Supporting Information

Photoelectrochemical performance of ligand-free CsPb₂Br₅ perovskite

Luyao Xu¹, Yu Yang¹, Weihua Wu¹, Chaoguo Wei, Guanying Luo, Zhongnan Huang, Wei Chen*, and Huaping Peng*

Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province,
Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University,
Fuzhou 350108 (P. R. China)
*Corresponding author. E-mail address: E-mail: penghuaping@fjmu.edu.cn (H. Peng);
chenandhu@163.com (W. Chen)

¹ These authors contributed equally to this work.

Table of contents

1. Experimental sections
2. Optimization of the reaction conditions
3. Solubility test of CsPb ₂ Br ₅ and CsPbBr ₃ S5
4. SC-XRD characterization of CsPb ₂ Br ₅ single crystalS6
5. UV-vis absorption spectrum of CsPb ₂ Br ₅ nanoplateletsS7
6. SEM image of CsPb ₂ Br ₅ nanoplatelets modified electrodeS7
7. Comparison of the reported photoelectrochemical performances of all-inorganic
cesium halide perovskites systems
8. Optimization of conditions for photoelectrochemical performance
9. Hall effect test parameters of CsPb ₂ Br ₅ nanoplatelets filmsS11
10. References

Experimental sections

Chemicals and materials: Lead bromide (PbBr₂, 99.999%) and cesium bromide (CsBr, 99.999%) were purchased from Sigma-Aldrich Co. Ltd. KCl was obtained from Beijing Chemical Reagent Co. (Beijing, China). A 0.1 M phosphate buffer (pH = 7.4) was prepared by mixing a stock solution of Na₂HPO₄ and NaH₂PO₄. All reagents were used without any further purification.

Characterizations: Powder X-ray diffraction (XRD) was applied by using a Bruker D8 Advance X-ray diffractometer with Cu-K α ($\lambda = 1.5418$ Å). The sample nanostructure was investigated by using transmission electron microscopy (TEM, Tecnai G2 F30). Scanning electron microscope (SEM) image was executed with a Nova Nano SEM 230 instrument (FEI CZECH REPUBLIC S.R.O. Company). UV–vis adsorption spectroscopy was applied by using a UH4150 spectrophotometer (Hitachi). The electrochemical tests were conducted by employing a CHI660C electrochemical workstation (Shanghai Chenhua Instrument Co. Ltd., China) with a typical three-electrode cell. Single-crystal X-ray diffraction (SC-XRD) data were collected by applying graphite-monochromatized Mo K α radiation ($\lambda = 0.71073$ Å) at 230.01(10) K using an Agilent SuperNova dual-source diffractometer with an Atlas detector. The Hall effect measurement was carried out using a Lake Shore Accent HL5500 Hall System.

Single-Crystal X-ray Diffraction: A colorless CsPb₂Br₅ crystal was selected for single-crystal XRD analysis. The collection of the intensity data, cell refinement, and data reduction were carried out with the program CrysAlisPro.¹ The structure was solved by the direct method with program SHELXS and refined with the least-squares program SHELXL.²⁻³

Synthesis of the CsPb₂Br₅ nanoplatelets: CsPb₂Br₅ nanoplatelets were synthesized by employing a solution supersaturated precipitation method, as follows. To begin, 0.1468 g of PbBr₂ was added to a single-neck flask with 8 mL of deionized water under the conditions of magnetic stirring at 70 °C for 6 h (i.e., until the PbBr₂ was dissolved). Then, the solution was filtered through a 0.22 μ m microporous membrane filter as the temperature was maintained. Next, 2 mL of 0.1 M CsBr was injected into the precursor solution. The reaction was magnetically stirred for 30 min at 70 °C in an open-air environment. Subsequently, the solution was allowed to cool in an ice-water bath until precipitated crystals formed; then, the precipitate was extracted after applying centrifugation at 6000 rpm for 5 min. Lastly, the CsPb₂Br₅ nanoplatelets were obtained after the precipitate was freeze-dried. The CsPb₂Br₅ single crystals were prepared by applying different concentrations of CsPb₂Br₅ nanoplatelets (~10 μ M) in an aqueous solution. **Preparation of CsPb₂Br₅ nanoplatelet-modified electrode:** In this study, a 3 mm diameter glass carbon electrode was employed as the working electrode. Prior to modification, the glassy carbon electrode was cleaned by polishing the electrode surface with Al₂O₃ powder (1.0, 0.3 and 0.05 μ m) before subjecting it to an ultrasonic treatment in water and ethanol for approximately 2 min alternately. Then, the cleaned electrode was dried by using nitrogen. Subsequently, 8 mg of the CsPb₂Br₅ nanoplatelets was dispersed in 1 mL of ultra-pure water by using an ultrasonic dispersion system. Lastly, 5 μ L of the CsPb₂Br₅ nanoplatelet solution was dripped on the surface of the clean glassy carbon electrode that was then allowed to dry at room temperature, and the electrode was recorded as CsPb₂Br₅ nanoplatelet/glassy carbon electrode.

