Supporting Information

Size exclusion propyne/propylene separation in a ultramicroporous yet hydrophobic metal-organic framework

Ming-Ming Xu, Yu-Hui Liu, Xin Zhang, Hao-Tian Wang, Lin-Hua Xie*, Jian-Rong Li*

* Corresponding authors.

E-mail addresses: xielinhua@bjut.edu.cn (L.-H. Xie), jrli@bjut.edu.cn (J.-R. Li)

Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China

Fig. S1 The PXRD patterns of BUT-305 and-306 treated with MeOH at 120 °C for 3 days.

Fig. S2 N_2 adsorption isotherms of **BUT-305** and **-306** at 77 K.

Fig. S3 The CO₂ adsorption isotherms of **BUT-305** and **-306** at 195 K.

Fig. S4 Two repeated measurements of H₂O adsorption isotherms of BUT-306 at 298 K.

Fig. S5 Single-component gas adsorption isotherms (CO₂, C₂H₂, C₂H₄, C₂H₆, C₃H₄, C₃H₆, and C₃H₈) of (a, b) **BUT-305** and (c, d) **BUT-306** recorded at 298 K.

Fig. S6 C₃H₄, C₃H₆ adsorption and desorption isotherms of **BUT-306** measured at 298 K.

Fig. S7 IAST selectivities of **BUT-306** for 1:1, 1:9 and 1:99 (ν/ν) C₃H₄/C₃H₆ gas mixtures at 298 K calculated from single-component gas adsorption isotherms.

Fig. S8 The C_3H_4 adsorption isotherms of **BUT-306** recorded at 273, 283, 298, 313, and 323 K, respectively. The measurements were repeated to verify the data.

Fig. S9 Overlapping of the framework structures **BUT-306** recorded at 273 K (blue), 298 K (red), and 313 K (green) and that of C₃H₄-loaded **BUT-306** recorded at 200 K (turquoise).

Fig. S10 C_3H_4 and C_3H_6 adsorption isotherms of **BUT-306** measured at 298 K and its double-site Langmuir-Freundlich fits.

Fig. S11 Schematic diagram of column breakthrough experiment device.

	BUT-306	BUT-306	BUT-306	C ₃ H ₄ -loaded BUT-306
Temp. (K)	273	298	313	200
Formula	$C_{12.5}H_{10}N_4O_2Zn$	$C_{12.5}H_{10}N_4O_2Zn$	$C_{12.5}H_{10}N_4O_2Zn$	$C_{12.73}H_{10.2}N_4O_2Zn$
Crystal system	tetragonal	tetragonal	tetragonal	tetragonal
Space group	<i>I</i> 4/ <i>m</i>	I4/m	I4/m	I4/m
<i>a</i> (Å)	12.3290(2)	12.3420(2)	12.3425(2)	12.3020(10)
<i>c</i> (Å)	40.6790(6)	40.6826(9)	40.6799(5)	40.7025(5)
α (°)	90	90	90	90
$V(Å^3)$	6183.4(2)	6197.0(2)	6197.1(2)	6159.9(13)
Ζ	16	16	16	16
$D_c (\mathrm{g} \mathrm{cm}^{-3})$	1.348	1.345	1.345	1.365
F (000)	2544.0	2544.0	2544.0	2569.0
Reflections collected	11595	11499	11532	11249
Unique reflections	2364	2343	2326	3109
GOF	1.031	1.031	1.020	1.060
$R_1^a [I > 2\sigma(I)]$	0.0424	0.0588	0.0425	0.0371
wR_2^b (all data)	0.1243	0.1192	0.1263	0.1048
CCDC deposition number	2168051	2168052	2168053	2168054

Table S1 Crystal data and structure refinement parameters for **BUT-306** at 273, 298 and 313 K, and C₃H₄-loaded **BUT-306** at 200 K.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \ {}^{b}wR_{2} = |\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})| / \Sigma |w(F_{o})^{2}|^{1/2}, \text{ where } w = 1 / [\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP]. \ P = (F_{o}^{2} + 2F_{c}^{2}) / 3$

