An Excellent Lead Oxyiodide with Strong Second-Harmonic
Generation Response and Large Birefringence Induced by the
Oriented Arrangement of Highly Distorted $\left[\mathrm{PbO}_{4} \mathbf{I}_{2}\right]$ Polyhedrons
Zi-Qi Zhou, ${ }^{\text {a }}$ Rui-Biao Fu, ${ }^{\text {*a,b }}$ Hong-Xin Tang, ${ }^{\text {a }}$ Zu-Ju Ma, ${ }^{\text {cc }}$ and Xin-Tao Wu ${ }^{\text {a }}$
${ }^{\text {a }}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
${ }^{\mathrm{b}}$ Fujian Science \& Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108.
${ }^{c}$ School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, P. R. China.
Table of Contents
Table of Contents 1

1. Experimental Procedures 2
Reagents 2
Synthesis. 2
Single-Crystal X-ray Diffraction. 2
Powder X-ray Diffraction 2
Thermal Analysis 2
Elemental Analysis 3
UV-Vis-NIR Diffuse Reflectance Spectroscopy 3
IR Spectroscopy 3
SHG Test. 3
Computational Details 3
2. Tables and Figures 6
3. References 17

1. Experimental Procedures

Reagents.

Lead oxide ($\mathrm{PbO}, 98 \%$) and cesium carbonate $\left(\mathrm{Cs}_{2} \mathrm{CO}_{3}, 98 \%\right)$ were purchased from Aladdin Chemical Industry Co. Ltd. Potassium iodide (KI, 99\%), potassium carbonate ($\mathrm{K}_{2} \mathrm{CO}_{3}, 99 \%$), malonic acid (99\%) and ethanol (EtOH, 98\%) were obtained from Sinopharm Reagent and used as received.

Synthesis.

Single crystals of KPMI and CPMI were obtained by a solvothermal method. For CPMI, a mixture of $0.325 \mathrm{~g} \mathrm{Cs}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol}), 0.223 \mathrm{~g} \mathrm{PbO}(1 \mathrm{mmol}), 0.520 \mathrm{~g}$ CsI (2 mmol), 0.104 g malonic acid (1 mmol) and 2 mL EtOH was added into 23 mL Teflon-lined stainless-steel autoclaves and heated at $100{ }^{\circ} \mathrm{C}$ for 7 days and gradually cooled to room temperature with a rate of $3{ }^{\circ} \mathrm{C} \cdot \mathrm{h}^{-1}$. The products were washed by ethanol. Crystals of CPMI were obtained in ca. 52% yield based on PbO . For KPMI, a hybrid of $0.158 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol}), 0.223 \mathrm{~g} \mathrm{PbO}(1 \mathrm{mmol})$, $0.332 \mathrm{~g} \mathrm{KI}(2 \mathrm{mmol}), 0.104 \mathrm{~g}$ malonic acid $(1 \mathrm{mmol})$ and 2 mL EtOH was added into 23 mL Teflon-lined stainless-steel autoclaves, then heated at $120^{\circ} \mathrm{C}$ for 7 days and gradually cooled to room temperature with a rate of $3{ }^{\circ} \mathrm{C} \cdot \mathrm{h}^{-1}$. The products were washed by ethanol. Crystals of KPMI were obtained in ca. 17% yield based on PbO .

Single-Crystal X-ray Diffraction.

Single-crystal X-ray diffraction data of CPMI and KPMI were collected on a Rigaku Saturn 724 CCD diffractometer equipped with a graphite-monochromated Mo $\mathrm{K} \alpha$ radiation. The data reduction was integrated with the program Crystal Clear version 1.30. Their structures were solved with a direct method by using the SHELXT and refined by the SHELXL full-matrix leastsquares program. ${ }^{[1-2]}$ Their structures were checked by the PLATON and no higher symmetries were suggested. ${ }^{[3]}$ CCDC 2156743 for CPMI and 2156749 for KPMI. The details of crystal data can be acquired free of charge via www.ccdc.cam.ac.uk/data request/cif.

Powder X-ray Diffraction.

Powder XRD measurement for KPMI was performed by using a Rigaku Miniflex 600 diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.540598 \AA)$ at room temperature. The data were obtained in the 2θ range of $5-55^{\circ}$ with a step width of 0.02°.

Thermal Analysis.