Photoelectrochemical measurements: The PEC tests were conducted with three-electrode system, wherein the prepared CsPb₂Br₅ nanoplatelet electrode served as the working electrode, Pt wire served as the counter electrode, and an Ag/AgCl electrode served as reference electrode. The process of photocurrent detection was carried out under the conditions of a 0.1 M KCl solution (pH 7.0) irradiated with 367.5 ± 2.5 -nm-wavelength LED light (10.18 mW cm⁻²) under a bias of -0.4 V vs. Ag/AgCl. Mott-Schottky plots were obtained under the condition of a frequency of 1000 Hz.

Optimization of the reaction conditions. we explored relationship between the crystal composition and the PbBr₂/CsBr ratio. The XRD results suggested that as the concentration of the CsBr continue to increase, the perovskite products varied from CsPb₂Br₅ to CsPbBr₃ and Cs₄PbBr₆ perovskites (Table S1). The concentration of PbBr₂ and CsBr to be 6.4 mM and 2 mM, respectively, were finally used to prepare the pure CsPb₂Br₅ perovskite. Interestingly, these results indicated that the CsPb₂Br₅ has a lower solubility constant than CsPbBr₃, thus the CsPb₂Br₅ can precipitate first. It could be further demonstrated by the solubility test with the same concentration of CsPb₂Br₅ and CsPbBr₃ (6.75 μ M) in aqueous solution. As expected, we found that CsPb₂Br₅ nanoplatelets precipitated immediately, while CsPbBr₃ was a homogeneous solution, which also suggested that CsPb₂Br₅ has a lower solubility constant than CsPbBr₃ (Figure S1). Besides, we also investigated other influencing factors, such as temperature and pH, which have little influence for the generation of the CsPb₂Br₅ perovskite. Considering the production of CsPb₂Br₅ perovskite, higher temperature was applied in this work.

Concentration of PbBr ₂ (mM)	Concentration of CsBr (mM)	Perovskite product
6.4	2	CsPb ₂ Br ₅
	10	CsPbBr ₃ and Cs ₄ PbBr ₆
	20	Cs ₄ PbBr ₆
	40	Cs ₄ PbBr ₆
	60	Cs ₄ PbBr ₆
	80	Cs ₄ PbBr ₆
	120	Cs ₄ PbBr ₆
	160	Cs ₄ PbBr ₆
	200	Cs ₄ PbBr ₆

Table S1 The relationship between the crystal composition and the PbBr₂/CsBr ratio.

Fig. S1 Solubility photos of CsPbBr₃ (left) and CsPb₂Br₅ (right).

