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Ⅰ. Experimental

Materials synthesis

The preparation of the precursors for LZTO is the same as that in our previous 

work [1]. And then the precursors were calcined for 3 h at 700 ℃ in flowing N2, air 

and O2, with the flowing rates of 2.5, 1000 and 2.5 mL min-1 for N2, air and O2, 

respectively. The obtained samples were marked as LZTO-FN, LZTO-FA and LZTO-

FO, respectively. 

Physical and electrochemical characterizations

The phases and crystal structures were examined by X-ray diffraction (XRD) on 

a Bruker D8 Advance X-ray diffractometer (Cu Kα radiation, λ = 1.54 Å) in the 2θ 

range of 10-85 °. The morphologies were inspected via a SU8010 scanning electron 

microscope (SEM). The nanoscale microstructures were observed via a JEM-2100F 

high-resolution transmission electron microscope (HR-TEM). The surface species 

were determined by X-ray photoelectron spectra (XPS) on a PHI 5600 CI X-ray 

photoelectron spectrometer using mono-chromatic Al-Ka radiation. The electronic 

conductivity was obtained from a four-probe system (SB100A/2). A JES-FA200 

instrument was used to record the electronic paramagnetic resonance (EPR) 

spectroscopies of the samples. Raman spectroscopies were performed on a DXR 

Raman spectrometer with a laser excitation wavelength of 512 nm. The specific 

surface areas and pore size distributions were measured by a 3H-2000PS2 specific 

surface area and pore size distribution analyzer via nitrogen adsorption. The surface 

compositions of the electrode were analyzed using a Fourier transform infrared 
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spectroscopy (FT-IR) spectrometer (Bruker VERTEX 70).

CR2025 coin-type cells were assembled to test the electrochemical performance. 

The working electrodes were obtained by pasting the slurry including 85 wt.% active 

material, 10 wt.% conductive agent, and 5 wt.% binder of polyvinylidene difluoride 

on a Cu foil. The assembly of the cells was carried out in a glove box filled with high 

purity Ar. For the half cells, Li2ZnTi3O8 or LiNi0.5Mn1.5O4 is used as the working 

electrode and the fresh lithium foil is used as the counter/reference electrode. The 

loading of the active material is ca. 2.5 mg cm-2. For the full cells, LiNi0.5Mn1.5O4 and 

LZTO-FA were used as the positive electrode and negative electrode, respectively. 

The loading of LZTO-FA is ca. 1.6 mg cm-2 in the full cells. The specific capacities of 

the full cells are calculated based on the mass of the anode active material. The 

electrolyte was 1.2 M LiPF6 dissolved into a mixture of ethylene carbonate and ethyl 

methyl carbonate (V/V = 3:7). LiNi0.5Mn1.5O4 was purchased from Shenzhen Biyuan 

Electronics Co., Ltd in the work. Charge-discharge and cyclic voltammetry (CV) were 

tested in 0.02-3.0 V for the LZTO/Li half cells, 3.5-4.95 V for the LiNi0.5Mn1.5O4/Li 

half cells, and 2-4.55 V for the LiNi0.5Mn1.5O4/LZTO-FA full cells. The scan rates of 

CV measurements were 0.2-2.0 and 0.1 mV s -1 for the LZTO/Li half cells and 

LiNi0.5Mn1.5O4/LZTO-FA full cells, respectively. Electrochemical impedance 

spectroscopies (EIS) were recorded in 10 mHz-100 kHz with an ac voltage of 5 mV.

Computation details

The first-principles calculations were carried out based on the Vienna Ab-initio 

Simulation Package (VASP) with the projector augmented wave (PAW) method [2-5]. 
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The Perdew-Burke-Ernzerhof (PBE) functional of generalized gradient approximation 

(GGA) was used to describe the exchange correlation term. All geometrical structures 

were fully optimized to its ground state with a cutoff energy of 400 eV [6-8]. The 

energy and forces are converged to 1×10-5 eV and 0.01 eV Å-1, respectively. 