Thermogravimetric analysis (TGA) of KPMI was performed on a NETZCH STA 449F3
thermal analysis instrument at a heating rate of $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ in a flowing nitrogen atmosphere from 30 to $800^{\circ} \mathrm{C}$

Elemental Analysis.

Elemental analysis of KPMI were performed using a field emission scanning electron microscope (FESEM, JSM6700F) with an energy dispersive X-ray spectroscope (EDS, Oxford INCA). EDS confirms the presences of $\mathrm{K}, \mathrm{Pb}, \mathrm{I}, \mathrm{C}$ and O elements. The molar ratio of $\mathrm{K}: \mathrm{Pb}: \mathrm{I}$ of 1.95: 1: 2.07 is in good agreement with the calculated value of $2: 1: 2$ based on single-crystal X-ray diffraction data. C and H analyses were carried out with a Vario EL III element analyzer. Anal. Calcd. for KPMI: C 5.61, H 0.31 \%. Found: C $4.97, \mathrm{H}<=0.30 \%$.

UV-Vis-NIR Diffuse Reflectance Spectroscopy.

UV-vis-NIR diffuse reflectance spectrum was recorded in the wavelength range of 190-2500 nm at room temperature on a PrkinElmer Lambda 950 ultraviolet/visible/near-infrared spectrophotometer using BaSO_{4} as the standard reference. The reflection spectrum was converted into the absorption spectrum by using the Kubelka-Munk function. ${ }^{[4]}$

IR Spectroscopy.

IR spectrum from 400 to $4000 \mathrm{~cm}^{-1}$ was performed at room temperature on a VERTEX70 FTIR spectrometer instrument using Attenuated Total Reflectance (ATR) method. The crystal sample was tightly fitted to the total reflection crystal. In FT-IR spectrum of KPMI, two absorption bands at $1546 \mathrm{~cm}^{-1}$ and $1420 \mathrm{~cm}^{-1}$ are attributed to the antisymmetric stretching vibration and stretching vibration of the carboxylate group, respectively (Fig. S11). The bending deformation vibration of CH_{2} is observed at $1340 \mathrm{~cm}^{-1}$.

SHG Test.

Powder SHG measurement was carried out on a pulsed Q-switched Nd:YAG solid-state laser using the Kurtz-Perry method under a wavelength of 1064 nm laser at room temperature. ${ }^{[5]}$ Crystalline samples and microcrystalline KDP as the reference were ground and sieved into progressively increasing particle size ranges: 25-45, 45-75, 75-109, 109-150 and 150-212 $\mu \mathrm{m}$.

Computational Details.

Our DFT calculations have been performed using the Vienna ab initio simulation package (VASP) ${ }^{[6-8]}$ with the Perdew-Burke-Ernzerhof (PBE) ${ }^{[9]}$ exchange correlation functional. The projected augmented wave (PAW) potentials have been used to treat the ion-electron interactions. ${ }^{[10]}$ A Γ-centered $7 \times 7 \times 3$ Monkhorst-Pack grid for the Brillouin zone sampling ${ }^{[11]}$ and a cutoff energy of 500 eV for the plane wave expansion were found to get convergent lattice parameters and self-consistent energies. The electronic structures and electron localization
function (ELF) plots displayed in this work were visualized by Device Studio ${ }^{[12]}$ and VESTA. ${ }^{[13]}$
In calculation of the static $\chi^{(2)}$ coefficients, the so-called length-gauge formalism derived by Aversa and Sipe ${ }^{[14]}$ and modified by Rashkeev et al ${ }^{[15]}$ is adopted, which has been proved to be successful in calculating the second order susceptibility for semiconductors and insulators. ${ }^{[16-19]}$ In the static case, the imaginary part of the static second-order optical susceptibility can be expressed as:

$$
\begin{aligned}
& =\frac{e^{3}}{\hbar^{2} \Omega_{n m l, k}^{a b c}} \sum_{n m} \frac{r_{n m}^{a}\left(r_{m l}^{b} r_{l n}^{c}+r_{m l}^{c} r_{l n}^{b}\right)}{2 \omega_{n m} \omega_{m l} \omega_{l n}}\left[\omega_{n} f_{m l}+\omega_{m} f_{l n}+\omega_{l} f_{n m}\right] \\
& +\frac{i e^{3}}{4 \hbar^{2} \Omega} \sum_{n m, k} \frac{f_{n m}}{\omega_{m n}^{2}}\left[r_{n m}^{a}\left(r_{m n ; c}^{b}+r_{m n ; b}^{c}\right)+r_{n m}^{b}\left(r_{m n ; c}^{a}+r_{m n ; a}^{c}\right)+r_{n m}^{c}\left(r_{m n ; b}^{a}+r_{m n ; a}^{b}\right)\right]
\end{aligned}
$$

