHs.
- Fig. S16. FTIR spectra of Mg-Al-Tb-LDHs and L@Mg-Al-Tb-LDHs.
- Fig. S17. FTIR spectra of Mg-Al-Eu-LDHs and L@Mg-Al-Eu-LDHs.
- Fig. S18. Fluorescence spectra of L@Mg-Al-Eu-LDHs and L@Mg-Al-Eu-LDHs +

DPA.

- Fig. S19. Time-resolved decay curves of L@Mg-Al-Tb-LDHs and L@Mg-Al-Eu-LDHs before and after the addition of DPA.
- Fig. S20. Photographs of L@Mg-Al-Eu-LDHs with and without DPA under 254nm UV light.
- Fig. S21. Plot of fluorescence intensity ratio (I_{545}/I_{464}) versus DPA concentration.
- Fig. S22. Plot of fluorescence intensity ratio (I_{615}/I_{464}) versus DPA concentration.
- Fig. S23.The dependence of the I_{545}/I_{464} ratio of the L@Mg-Al-Tb-LDHs nanoprobe and the I_{615}/I_{464} ratio of the L@Mg-Al-Eu-LDHs nanoprobe on pH, respectively.
- Fig. S24.Fluorescence of L@Mg-Al-Eu-LDHs equipped portable test strips for DPA detection, and plot of G/B (R/B) ratio versus C_{DPA} (μM).
- Fig. S25. Fluorescence spectra of L@Mg-Al-Eu-LDHs on different volumes of B. subtilis spores, and the plot of fluorescence intensity at I₆₁₅/I₄₆₄ against the concentration of DPA concentration released by B. subtilis.
- Fig. S26.Fluorescence emission spectra of L@Mg-Al-Eu-LDHs with different concentrations of DPA in 10% bovine serum, and the plot of fluorescence intensity at I_{615}/I_{464} against the concentration of DPA.

Supplementary Tables:

- Table S1. The weight percentage content of elements in L@Mg-Al-Ln-LDHs from

 ICP-AES and elemental analysis data.
- Table S2. Fluorescence decay lifetime parameters of L@Mg-Al-Tb-LDHs (545 nm)and L@Mg-Al-Eu-LDHs (615 nm).
- **Table S3.** Comparison of some reported probes on DPA detection.
- Table S4. Results of the analysis of Bacillus subtilis spores in real samples usingL@Mg-Al-Tb-LDHs and L@Mg-Al-Eu-LDHs.
- **Table S5.** RSD datas for the relative intensities of L@Mg-Al-Tb-LDHs (I_{545}/I_{464}) andL@Mg-Al-Eu-LDHs (I_{615}/I_{464}) in 10% bovine serum.

Reference

Supplementary Figures

Fig. S1. Absorbance at 350 nm and 394 nm of L as a function of Al^{3+} concentration.

Fig. S2. Job's plots according to the method for continuous variations. The total concentration of L and Al^{3+} is 100 μ M.

Fig. S3. Benesi–Hildebrand plot of L with Al^{3+} in Tris-HCl buffer solutions (pH=7.5, 10.0 mM).

Fig. S4. ¹HNMR titrations of L and L alone with Al^{3+} ions in DMSO-*d*6.

Fig. S5. XRD patterns of Mg-Al-LDHs, Mg-Al-Eu-LDHs and L@Mg-Al-Eu-LDHs.

Fig. S6. SEM images of Mg-Al-LDHs.

Fig. S7. SEM images of Mg-Al-Eu-LDHs.

Fig. S8. SEM images of L@Mg-Al-Eu-LDHs.

Fig. S9. N_2 sorption isotherms and pore-size distribution of (a) L@Mg-Al-Tb-LDHs and (b) L@Mg-Al-Eu-LDHs.

Fig. S10. TEM images of L@Mg-Al-Eu-LDHs.

Fig. S11. HRTEM images of L@Mg-Al-Eu-LDHs.

Fig. S12. Elemental mapping images of L@Mg-Al-Eu-LDHs.

Fig. S13. XPS spectrum of L@Mg-Al-Tb-LDHs.

Fig. S14. XPS spectrum of L@Mg-Al-Eu-LDHs.

Fig. S15. Fluorescence spectra of L, Mg-Al-Eu-LDHs and L@Mg-Al-Eu-LDHs.

Fig. S16. FTIR spectra of Mg-Al-Tb-LDHs and L@Mg-Al-Tb-LDHs.

Fig. S17. FTIR spectra of Mg-Al-Eu-LDHs and L@Mg-Al-Eu-LDHs.

Fig. S18. Fluorescence spectra of L@Mg-Al-Eu-LDHs and L@Mg-Al-Eu-LDHs + DPA.