Bond precision:	Pb-Br = 0.0009	A Waveler	gth=0.71073
Cell:	a=8.4372(6)	b=8.4372(6)	c=15.0437(14)
Temperature:	100 K	Deca=90	gamma=90
	Calculated	Report	ed
Volume	1070.91(18)	1070.9	91 (15)
Space group	I4/mcm	I4/mcm	n
Hall group	-I 4 2c	?	
Moiety formula	Br10 Pb4, 2(Cs)	?	
Sum formula	Br10 Cs2 Pb4	Br5 Cs	pb2
Mr	1893.62	946.84	L
Dx,g cm-3	5.872	5.873	
Z	2	4	
Mu (mm-1)	53.330	53.331	L
F000	1576.0	1576.0)
F000'	1547.20		
h,k,lmax	10,10,18	10,10,	18
Nref	316	316	
Tmin, Tmax	0.289,0.587	0.176,	0.618
Tmin'	0.067		
Correction metho AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.1	76 Tmax=0.618
Data completene	ss= 1.000	Theta(max) = 26	5.350
R(reflections) =	0.0314(310)	wR2 (reflection	ns)= 0.1073(316)
S = 1.243	Npar=	15	

Table S2 SC-XRD characterization of CsPb₂Br₅ single crystal.

Fig. S2 UV-vis absorption spectrum of CsPb₂Br₅ nanoplatelets.

The surface morphology of the modified electrodes was investigated by SEM. As shown in Fig. S3, the $CsPb_2Br_5$ nanoplatelets modified electrode showed many rectangular sheet structure with the sizes ranging from 5 μ m to 20 μ m distributed uniformly on the surface of the electrode, which corresponded to the TEM results.

Fig. S3 SEM image of CsPb₂Br₅ nanoplatelets modified electrode.

Sample	Electron acceptor/donor	Light intensity (mW cm ⁻²)	Photocurrent (µA cm ⁻²)	Reference
CsPbBr ₃ NCs/FTO	_	100	2.25	4
CsPbCl ₃ NCs/ITO	_	30	0.3	5
CsPbCl ₃ NWs/ITO	_	30	1.1	5
CsPbBr ₃ QDs/FTO	_	100	-42	6
CsPbBr ₃ NCs/FTO	Benzoquinone	100	-40	6
CsPbBr ₂ INCs/FTO	Benzoquinone	100	-58.8	6
CsPbBr _{1.5} I _{1.5} NCs/FTO	Benzoquinone	100	-63.6	7
CsPbBrI ₂ NCs/FTO	Benzoquinone	100	-36.2	7
Cs ₄ CuSb ₂ Cl ₁₂ NCs/FTO	—	100	6	8
Cs ₂ PdBr ₆ NCs /FTO	—	150	1.2	9
Cs ₂ PdBr ₆ MCs /FTO	_	150	0.33	9
CsPb ₂ Br ₅ nanoplatelets/glass carbon electrode	—	10.18	8.4	This work

Table S3 Comparison of the reported photoelectrochemical performances of all-inorganiccesium halide perovskites systems.

Optimization of conditions for photoelectrochemical performance: The experimental parameters were optimized to obtain the best performance of the CsPb₂Br₅ nanoplatelets/Glassy carbon electrode. The irradiation wavelength is a significant factor that is relevant to the photocurrent response. As shown in Fig. S4A, the photocurrent decreased as the exciting wavelength was increased from 365 nm to 940 nm at a definite potential. The highest photocurrent was observed under 367.5 ± 2.5 nm irradiation due to the strong light absorption of CsPb₂Br₅ materials. Based on this consideration, 367.5 ± 2.5 nm light was chosen for the best irradiation wavelength.

Applied potential is another important factor relevant to the photocurrent response which would affect the recombination probability of the photo-generated electron/hole pairs. Figure S2B showed that the photocurrent response increased when the negative potential was applied but decreased when the positive potential was applied, indicating that the negative potential will help the separation of electron and holes. Shown in Fig. S4B, the obtained photocurrent quickly decreased when the applied potential was negative than -0.5 V. This may be due to destruction of the structure of CsPb₂Br₅ nanoplatelets under negative bias potential. Considering the stability of the electrode and the energy consumption, -0.4 bias-potential was applied in this work.