where r is the position operator, $\hbar \omega_{n m}=\hbar \omega_{n}-\hbar \omega_{m}$ is the energy difference for the bands m and $n, f_{m n}=f_{m}-f_{n}$ is the difference of the Fermi distribution functions, subscripts a, b, and c are Cartesian indices, and $r^{b}{ }_{m n ; a}$ is the so-called generalized derivative of the coordinate operator in k space,
$r_{n m ; a}^{b}=\frac{r_{n m}^{a} \Delta_{m n}^{b}+r_{n m}^{b} \Delta_{m n}^{a}}{\omega_{n m}}+\frac{i}{\omega_{n m}} \times \sum_{l}\left(\omega_{l m} r_{n l}^{a} r_{l m}^{b}-\omega_{n l} r_{n l}^{b} r_{l m}^{a}\right)$
where $\Delta^{a}{ }_{n m}=\left(p^{a}{ }_{n n}-p^{a}{ }_{m m}\right) / m$ is the difference between the electronic velocities at the bands n and m.

The $\chi^{(2)}$ coefficients here were calculated from PBE wavefunctions with a $7 \times 7 \times 3$ k-point grid and about 168 bands. A scissor operator has been added to correct the conduction band energy (corrected to the experimental gap), which has been proved to be reliable in predicting the second order susceptibility for semiconductors and insulators. ${ }^{[20-22]}$

For an external radiation electric field E , the dipole moment μ_{i} of a group can be expressed as a Taylor series expansion ${ }^{[23-24]}$
$\mu_{i}=\mu_{i}^{0}+\alpha_{i j} E_{j}+\frac{1}{2!} \beta_{i j k} E_{j} E_{k}+\frac{1}{3!} \gamma_{i j k l} E_{j} E_{k} E_{l}$
where $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and l subscripts represent the different Cartesian coordinate components x, y, or z . μ_{i}^{0} is the permanent dipole moment of a group, namely the dipole moment without an applied electric field. Physical quantities α, β, and γ correspond to the linear polarizability (α, which corresponds to the linear optical coefficient of a group), first-order hyperpolarizability tensor (β, which is the second-order nonlinear optical coefficient of a group), and second-order hyperpolarizability tensor (γ, which is the third-order nonlinear optical coefficient of a group), respectively.

We calculate the dipole moment, the static linear polarizability (α) and static first-order
hyperpolarizability (β) of $\left[\mathrm{PbO}_{4} \mathrm{I}_{2}\right]$ and $\left[\mathrm{OOCCH}_{2} \mathrm{COO}\right]$ groups at the PBE1PBE level ${ }^{[25]}$ of theory with a reasonably large basis set def2TZVP ${ }^{[26-27]}$ by using the Gaussian 09 program. ${ }^{[28]}$ The polarizability anisotropy ($\Delta \alpha$) was obtained by the formula (2) to reflect the source of birefringence. ${ }^{[29]}$ The static first hyperpolarizability (β) was used to study the source of SHG response.
$\Delta \alpha=\sqrt{\left[\left(\alpha_{x x}-\alpha_{y y}\right)^{2}+\left(\alpha_{x x}-\alpha_{z z}\right)^{2}+\left(\alpha_{y y}-\alpha_{z z}\right)^{2}\right] / 2}$

2. Tables and Figures

Table S1. Crystal data and structure refinements for KPMI and CPMI.