According to the method of reference [9], GGA+U was adopted to underestimate the 

band gap. The Li+ diffusion was using climbing image nudged elastic band (CI-NEB) 

method [10].

Ⅱ. Supplementary Figures 1-12 and Tables 1-11

Fig. S1 High-resolution XPS spectra of (a-b) Ti 2p and (c-d) O 1s for LZTO-FN and 

LZTO-FA.

The high-resolution XPS spectra of Ti 2p and O 1s are shown in Fig. S1 for 

LZTO-FN and LZTO-FA. The peaks at 464.2 and 458.4 eV correspond to Ti 2p1/2 and 

Ti 2p3/2 [11], respectively. 457.1 and 463.2 eV are assigned to Ti3+ 2p3/2 and Ti3+ 2p1/2 

[12], respectively. So, there are Ti3+ ions on the surfaces of LZTO-FN and LZTO-FA. 
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Moreover, the content of Ti3+ for LZTO-FN is higher than that of LZTO-FA. The 

presence of Ti3+ could be associated with the formation of oxygen vacancies after heat 

treatment [13]. For the O ls XPS spectra of LZTO-FN and LZTO-FA, peaks at 529.7, 

531.1 and 532. 6 eV can be ascribed to the lattice oxygen species (OL), oxygen 

vacancies (OV) and the oxygen absorbed on the surfaces of the materials (OS), 

respectively [13-15]. The percentage of OVs for LZTO-FN is higher than that of 

LZTO-FA (Table S1).

Table S1 Comparison of XPS results, and electronic conductivity for LZTO-FN and 

LZTO-FA. 

XPS (%) XPS (%) σ (S cm-1)Samples

Ti4+ Ti3+ OL OV OS

LZTO-FN 92.21 7.79 78.79 19.03 2.18 1.70×10-5

LZTO-FA 96.27 3.73 77.33 15.78 6.89 1.36×10-5

Fig. S2 (a) Electron paramagnetic resonance (EPR) spectra and (b) Raman spectra of 

LZTO-FN and LZTO-FA.



S6

Electron paramagnetic resonance (EPR) is an effective tool to characterize the 

paramagnetic species such as Ti3+, and defect structures [16]. The g-value of Ti3+ is 

1.94-1.99 as reported in previous work [17]. The signal ca. g = 2.0 is attributed to 

OVs as reported [18]. So, both Ti3+ and OVs exist in LZTO-FN and LZTO-FA (Fig. 

S2a). In addition, the content of Ti3+ and OVs for LZTO-FN is higher than that of 

LZTO-FA.

The Raman spectroscopies of LZTO-FN and LZTO-FA are shown in Fig. S2b. 

The main peaks are at 224, 256, 343, 392, 434, 514, 649, and 709 cm-1 for LZTO. The 

strongest peak at 392 cm-1 can be assigned to A 1g mode of ZnO4 tetrahedra. The 

band at 434 cm-1 corresponds to the stretching vibrations of the Li-O bonds in LiO4 

tetrahedra. The high frequency band at 709 cm-1 is assigned to the symmetric 

stretching vibrations of the Ti-O bonds in TiO6 octahedral groups [19]. Compared 

with LZTO-FA, the band intensities decrease for LZTO-FN, indicating the increase of 

the Ti3+/Ti4+ molar ratio and OVs in LZTO-FN [20].

Table S2 Lattice constants and cell volumes of LZTO-FN and LZTO-FA.

Samples a=b=c (Å) V (Å3)

LZTO-FN 8.364(1) 585.14

LZTO-FA 8.358(4) 583.96
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Fig. S3 N2 adsorption-desorption isotherms of (a) LZTO-FN and (b) LZTO-FA.

Table S3 Specific surface areas, total pore volumes and pore diameters of LZTO-FN 

and LZTO-FA. 

Samples Specific surface 
areas (m2 g-1) 

Total pore volume
(mL g-1) Pore diameters (nm)

LZTO-FN 10.5 0.089 3.06

LZTO-FA 11.6 0.05 2.64

Table S4 Comparison of the CV peak potentials between LZTO-FN and LZTO-FA 

electrodes at the 1st cycle.