Formula	$Zn_2(ATZ)_2(TPDC)$
crystal system	tetragonal
space group	I4/m
<i>a</i> / Å	12.38096(0.00647)
<i>c</i> / Å	40.65355(0.02070)
$R_{ m wp}$ / %	8.62
<i>R</i> _p / %	6.05
U	0.34090(0.18549)
V	-0.14615(0.07521)
W	0.02189(0.01621)
NA	0.28626(0.01743)
NB	0.01061(0.00102)
Zero Point / °	0.37865(0.00167)
Shift #1	-0.48957(0.00097)
Shift #2	0.10628(0.03413)
<i>P</i> 1	-0.20988(0.00230)
P2	-0.11320(0.00109)
P3	0.21332(0.00475)
<i>P</i> 4	0.18014(0.00218)

Table S2 Pawley refinement parameters for the PXRD pattern of **BUT-305**.

		C ₃ H₄ adsorption mmol g ⁻¹			C ₃ H ₆ adsorption mmol g ⁻¹			C_3H_4/C_3H_6 adsorption ratio		Ref.
MOFs										
	0.01 bar	0.1 bar	0.99 bar	0.01 bar	0.1 bar	0.99 bar	0.99/0.99	0.01/0.99		
	UTSA-200	2.99	3.3	3.58	0.02	0.33	1.2	2.98	2.49	
	SIFSIX-3-Ni	2.56	2.73	2.85	0.15	2.42	2.72	1.05	0.98	
	ZU-62	2.19	3.01	3.64	0.17	2.26	2.67	1.36	0.82	
ç	SIFSIX-2-Cu-i	1.96	3.22	3.77	0.15	2.19	2.63	1.43	0.74	
	SIFSIX-1-Cu	2.57	6.79	8.63	0.3	4.92	5.88	1.47	0.44	
	ELM-12	1.82	2.54	2.77	0.19	1.11	1.43	1.94	1.27	
	ZJUT-1	0.4	1.07	2.24	0.06	0.54	0.84	2.67	0.47	Ref. [32] in maintext
	Mg-MOF-74	2.71	7.32	9.4	2.03	6.07	6.49	1.33	0.42	mantext
	Co-MOF-74	2.85	5.8	7.47	1.27	5.64	5.95	1.26	0.48	
	Ni-MOF-74	1.8	4.68	5.51	1.53	4.5	4.78	1.15	0.38	
	Fe-MOF-74	2.18	6.67	7.94	1.67	6.25	6.63	1.20	0.33	
	Cu-BTC	1.47	8.17	10.47	1.36	7.9	8.33	1.26	0.18	
	Fe-BTT	1.74	6.87	12.41	1.52	8.03	8.74	1.42	0.2	

Table S3 Comparison of C_3H_4 and C_3H_6 uptake (mmol/g, mmol/cm³ and cm³/cm³) from gas adsorption isotherms at various pressures, and the C_3H_4/C_3H_6 uptake ratio at 0.01/0.01 bar and 0.01/0.99 bar for various reported MOFs at 298 K.

BUT-306	0.44	0.89	1.29	0.02	0.04	0.12	10.75	3.67	this work
NKMOF-1	1.78	2.10	2.90	0.65	0.75	1.50	1.93	1.19	Ref. [52] in maintext
Ni-gallate	1.1	1.9	2.65	0.18	0.4	0.9	2.94	1.22	
Mg-gallate	1.65	2.7	3.75	0.08	1.0	1.50	2.50	1.10	Ref. [51] in maintext
Co-gallate	1.61	2.4	3.21	0.09	0.5	1.49	2.15	1.08	
UTSA-100	1.87	4	5.35	1.34	2.68	3.04	1.76	0.62	
UTSA-74-Zn	0.33	2.13	7.43	0.09	2.47	5.07	1.45	0.06	
ZIF-8	0.13	1.44	6.27	0.08	3.15	4.07	1.54	0.03	
UIO-66	1.58	5.29	10.23	0.36	2.7	3.33	3.07	0.47	
MIL-100(Fe)	1.34	4.74	17.14	0.52	4.52	6.96	2.46	0.19	
MIL-100(Cr)	1.52	4.98	14.51	0.63	4.53	6.25	2.32	0.24	
Cr-BTT	1.08	4.42	7.28	0.76	5.04	5.85	1.24	0.18	