Empirical formula	$\mathrm{K}_{2} \mathrm{I}\left[\mathrm{PbI}\left(\mathrm{OOCCH}_{2} \mathrm{COO}\right)\right]$	$\mathrm{Cs}_{2} \mathrm{I}_{2}\left[\mathrm{~Pb}\left(\mathrm{OOCCH}_{2} \mathbf{C O O}\right)\right]$
Formula weight	641.24	828.86
Temperature(K)	293(2)	293(2)
Crystal color	Colorless	Colorless
Wavelength $(\AA$)	0.71073	0.71073
Crystal system	Orthorhombic	Orthorhombic
Space group	Amm 2	Pnma
a / \AA	6.038(5)	14.012(2)
b / \AA	6.442(6)	6.6912(13)
c / \AA	13.903(13)	13.4144(18)
Volume / \AA^{3}	540.8(8)	1257.7(4)
Z	2	4
$\rho_{\text {calcd }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	3.938	4.377
μ / mm^{-1}	22.052	24.007
$\mathrm{F}(000)$	556.0	1400.0
Date / restraints / parameters	628/7/43	1562/0/65
2-Theta range for data collection	5.86 to 54.87	4.204 to 54.956
Limiting indices	$-7 \leq h \leq 7,-8 \leq \mathrm{k} \leq 8,-13 \leq 1 \leq 18$	$-18 \leq h \leq 18,-8 \leq \mathrm{k} \leq 8,-17 \leq 1 \leq 17$
Reflections collected / unique	2395/650 [$\left.\mathrm{R}_{\text {int }}=0.0574\right]$	$10962 / 1562\left[\mathrm{R}_{\text {int }}=0.0769\right]$
Completeness	99.0\%	99.5\%
Goodness-of-fit on F^{2}	1.054	1.072
$\mathrm{R}_{1}, \mathrm{wR}_{2}(\mathrm{I}>2 \sigma)^{[\mathrm{a}]}$	$\mathrm{R}_{1}=0.0424, \mathrm{R} 2=0.1001$	$\mathrm{R}_{1}=0.0358, \mathrm{R}_{2}=0.0819$
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ (all data)	$\mathrm{R}_{1}=0.0427, \mathrm{R} 2=0.1003$	$\mathrm{R}_{1}=0.0419, \mathrm{R}_{2}=0.0850$
Largest diff , peak and hole/ $\mathrm{e} \cdot \AA^{-3}$	1.62 and -1.45	2.02 and -2.31

[^0]Table S2. Atomic coordinates, equivalent isotropic displacement parameters (\AA^{2}) and BVS of KPMI.

Atom	$W y c k$.	x	y	z	$U_{\text {eq }}{ }^{a}$	BVS $^{\mathrm{b}}$
Pb 1	2 b	0.5000	1	$0.56063(2)$	$0.0242(4)$	1.72
I 1	2 a	0	1	$0.6553(2)$	$0.0362(7)$	-0.88
I 2	2 b	0.5000	0.5000	$0.67446(19)$	$0.0320(8)$	-0.64
K 1	2 a	0	0.5000	$0.5251(8)$	$0.0292(17)$	0.98
K 2	2 a	0	1	$0.3356(7)$	$0.039(2)$	0.77
O 1	8 f	$0.3150(20)$	$0.7597(15)$	$0.4370(11)$	$0.031(3)$	-2.16
C 1	4 e	0.5000	$0.6920(30)$	$0.4079(16)$	$0.022(4)$	
C 2	2 b	0.5000	0.5000	$0.3410(30)$	$0.026(8)$	

[^1]Table S3. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for CPMI.

Atom	Wyck.	x	y	z	$U_{\text {eq }}{ }^{a}$
Pb 1	4 c	$0.38225(3)$	0.7500	$0.37572(2)$	$0.02519(16)$
Cs 1	4 c	$0.13431(6)$	0.7500	$0.61390(5)$	$0.0329(2)$
Cs 2	4 c	$0.16570(5)$	0.7500	$0.13052(4)$	$0.02831(19)$
I 1	4 c	$0.49061(6)$	0.7500	$0.61127(5)$	$0.0321(2)$
I 2	4 c	$0.48843(6)$	0.7500	$0.14443(5)$	$0.0338(2)$
O 1	8 d	$0.2605(4)$	$0.5132(7)$	$0.4563(3)$	$0.0305(11)$
O 2	8 d	$0.2708(4)$	$0.5041(7)$	$0.2908(3)$	$0.0301(11)$
C 1	8 C	$0.2384(5)$	$0.4355(10)$	$0.3732(4)$	$0.0224(13)$
C 2	4 c	$0.1741(8)$	0.2500	$0.3709(7)$	$0.029(2)$

${ }^{a} U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$ tensor.