Fig. S19. (a) Time-resolved decay curves of L@Mg-Al-Tb-LDHs before and after the addition of DPA, λ_{ex} =275 nm and λ_{em} =545 nm. (b) Time-resolved decay curves of L@Mg-Al-Eu-LDHs before and after the addition of DPA, λ_{ex} =275 nm and λ_{em} =615 nm.

Fig. S20. Photographs of L@Mg-Al-Eu-LDHs with and without DPA under 254 nm UV light.

Fig. S21. Plot of fluorescence intensity ratio (I_{545}/I_{464}) versus DPA concentration.

Fig. S22. Plot of fluorescence intensity ratio (I_{615}/I_{464}) versus DPA concentration.

Fig. S23. (a) The dependence of I_{545}/I_{464} ratio of the L@Mg-Al-Tb-LDHs nanoprobe with pH (pH=6.7-8.4). (b) The dependence of I_{615}/I_{464} ratio of the L@Mg-Al-Eu-LDHs nanoprobe with pH (pH=6.7-8.4).

Fig. S24. (a) Fluorescence of L@Mg-Al-Eu-LDHs equipped portable test strips for DPA detection (0-18 μ M). (b) Plot of G/B ratio versus C_{DPA} (μ M). Error bars indicate standard deviations. (c) Plot of R/B ratio versus C_{DPA} (μ M).

Fig. S25. (a) Fluorescence spectra of L@Mg-Al-Eu-LDHs on different volumes of B. subtilis spores (0, 5, 10, 15, 20, 25, 30 μ L). (b) The plot of fluorescence intensity at I₆₁₅/I₄₆₄ against the concentration of DPA concentration released by B. subtilis.

Fig. S26. (a) Fluorescence emission spectra of L@Mg-Al-Eu-LDHs with different concentrations of DPA in 10% bovine serum. (b) The plot of fluorescence intensity at I_{615}/I_{464} against the concentration of DPA from 0 to 60 μ M (0, 10, 20, 30, 40, 50, 60 μ M).

Supplementary Tables

Table S1. The weight percentage content of elements in L@Mg-Al-Ln-LDHs fromICP-AES and elemental analysis data.

Element	Mg (wt%)	Al (wt%)	Tb (wt%)	Eu (wt%)
L@Mg-Al-Tb-	16.74	9.87	0.65	
LDHs			0.03	
L@Mg-Al-Eu-	16.12	10.119		0.43
LDHs				

 Table S2. Fluorescence decay lifetime parameters of L@Mg-Al-Tb-LDHs (545 nm)

Sensors	DPA	$ au_1$	$ au_2$	τ _{ave}
	Concentration	(µs)	(µs)	(µs)
	(µM)			
	0	11.76	11.76	2.35
L@Mg-Al-Tb-LDHs	10	14.61	1953.63	432.82
	0	618.30	12.75	17.18
L@Mg-Al-Eu-LDHs	10	1534.01	1534.00	1530.68

and L@Mg-Al-Eu-LDHs (615 nm).

Sensing material	Linear range	LOD	Ref.
Eu/Tb SAH	0-3.0 μM	27.3 nM	[1]
	0-2.4 μM	1.06 nM	
CDs-Tb	0-6 µM	35.9 nM	[2]
TPE-Tbs	0-18 nM	0.187 nM	[3]
TbP-CPs	0-8 μΜ	5.0 nM	[4]
Tb-g-C ₃ N ₄ NS	0-15 μΜ	9.9 nM	[5]
hPEI-CD-EDTA-	1.0-100 nM	0.19 nM	[6]
Eu ³⁺			
EBT-CDs@Eu	0.1-12 μM	10.6 nM	[7]
Eu@SiNPs	0-20 μM	0.15 μΜ	[8]
GSH-Cu NCs/Eu ³⁺	0-20 μM	8 nM	[9]
Tb _{0.875} Eu _{0.125} -Hddb	0-100 μM	0.8494 μM	[10]
L@Mg-Al-Tb-LDHs	0-0.8 μΜ	11.6 nM	
L@Mg-Al-Eu-LDHs	0-4.0 μM	27.3 nM	This work

 Table S3. Comparison of some reported probes on DPA detection.

Sensors	Spores added	Detected	Recovery	RSD
			(%, n=3)	(%, n=3)
	0	Not detected		
L@Mg-AI-10-LDHS	1.000×10 ⁶	1.026×10 ⁶	102.59	0.74
	2.000×10 ⁶	1.959×10 ⁶	97.95	0.71
	3.000×10 ⁶	2.872×10 ⁶	95.74	0.17
	4.000×10 ⁶	3.740×10 ⁶	93.49	1.23
	5.000×10 ⁶	4.731×10 ⁶	94.61	2.55
	6.000×10 ⁶	5.686×10 ⁶	94.76	2.09
	0	Not detected		
L@Mg-AI-Eu-LDHs	1.000×10 ⁶	1.081×10 ⁶	108.13	0.37
	2.000×10 ⁶	2.002×10 ⁶	100.11	0.99
	3.000×10 ⁶	2.904×10 ⁶	96.79	1.28
	4.000×10 ⁶	3.883×10 ⁶	97.08	1.27
	5.000×10 ⁶	4.751×10 ⁶	95.02	3.34
	6.000×10 ⁶	5.587×10 ⁶	93.11	1.51

Table S4. Results of the analysis of Bacillus subtilis spores in real samples usingL@Mg-Al-Tb-LDHs and L@Mg-Al-Eu-LDHs (n=3).