The pH value of electrolyte solution and the modification amounts of CsPb₂Br₅ nanoplatelets were another important factors to affect the photoelectrochemical response. As shown in Fig. S4C, the sensors were tested in a series of KCl aqueous solution with pH ranging from 3.0 ~ 12.0 , the maximum photocurrent response appeared at pH of 12.0. In order to ensure the integrity of the material structure as well as obtain a stable photocurrent, pH 7.0 KCl was selected in following measurements. And the photocurrent signal of different concentrations of CsPb₂Br₅ nanoplatelets was demonstrated in Fig. S4D. As exhibited, the photocurrent increased until 40 μ g CsPb₂Br₅ nanoplatelets were dropped on the electrode surface and then decreased rapidly. It could be explained that more electrons were excited with CsPb₂Br₅ nanoplatelets film too thick, impeding the transfer of the electrons and the effective light harvest, leading to the photocurrent decreased with further increasing. Therefore, 40 μ g CsPb₂Br₅ nanoplatelets were the optimal.

Fig. S4 Optimization of (A) excitation wavelength, (B) the applied potential, (C) pH buffer solution, (D) CsPb₂Br₅ concentration.

	Sample	CsPb ₂ Br ₅ nanoplatelets
$\mu_{ m H}$	Hall mobility (cm ² V ⁻¹ s ⁻¹)	3989
R_H	Hall coefficient (cm ³ C ⁻¹)	1.54×10^{7}

Table S4 Hall effect test parameters of CsPb2Br5 nanoplatelets films.

References

(1) CrysAlisPro, Version 1.171.36.28; Agilent Technologies: Santa Clara, CA, 2013.

(2) G. M. Sheldrick, Crystal structure refinement with, *Acta. Crystallogr. Sect A: Found.*, 2008, **64**,112–122.

(3) S. G. Zhao, P. F. Gong, S.Y. Luo, S. J. Liu, L. Li, M. A. Asghar, T. Khan, M. C. Hong, Z. S. Lin, J. H. Luo, Beryllium-free Rb₃Al₃B₃O₁₀F with reinforced interlayer bonding as a deepultraviolet nonlinear optical crystal, *J. Am. Chem. Soc.*, 2015, **137**, 2207–2210.

(4) L. Bergamini, N. Sangiorgi, A. Gondolini, A. Sanson, CsPbBr₃ for photoelectrochemical cells, *Sol. Energy.*, 2020, **212**, 62–72.

(5) Y. Y. Tang, X. Cao, A. Honarfar, M. Abdellah, C. Chen, J. Avila, M. C. Asensio, L. Hammarström, J. Sa, S. E. Canton, K. Zheng, T. Pullerits, Q. Chi, Inorganic ions assisted the anisotropic growth of CsPbCl₃ nanowires with surface passivation effect, *ACS Appl. Mater. Interfaces.*, 2018, **10**, 29574–29582.

(6) Y. F. Xu, M. Z. Yang, B. X. Chen, X. D. Wang, H. Y. Chen, D. B. Kuang, C. Y. Su, A CsPbBr₃ perovskite quantum dot/graphene oxide composite for photocatalytic CO₂ reduction, *J. Am. Chem. Soc.*, 2017, **139**, 5660–5663.

(7) M. Z. Yang, Y. F. Xu, J. F. Liao, X. D. Wang, H. Y. Chen, D. B. Kuang, Constructing CsPbBrxI_{3-x} nanocrystal/carbon nanotube composites with improved charge transfer and light harvesting for enhanced photoelectrochemical activity, *J. Mater. Chem. A.*, 2019, **7**, 5409–5415.

(8) X. D. Wang, N. H. Miao, J. F. Liao, W. Q. Li, Y. Xie, J. Chen, Z. M. Sun, H. Y. Chen, D.
B. Kuang, The top-down synthesis of single-layered Cs₄CuSb₂Cl₁₂ halide perovskite nanocrystals for photoelectrochemical application, *Nanoscale*, 2019, **11**, 5180–5187.

(9) L. Zhou, J. F. Liao, Z. G. Huang, X. D. Wang, Y. F. Xu, H. Y. Chen, D. B. Kuang, C. Y. Su, All-inorganic lead-free Cs_2PdX_6 (X = Br, I) perovskite nanocrystals with single unit cell thickness and high stability, *ACS Energy Lett.*, 2018, **3**, 2613–2619.