Samples φpa (V) φpc (V) φp (V) = φpa - φpc

LZTO-FN 1.661 1.019 0.642

LZTO-FA 1.621 1.043 0.578
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Fig. S4 Charge-discharge curves of the conductive agent at 0.1 and 1 A g-1.
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Table S5 Cycling performance of LZTO corresponding to the 2nd cycle in recent 

publications.

Materials Current densities 
(A g-1)

Cycle 
numbers

Capacity 
retention

References

LZTN3O 1 400 68.4% [1]
Li2ZnTi3O8@C 0.229 100 99.2% [21]
Li2ZnTi3O8@C 0.458 100 86.8% [21]
LZTO-0 1 100 91.7% [22]
LZTO-1 1 100 93.3% [22]
LZTO-2 1 100 95.5% [22]
LZTO-3 1 100 93.2% [22]
LZTO 1 400 64% [23]
Li2ZnTi3O8@Li2MoO4 1 400 87% [24]
Li2ZnTi3O8@Li2MoO4 0.5/2 400 75.7% [24]
LZTO-700-3 1 200 66.9% [25]
LZTO@C-700-1 1 200 60.8% [25]
LZTO@C-700-3 1 200 71.7% [25]
LZTO@C-700-5 1 200 69.7% [25]
LZTO-700-3 2 200 72.3% [25]
LZTO@C-700-1 2 200 67.2% [25]
LZTO@C-700-3 2 200 73.1% [25]
LZTO@C-700-5 2 200 65.7% [25]
LZTO@C-N-1 1 200 71.3% [26]
LZTO@C-N-2 1 200 77.7% [26]
LZTO@C-N-3 1 200 83.0% [26]
LZTO@C-N-3 2 200 75.5% [26]
LZTO 1 200 68.5% [27]
LZTO@C-N-1 1 200 61.8% [27]
LZTO@C-N-2 1 200 68.1% [27]
LZTO@C-N-3 1 200 63.8% [27]
LZTO@C-N-2 2 200 73.7% [27]
LZTO@C-N-2 3 200 75% [27]
LZTO 1 400 75.8% [28]
LZTO/G 1 400 76.4% [28]
LZTO 2 300 63.1% [28]
LZTO/G 2 300 72.3% [28]
LZTO@GNS 1 400 81.6% [29]
LZTO@GNS-CNT 1 400 93.3% [29]
LZTO@GNS 2 400 85.3% [29]
LZTO@GNS-CNT 2 400 92.7% [29]
LZTO 1 400 86.5% [30]
LZTMO@G 1 400 87.2% [30]
LZTO 2 300 57.2% [30]
LZTMO@G 2 300 89.7% [30]
LZTO@C 1 200 70.5% [31]
LZTO@C 2 200 65.7% [31]
LZTO@C@La2O3 1 200 89.8% [31]
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Table S5 (Contd.)

Materials Current densities 
(A g-1)

Cycle 
numbers

Capacity 
retention

References

LZTO@C@La2O3 2 200 77.2% [31]
LZTO-0 1.5 400 90% [11]
LZTO-1 1.5 400 97.6% [11]
LZTO/NMO 1 400 85.3% [32]
LZTO/C-3 1 400 94.4% [33]
LZTO 1 400 34.6% [34]
LZTW3O 1 400 93.1% [34]
LM6ZTW3O 1 400 94.7% [34]
LZTO-FN 1 400 No decay The work
LZTO-FA 2 400 No decay The work
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Table S6 Rate capability of LZTO in recent publications.