Table S4. Anisotropic displacement parameters $\left(\AA^{2}\right)$ of KPMI.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
Pb 1	$0.0195(6)$	$0.0266(6)$	$0.0267(6)$	0.0000	0.0000	0.0000
I 1	$0.0212(15)$	$0.0469(16)$	$0.0404(15)$	0.0000	0.0000	0.0000
I 2	$0.0325(17)$	$0.0327(14)$	$0.0308(14)$	0.0000	0.0000	0.0000
K 1	$0.017(4)$	$0.024(3)$	$0.046(4)$	0.0000	0.0000	0.0000
K 2	$0.030(5)$	$0.044(4)$	$0.043(5)$	0.0000	0.0000	0.0000
O 1	$0.030(7)$	$0.023(5)$	$0.038(7)$	$-0.002(5)$	$0.0010(6)$	$0.0040(4)$
C 1	$0.021(4)$	$0.022(4)$	$0.022(4)$	$0.0004(13)$	0.0000	0.0000
C 2	$0.024(18)$	$0.015(12)$	$0.040(20)$	0.0000	0.0000	0.000

Table S5. Anisotropic displacement parameters $\left(\AA^{2}\right)$ of CPMI.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
Pb 1	$0.0258(2)$	$0.0244(3)$	$0.0253(2)$	0.0000	$-0.00098(12)$	0.0000
Cs 1	$0.0453(4)$	$0.0246(4)$	$0.0286(3)$	0.0000	$0.0007(3)$	0.0000
Cs 2	$0.0339(4)$	$0.0281(4)$	$0.0229(3)$	0.0000	$-0.0017(2)$	0.0000
I 1	$0.0391(4)$	$0.0288(4)$	$0.0283(4)$	0.0000	$0.0017(2)$	0.0000
I 2	$0.0405(4)$	$0.0316(4)$	$0.0294(3)$	0.0000	$0.0007(3)$	0.0000
O 1	$0.037(3)$	$0.026(3)$	$0.028(3)$	$-0.005(2)$	$0.0005(19)$	$0.0000(2)$
O 2	$0.037(3)$	$0.028(3)$	$0.025(2)$	$0.002(2)$	$0.0008(19)$	$-0.0002(2)$
C 1	$0.024(3)$	$0.017(3)$	$0.027(3)$	$0.001(2)$	$-0.002(2)$	$0.0008(3)$
C 2	$0.031(6)$	$0.025(6)$	$0.031(6)$	0.0000	$-0.008(4)$	0.0000

[^2] $1+\mathrm{x},+\mathrm{y},+\mathrm{z}$

Table S6. Selected bond lengths (\AA) and angles (deg.) for CPMI.

$\mathrm{Pb}(1)-\mathrm{O}(1)$	$2.567(5)$	$\mathrm{Pb}(1)-\mathrm{O}(2)$	$2.538(5)$
$\mathrm{Pb}(1)-\mathrm{O}(1)^{\# 1}$	$2.567(5)$	$\mathrm{Pb}(1)-\mathrm{O}(2)^{\# 1}$	$2.538(5)$
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(1)^{\# 1}$	$76.2(2)$	$\mathrm{O}(1)^{\# 1}-\mathrm{Pb}(1)-\mathrm{O}(2)$	$100.39(17)$
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(2)$	$51.69(16)$	$\mathrm{O}(1)^{\# 1}-\mathrm{Pb}(1)-\mathrm{O}(2)^{\# 1}$	$51.69(16)$
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(2)^{\# 1}$	$100.39(17)$	$\mathrm{O}(2)-\mathrm{Pb}(1)-\mathrm{O}(2)^{\neq 1}$	$73.4(5)$

Symmetry transformation used to generate equivalent atoms: $\# 1+\mathrm{x}, 3 / 2-\mathrm{y},+\mathrm{z}$;

Table S7. Selected bond lengths (\AA) and angles (deg.) for KPMI.