Sample	DPA added	Detected	Recovery	RSD
	(µM)	(µM)	(%, n=3)	(%, n=3)
	0	Not detected		
	1.00	1.0210	99.88	0.74
L@Mg-Al-Tb-LDHs	2.00	1.9820	95.27	0.71
	3.00	2.9129	103.99	0.17
	4.00	3.8859	105.76	1.22
	5.00	4.8108	104.50	2.54
	6.00	5.8378	109.72	2.09
	0	Not detected		
	10.00	10.345	103.45	0.37
L@Mg-Al-Eu-LDHs	20.00	19.466	97.33	0.99
	30.00	28.272	94.24	1.28
	40.00	38.864	97.16	1.27
	50.00	47.465	94.93	3.34
	60.00	62.634	104.39	1.51

Table S5. RSD datas (n=3) for the relative intensities of L@Mg-Al-Tb-LDHs (I_{545}/I_{464})and L@Mg-Al-Eu-LDHs (I_{615}/I_{464}) in 10% bovine serum.

Reference

- P. Su, X. Wang, T. Wang, X. Feng, M. Zhang, L. Liang, J. Cao, W. Liu and Y. Tang, Eu(3+)/Tb(3+) supramolecular assembly hybrids for ultrasensitive and ratiometric detection of anthrax spore biomarker in water solution and actual spore samples, *Talanta*, 2021, 225, 122063.
- L. Zhang, Z. Wang, J. Zhang, C. Shi, X. Sun, D. Zhao and B. Liu, Terbium Functionalized Schizochytrium-Derived Carbon Dots for Ratiometric Fluorescence Determination of the Anthrax Biomarker, *Nanomaterials (Basel)*, 2019, 9, 1234.
- 3. P. Su, L. Liang, T. Wang, P. Zhou, J. Cao, W.-S. Liu and Y. Tang, AIE-based Tb³⁺ complex self-assembled nanoprobe for ratiometric fluorescence detection of anthrax spore biomarker in water solution and actual spore samples, *Chemical Engineering Journal*, 2021, **413**, 127408.
- Y. Luo, L. Zhang, L. Zhang, B. Yu, Y. Wang and W. Zhang, Multiporous Terbium Phosphonate Coordination Polymer Microspheres as Fluorescent Probes for Trace Anthrax Biomarker Detection, ACS Appl Mater Interfaces, 2019, 11, 15998-16005.
- 5. Y. Y. Ma, Z. J. Wang and D. J. Qian, Ratiometric fluorescence detection of anthrax biomarker based on terbium (III) functionalized graphitic carbon nitride nanosheets, *Talanta*, 2021, **230**, 122311.
- 6. H. Yang, F. Lu, X. Zhan, M. Tian, Z. Yuan and C. Lu, A Eu(3+)-inspired fluorescent carbon nanodot probe for the sensitive visualization of anthrax biomarker by integrating EDTA chelation, *Talanta*, 2020, **208**, 120368.
- 7. Q. Zhou, Y. Fang, J. Li, D. Hong, P. Zhu, S. Chen and K. Tan, A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker, *Talanta*, 2021, **222**, 121548.
- 8. M. Na, S. Zhang, J. Liu, S. Ma, Y. Han, Y. Wang, Y. He, H. Chen and X. Chen, Determination of pathogenic bacteria-Bacillus anthrax spores in environmental samples by ratiometric fluorescence and test paper based on dual-emission fluorescent silicon nanoparticles, *J Hazard Mater*, 2020, **386**, 121956.
- 9. J. Zhao, Y. Chen, P. Du, J. Li, Z. Zhang and X. Lu, Portable smartphone platform integrated with fluorescent test strip based on Eu³⁺-functionalized copper nanoclusters for on-site visual recognition of a pathogenic biomarker, *Sensors and Actuators B: Chemical*, 2021, **332**, 127918.
- 10. X.-B. Chen, C.-X. Qi, Y.-B. Xu, H. Li, L. Xu and B. Liu, A quantitative ratiometric fluorescent Hddb-based MOF sensor and its on-site detection of the anthrax biomarker 2,6-dipicolinic acid, *Journal of Materials Chemistry C*, 2020, **8**, 17325-17335.