Materials Current 
densities (A g-1)

Specific capacities 
(mAh g-1)

Cycle 
numbers

References

LZTO 2 78 25 [23]
Li2ZnTi3O8@Li2MoO4 2 112 60 [24]
Li2ZnTi3O8 2 55 60 [24]
LZTO-700-3 2.8 141.9 60 [25]
LZTO@C-700-1 2.8 174.5 60 [25]
LZTO@C-700-5 2.8 173.8 60 [25]
Li2ZnTi3O8/TiO2 2 173.4 50 [35]
Li2ZnTi3O8/TiO2 3 161.6 60 [35]
LZTO 1.145 47 106 [36]
LZTO@RGO10 1.145 50 106 [36]
LZTO@RGO25 1.145 154 106 [36]
LZTO@RGO50 1.145 113 106 [36]
LZTO-2 2.29 135 20 [37]
LZTNO 1.145 80 15 [38]
Li2ZnTi3O8/C 2 178 60 [39]
LZTO/KCl 1.6 135.6 50 [40]
P-LZTO 1.6 53.3 40 [32]
LZTO/NMO 1.6 161.3 40 [32]
LZTO/NMO-1 1.6 101.8 40 [32]
P-LZTO 1.6 44 50 [41]
LZTO/LMS-1 1.6 107.1 50 [41]
LZTO/LMS-2 1.6 140.4 50 [41]
LZTO/LMS-3 1.6 144.9 50 [41]
PZ 1.6 69.3 50 [42]
FA1 1.6 124.5 50 [42]
FA2 1.6 144.3 50 [42]
FA3 1.6 96.1 50 [42]
FA2-800 1.6 143.5 50 [42]
FA2-850 1.6 127.6 50 [42]
P-LZTO 1.6 32.4 50 [43]
LZTO/LZO 1.6 109.8 50 [43]
LZTO/LZO-1 1.6 85.3 50 [43]
P-LZTO 1.6 65.8 50 [44]
LZTO/C-1 1.6 55.6 50 [44]
LZTO/C-2 1.6 106.7 50 [44]
LZTO/C-3 1.6 102.5 50 [44]
Li2ZnTi2.9Cr0.1O8 2 156.7 50 [45]
LZTO/C-3 2 169.8 40 [33]
LZTO/C-3 3 150.9 50 [33]
LZTO-E 2 138 40 [46]
LZTO-E 3 125 50 [46]
Li2Zn0.9Nb0.1Ti3O8 2 160 40 [47]
Li2Zn0.9Nb0.1Ti3O8 3 147 50 [47]
FLZTO-2 1 179.4 60 [48]
NWLZTO-2 1 132.8 60 [49]
LZTO-FA 1.5 192 60 The work
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Table S6 (Contd.)

Materials Current 
densities (A 
g-1)

Specific 
capacities 
(mAh g-1)

Cycle 
numbers

References

LZTO-FA 2 186.6 80 The work
LZTO-FA 2.5 180.7 100 The work
LZTO-FA 3 173.2 120 The work

Table S7 Rate capability of some other anodes with comparable theoretical specific 

capacity with LZTO in recent publications.

Materials Current 
densities (A 
g-1/C)

Specific 
capacities 
(mAh g-1)

Cycle 
numbers

References

N-doped TiO2 2.5 150 80 [50]
TiO2@CNT 5 C 122 40 [51]
TiO2 5 C 116 50 [52]
TiO2@C 5 C 90 30 [53]
TiO2-carbonized PAN 1 74.7 40 [54]
TiNb2O7 1.6 145.7 50 [55]
TiNb2O7 6 C 183 35 [56]
Ti2Nb10O29-CB-CO2 2 100 35 [57]
A-TiNb2O7 10 C 174 50 [58]
m-TiNb2O7 10 C 157 55 [59]
Ti2Nb10O29/AOSC 10 C 135.2 50 [60]
12% C-Nb2O5 10 C 137 30 [61]
M-Nb2O5 10 C 119 30 [62]
T-Nb2O5 10 C 117.3 30 [63]
A- Nb2O5 2 142 40 [64]
T-Nb2O5-x@NC-7 2 150 25 [65]
2D Nb2O5-C-rGO 10 C 175 40 [66]
Nb2O5@N-C 10 C 163 40 [67]
Li3VO4 2 110 25 [68]
Li3VO4 3 69 30 [68]
Li3VO4 0.2 C 168 10 [69]
LZTO-FA 2 (8.7 C) 186.6 80 The work
LZTO-FA 2.5 (10.9 C) 180.7 100 The work
LZTO-FA 3 (13.1 C) 173.2 120 The work
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Fig. S5 IR-drop data of LZTO-FN and LZTO-FA electrodes at 0.5 A g-1 when 

charging is switched to discharging for the (a) 150th cycle and (b) 200th cycle. 