$\mathrm{Pb}(1)-\mathrm{O}(1)$	$2.570(13)$	$\mathrm{Pb}(1)-\mathrm{O}(1)^{\# 3}$	$2.570(13)$
$\mathrm{Pb}(1)-\mathrm{O}(1)^{\# 1}$	$2.570(13)$	$\mathrm{Pb}(1)-\mathrm{I}(1)$	$3.293(3)$
$\mathrm{Pb}(1)-\mathrm{O}(1)^{\# 2}$	$2.570(13)$	$\mathrm{Pb}(1)-\mathrm{I}(1)^{\# 4}$	$3.293(3)$
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(1)^{\# 1}$	$51.6(6)$	$\mathrm{O}(1)^{\# 1}-\mathrm{Pb}(1)-\mathrm{I}(1)^{\# 4}$	$82.4(3)$
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(1)^{\# 2}$	$96.1(6)$	$\mathrm{O}(1)^{\# 2}-\mathrm{Pb}(1)-\mathrm{O}(1)^{\# 3}$	$51.6(6)$
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{O}(1)^{\# 3}$	$74.1(5)$	$\mathrm{O}(1)^{\# 2}-\mathrm{Pb}(1)-\mathrm{I}(1)$	$131.4(3)$
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{I}(1)$	$131.8(3)$	$\mathrm{O}(1)^{\# 2}-\mathrm{Pb}(1)-\mathrm{I}(1)^{\# 4}$	$82.4(3)$
$\mathrm{O}(1)-\mathrm{Pb}(1)-\mathrm{I}(1)^{\# 4}$	$131.8(3)$	$\mathrm{O}(1)^{\# 3}-\mathrm{Pb}(1)-\mathrm{I}(1)$	$82.4(3)-\mathrm{I}(1)^{\# 4}$
$\mathrm{O}(1)^{\# 1}-\mathrm{Pb}(1)-\mathrm{O}(1)^{\# 2}$	$\mathrm{I}(1)-\mathrm{Pb}(1)-\mathrm{I}(1)^{\# 4}$	$131.8(3)$	
$\mathrm{O}(1)^{\# 1}-\mathrm{Pb}(1)-\mathrm{O}(1)^{\# 3}$		$132.89(11)$	
$\mathrm{O}(1)^{\# 1}-\mathrm{Pb}(1)-\mathrm{I}(1)$	$96.1(6)$	$131.8(3)$	

Symmetry transformations used to generate equivalent atoms: \#1 1-x, $+\mathrm{y},+\mathrm{z} ; \# 2+\mathrm{x}, 2-\mathrm{y},+\mathrm{z}$; \#3 1-x, 2-y, +z; \#4 $1+x,+y,+z$.

Table S8 The SHG responses and thermal stabilities of malonates.

Crystal Name	Space Group	SHG response	Thermal stability	Birefringence	References
bis(2-aminopyridinium) malonate	$F d d 2$	$4.2 \times \mathrm{KDP}$	$101.7{ }^{\circ} \mathrm{C}$	*	[30]
2-methylimidazolium malonate	$P 2_{1}$	$1.24 \times \mathrm{KDP}$	$154{ }^{\circ} \mathrm{C}$	*	[31]
$\mathrm{MnC}_{3} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Pca ${ }_{1}$	$0.7 \times \mathrm{KDP}$	$127^{\circ} \mathrm{C}$	*	[32]
$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{-}$	$P 2_{1}$ cn	$0.38 \times \mathrm{KDP}$	$184.5{ }^{\circ} \mathrm{C}$	*	[33]
L-Histidine malonate	*	$0.76 \times \mathrm{KDP}$	$72{ }^{\circ} \mathrm{C}$	*	[34]
$\mathrm{Co}\left[\mathrm{CS}\left(\mathrm{NH}_{2}\right)_{2}\right]_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	*	$0.41 \times \mathrm{KDP}$	$120.13{ }^{\circ} \mathrm{C}$	*	[35]
$\mathrm{Ni}\left[\mathrm{CS}\left(\mathrm{NH}_{2}\right)_{2}\right]_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	*	$0.35 \times \mathrm{KDP}$	$126.16{ }^{\circ} \mathrm{C}$	*	[35]
$\left[3 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)_{3} \mathrm{Ce}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$P 2_{1}$	$1 \times \mathrm{KDP}$	$100^{\circ} \mathrm{C}$	*	[36]
$\mathrm{KLi}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	Pna 2_{1}	$3 \times \mathrm{KDP}$	$120^{\circ} \mathrm{C}$	0.103@1064 nm(Cal.)	[37]
$\mathrm{K}_{2} \mathrm{~Pb}\left[\mathrm{OOCCH}_{2} \mathbf{C O O}\right] \mathrm{I}_{2}$	Amm 2	$6.3 \times \mathrm{KDP}$	$200{ }^{\circ} \mathrm{C}$	0.218@546nm(Obv.)	This work

* is not mentioned in the original article.