The magnitude of internal resistance can be characterized by the voltage drop, or 

IR drop, when charging/discharging is switched to discharging/charging (Fig. S5). 

Compared with LZTO-FN, LZTO-FA has smaller IR drop during the cycling process. 

Fig. S6 Ex-situ XRD patterns of the LZTO-FN and LZTO-FA electrodes before and 

after cycling for 100 cycles at 1.5 A g-1 (55 ℃). 

Table S8 Cell volumes of LZTO-FN and LZTO-FA electrodes before and after 

cycling at 1.5 A g-1 for 100 cycles (55 ℃).

Samples Cell volumes (Å3)

Before cycling                      After cycling

LZTO-FN 586.6 585.0(8)

LZTO-FA 586.8(4) 587.3(8)
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Fig. S6 presents the XRD patterns of the LZTO-FN and LZTO-FA electrodes 

before and after cycling for 100 cycles at 1.5 A g-1 (55 ℃). It can be seen that some of 

the diffraction peaks of the LZTO-FN and LZTO-FA electrodes are blurry after 

cycling. The cell volume change ratios are 0.259% and 0.092% for LZTO-FN and 

LZTO-FA, respectively (Table S8), indicating that the structure of the LZTO-FA 

electrode with proper amount of OVs retains significantly stability during insertion 

and de-insertion of Li+ ions. However, the structure of the LZTO-FN with excess OVs 

is partly changed during cycling process.
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Fig. S7 Impedance spectra of the LZTO-FN and LZTO-FA electrodes (a) after 

cycling for 400 cycles at 2 A g-1, and (b) after cycling at different current densities in 

Fig. 5d and corresponding equivalent circuits (inset). (c) Relationship between Zre and 

ω-1/2.
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Table S9 Impedance parameters calculated from equivalent circuit models, and 

lithium diffusion coefficients (DLi
+) of LZTO-FN and LZTO-FA.

After 400 cycles After 120 cyclesSamples

Rb (Ω) Rsei(Ω) Rct (Ω Rb (Ω) Rsei (Ω) Rct (Ω)

DLi+ (cm2 s-1)

LZTO-FN 13.95 40.4 42.23 10.32 65.9 95.09 6.6×10-11

LZTO-FA 11.4 18.13 25.54 5.955 9.661 25.97 4.85×10-10

EIS was tested on the cells cycling for 400 cycles at 2 A g-1 (Fig. S7a), and 

cycling at different current densities in Fig. 5d (Fig. S7b). For each curve, it is 

composed of a small intercept, two semicircles and a straight line. Figs. S7a-b (inset) 

are the equivalent circuit models. Rb represents the combined impedance between the 

electrolyte and cell components; Csei and Rsei are the capacitance and the resistance of 

the SEI layer corresponding to the first semicircle; Cdl and Rct are the double layer 

capacitance and charge transfer resistance corresponding to the second semicircle; W 

is Warburg impedance. Cycling for 400 cycles at 2 A g-1, the Rct is 40.4 and 18.13 Ω 

for LZTO-FN and LZTO-FA (Table S9), respectively. After cycling for several cycles 

at different current densities in Fig. 5d, the Rct is 65.9 and 9.661 Ω for LZTO-FN and 

LZTO-FA (Table S9), respectively. It can be seen that LZTO-FA with proper amount 

of OVs has smaller Rct than that of LZTO-FN with excess OVs. Small Rct benefits for 

the electrochemical performance of LZTO-FA. 