Table S9. The local dipole moment (μ) in Debye, polarizability anisotropy ($\Delta \alpha$), and first hyperpolarizability (β) in 10^{-30} esu for two $\left[\mathrm{PbO}_{4} \mathrm{I}_{2}\right]$ polyhedrons and two $\left[\mathrm{OOCCH}_{2} \mathrm{COO}\right]$ groups in per unit cell of KPMI. The charge of the structural group was estimated by the Bader charge of each atom.

Dipole moment	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\Delta \boldsymbol{\alpha}$	$\boldsymbol{\beta}\left(\mathbf{1 0}^{-30} \mathbf{e s u}\right)$
$\left[\mathrm{PbO}_{4} \mathrm{I}_{2}\right]$	0.000	0.000	18.181	26.431	619.2367
$\left[\mathrm{PbO}_{4} \mathrm{I}_{2}\right]$	0.000	0.000	18.181	26.431	619.2367
$\left[\mathrm{OOCCH}_{2} \mathrm{COO}\right]$	0.000	0.000	-3.705	2.250	-2.419
$\left[\mathrm{OOCCH}_{2} \mathrm{COO}\right]$	0.000	0.000	-3.705	2.250	-2.419
Total (D)	0	0	28.952		

Fig. S1. (a) The wave-like [CsI] inorganic layers in CPMI. (b) The 2D $\left[\mathrm{K}_{2} \mathrm{I}\right]$ inorganic frameworks in KPMI. Ball-stick views of (c) CPMI and (d) KPMI.

Fig. S2. (a) The wave-like [CsI] inorganic layer in CPMI. (b) The 2D [$\left.\mathrm{K}_{2} \mathrm{I}\right]$ inorganic framework in KPMI; (c) The [PbM] chains in CPMI. (d) The $\left[\mathrm{PbMI}_{2}\right]$ layer in KPMI.

Fig. S3. The environments of (a) Cs^{+}and (b) $\mathrm{Cs} 2^{+}$cations in CPMI. The environments of (c) K^{+}and (d) $\mathrm{K} 2^{+}$cations in KPMI.
a

b

Fig. S4. Ball-stick views of (a) the coordination environment of the $\mathrm{Pb}(\mathrm{II})$ atom and $[\mathrm{PbM}]$ chains in CPMI. Symmetry code: a $1+x, 3 / 2-y,+z$.

Fig. S5. A ball-stick view of $[\mathrm{PbM}]$ chains in KPMI.
a

b

Fig. S6. (a) The $\left[\mathrm{PbMI}_{2}\right]$ layer along the a axis. (b) The $\left[\mathrm{PbMI}_{2}\right]$ layer along the b axis.

Fig. S7. The oriented arrangement of $\left[\mathrm{PbMI}_{2}\right]$ layers in KPMI.

Fig. S8. Experimental and simulated PXRD patterns of KPMI.

Fig. S9. The EDS spectrum of KPMI.

Fig. S10. The TGA curve of KPMI.

Fig. S11. The UV-vis-NIR and IR spectra of KPMI.

Fig. S12. The refractive index dispersion curves of KPMI.

Fig. S13. The calculated birefringence curve of KPMI..

Fig. S14. The calculated band structure of KPMI.

3. References

[1] G. M. Sheldrick, Acta Crystallogr. A 2015, 71, 3-8.
[2] G. M. Sheldrick, Acta crystallogr. Sect. C: Struct. Chem. 2015, 71, 3-8.
[3] A. Spek, J. appl. Crystallogr. 2003, 36, 7-13.
[4] P. Kubelka, F. Munk, Z. Tech. Phys. 1931, 12, 259-274.
[5] S. Kurtz, T. Perry, J. Appl. Phys. 1968, 39, 3798-3813.
[6] G. Kresse, Vienna ab Initio Simulation Package (VASP).
[7] G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169-11186
[8] G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758-1775.
[9] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
[10] P. Bliichl, Phys. Rev. B 1994, 50, 17953-17979.
[11] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188-5192.
[12] Hongzhiwei Technology, Device Studio, Version 2021A. China, 2021. Available online: https: //iresearch.net.cn/cloudSoftware.
[13] K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272-1276.
[14] C. Aversa, J. Sipe, Phys. Rev. B 1995, 52, 14636-14645
[15] S. N. Rashkeev, W. R. Lambrecht, B. Segall, Phys. Rev. B 1998, 57, 3905-3919.
[16] J. Hu, Z. Ma, J. Li, C. He, Q. Li, K. Wu, J. Phys. D: Appl. Phys. 2016, 49, 185103.
[17] J. Li, Z. Ma, C. He, Q. Li, K. Wu, J. Mater. Chem. C 2016, 4, 1926-1934.
[18] Z. Ma, K. Wu, R. Sa, K. Ding, Q. Li, AIP. Adv. 2012, 2, 032170.
[19] Z. Ma, K. Wu, R. Sa, Q. Li, Y. Zhang, J. Alloy. Compd. 2013, 568, 16-20.
[20] B. Champagne, D. M. Bishop, Adv. Chem. Phys. 2003, 126, 41-92.
[21] A. H. Reshak, S. Auluck, I. Kityk, Phys. Rev. B 2007, 75, 245120.
[22] Y.-Z. Huang, L.-M. Wu, X.-T. Wu, L.-H. Li, L. Chen, Y.-F. Zhang, J. Am. Chem. Soc. 2010, 132, 12788-12789.
[23] J. E. Rice, R. D. Amos, S. M. Colwell, N. C. Handy, J. Sanz, J. Chem. Phys. 1990, 93, 88288839.
[24] Y. C. Yang, X. Liu, J. Lu, L. M. Wu, L. Chen, Angew. Chem. Int. Ed. 2021, 60, 21216-21220.
[25] P. E. Blöchl, Phys. Rev. B 1994, 50, 17953-17979.
[26] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.3
[27] F. Weigend, Phys. Chem. Chem Phys. 2006, 8, 1057-1065.
[28] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592.
[29] Gaussian 09, Revision A.02, M. J. Frisch, G. W. et al. Gaussian, Inc., Wallingford CT, 2016.
[30] R. Chitra, R. Choudhury, V. Thiruvenkatam, M. Hosur, T. G. Row, J. Mol. Struct. 2012, 1010, 46-51.
[31] K. Elangovan, A. Senthil, J. Mater. Sci: Mater. Electron. 2019, 30, 14143-14150.
[32] A. Lincy, V. Mahalakshmi, J. Thomas, K. Saban, Opt. 2013, 124, 2881-2884.
[33] K. Sangeetha, S. Rajina, M. Marchewka, J. Binoy, Mater. Today: Proceedings 2020, 25, 307-315.
[34] K. Ramya, N. Saraswathi, C. R. Raja, Optics \& Laser Technology 2016, 84, 102-106.
[35] N. M. Raste, K. S. Pardeshi, J. Opt. Adv. Mater. 2016, 18, 445-452.
[36] A. Lincy, V. Mahalakshmi, J. Thomas, P. Raghavaiah, K. Saban, Optik 2016, 127, 21972201.
[37] L. Cao, H. Tian, D. Lin, C. Lin, F. Xu, Y. Han, T. Yan, J. Chen, B.-X. Li, N. Ye, Chem. Sci. 2022.

[^0]: ${ }^{[\mathrm{a}]} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / \Sigma\right| F_{\mathrm{o}} \mid$ and $w R_{2}=\left[\Sigma \mathrm{w}\left(F_{\mathrm{o}}{ }^{2}-F^{2}\right)^{2} / \Sigma \mathrm{w} F_{\mathrm{o}}{ }^{4}\right]^{1 / 2}$.

[^1]: ${ }^{a} U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$ tensor.
 ${ }^{\mathrm{b}}$ Bond valence sums were calculated by the equation: $s=\exp \left[\left(\mathrm{R}_{0}-\mathrm{R}_{\mathrm{i}}\right) / b\right]$, where R_{0} and b are the bond valence parameters and R_{i} is the observed bond lengths.

[^2]: Symmetry transformations used to generate equivalent atoms: \#1 1-x, +y, +z; \#2+x, 2-y, +z; \#3 1-x, 2-y, +z; \#4