The diffusion coefficients of Li+ ions (DLi
+) in the two samples are estimated 
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based on the Warburg diffusion in low frequency (Fig. S7b) using the following 

equation [1]

                                                                         (S1)2 2 2 4 4 2 2/ (2 )
Li

D R T A n F C  

where R is the gas constant (8.314 J mol-1 K-1); T is the room absolute temperature 

(298.5 K); A is the surface area of the electrode (1.13 cm2 in this work); n is the 

number of electrons transferred in the half reaction for the redox couple; F is Faraday 

constant (96,485 C mol-1); C is the concentration of Li+ ion in the compound, and can 

be calculated based on the following equation 

23

3 4
6.022 10

C
V




                                                                                          (S2)

σ is the Warburg factor which obeys the following relationship:

-1/2
re e ctZ R R                                                                                 (S3)

The relationship between Zre and ω-1/2 is shown in Fig. S7c. Based on the 

Equations S1 and S3, DLi
+ of LZTO-FN and LZTO-FA can be obtained and the values 

are 6.6×10-11 and 4.85×10-10 cm2 s-1, respectively. Compared with LZTO-FN electrode, 

LZTO-FA has higher DLi
+, which is advantageous to its rate capability. 
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Fig. S8 (a) CV curves of LZTO-FA at different scan rates from 0.2 to 2.0 mV s-1, (b) 

corresponding log i versus log v plots at redox peaks (peak current: i, scan rate: v) and 

(c) contribution of the pseudocapacitive behaviors of LZTO-FA at different scan rates.

To further understand the kinetic behaviors of Li-storage for LZTO-FA, the CV 

curves were recorded at different scan rates from 0.2 to 2.0 mV s-1 as displayed in Fig. 

S8a. The peak intensities gradually increase with the increase of the scan rates. In 

general, the charge-storage type is composed of faradaic intercalation (ion diffusion) 
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and non-Faradaic (pseudocapacitive) behavior and can be determined by analyzing 

the relationship between scan rate (v) and peak current (i) based on the equations S4 

and S5:

                                                                                                                   (S4)
bi av

                                                                                (S5)log log logi b v a  

where a and b are adjustment parameters. b can be obtained by the slope of log i vs. 

log v. When b values are equal to 0.5 and 1.0, the electrochemical reaction can be 

controlled by ion diffusion and pseudocapacitance [49], respectively. The b values of 

the redox peaks for LZTO-FA vary between 0.5 and 1.0, indicating that the 

coexistence of both the diffusive and capacitive processes (Fig. S8b). 

The contribution proportions of the pseudocapacitance (k1v) and intercalation 

(k2v1/2) behaviors at different scan rates can be quantitatively calculated by the 

equation S6 [70]:

                                                                                         (S6)
1/2

1 2i k v k v 

where k1 and k2 represent the contribution from the capacitance-controlled and 

diffusion-controlled processes, respectively. The capacitive contribution increases 

gradually with the increase of the scan rate from 0.2 to 2.0 mV s-1. It can be seen that 

the pseudocapacitive charge-storage has the obvious advantage in the whole capacity, 

indicating good rate capability. 
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Fig. S9 Possible configurations of oxygen vacancies in P4332 Li2ZnTi3O8.

Fig. S10 Local atomic structures of (a) P4332 phase and (b-d) Zn aggregated 

supercells.
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Fig. S11 Local atomic structures of the most energetically favorable OVs in Zn 

aggregated supercells.
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Fig. S12 Formation energies of one or two OVs in P4332 and Zn aggregated 

supercells at (a) 300 K and (b) 1000 K. (b) Total energies of Zn aggregated supercells 

relative to the P4332 phase (Total energies of Zn/Ti ordered supercells are set to 0 eV).

Table S10 Equilibrium lattice parameters and cell volumes obtained by calculations.

Samples a (Å) b (Å) c (Å) V (Å3)

P4332 phase 8.3310 8.3310 8.3310 578.2323

LZTO with 1 OV 8.3281 8.3210 8.3584 579.2283

LZTO with 2 OVs 8.3574 8.2987 8.3679 580.3714
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Table S11 Intercalation potential and band gap. 

Samples Intercalation potential (V) Band gap (eV)

P4332 phase 1.34 3.2165

LZTO with 1 OV 1.30 1.2547

LZTO with 2 OVs 1.38 0.1989
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