Electronic supplementary information

of

New Tetradentate N,O-Hybrid Phenanthroline-Derived Organophosphorus Extractants for the Separation and Complexation of Trivalent Actinides and Lanthanides

Xiao Yang[†], Shihui Wang[†], Lei Xu[§], Qiang Yan[‡], Chao Xu[‡], Petr Matveev[#], Lecheng

Lei[†], Chengliang Xiao^{†*}

[†]College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

[‡]Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

§Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou 310058, China

[#]Radiochemistry Division, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation

*Email: <u>xiaoc@zju.edu.cn</u> (Chengliang Xiao)

Contents

1. ¹ H/ ³¹ P NMR spectra and Maldi-Tof MS of ligands	Page S2-S3
2. ³¹ P NMR titration spectra and peak positions of ¹ H NMR spectra	Page S4-S5
3. UV-vis spectra titrated with La(NO ₃) ₃ and Lu(NO ₃) ₃	Page S6-S8
4. Structure of Lu(L ₁)(NO ₃) ₃	Page S9
5. Crystal data and structure refinement P	age S10-S11
6. Main bond distances and angles	Page S12-

¹H/³¹P NMR spectra and Maldi-Tof MS of ligands.

¹H NMR

S14

Figure S1. ¹H NMR of Et-Ph-BPPhen (L₁).

MALDI-TOF Mass Spectrum

Figure S2. Maldi-Tof MS of Et-Ph-BPPhen (L_1) .

Figure S3. ¹H and ³¹P NMR of Et-Ph-PIPhen (L₂).

MALDI-TOF Mass Spectrum

³¹P NMR titration spectra and peak positions of ¹H NMR spectra.

Figure S5. (a) ³¹P NMR spectra of L_1 (10.0 mM) titrated with La(NO₃)₃ (0 - 2.5 equiv.) in

CD₃OD; (b) ³¹P NMR spectra of L₂ (10.0 mM) titrated with La(NO₃)₃ (0 - 2.5 equiv.) in CD₃OD; (c) ³¹P NMR spectra of L₁ (10.0 mM) titrated with Lu(NO₃)₃ (0 - 2.5 equiv.) in CD₃OD; (d) ³¹P NMR spectra of L₂ (10.0 mM) titrated with Lu(NO₃)₃ (0 - 2.5 equiv.) in CD₃OD. M/L denotes the

metal/ligand equivalents.

Table S1 The peak positions of ligands and complexes in ¹H NMR spectra

Sustana Figuras		M/L ratio		
Systems	Figures	0:1	1:1	1:2
		956 947 975 902	8.77, 8.23, 8.20,	
$La(III)$ -to- L_1	4 a	7.58 and 7.51 nnm	8.10, 7.73 and	-
		7.58 and 7.51 ppm	7.67 ppm	
		8 50 8 30 8 22 8 03	8.76, 8.23, 8.20,	
$La(III)$ -to- L_2	4b	7.63 and 7.55 nnm	8.10, 7.73 and	-
		7.05 and 7.55 ppm	7.68 ppm	
Lu(III)-to-L ₁	4c	8.64, 8.39, 8.21, 8.08, 7.60 and 7.54 ppm	9.01, 8.54, 8.36, 8.14, 7.78 and 7.70 ppm	9.42, 9.38, 9.08, 8.69, 7.44, 7.35, 7.24 and 7.09 ppm
Lu(III)-to-L ₂	4d	8.59, 8.39, 8.22, 8.03, 7.63 and 7.55 ppm	9.03, 8.53, 8.38, 8.19, 7.83 and 7.71 ppm	9.06-9.55, 8.66 and 6.98-7.78 ppm

Figure S6. Spectra of ligands (L_1 and L_2) titrated with $La(NO_3)_3$ in methanol solution (T = 298 K,

 $I = 0.01 \text{ M Et}_4\text{NNO}_3$, $V_0 = 2.00 \text{ mL}$). (a) Top: the normalized absorption spectra of L_1 varied with

the La(NO₃)₃ concentration; Middle: the fitted molar absorptivity of the ligand and La(III) complexes; Bottom: the species fraction curves obtained during the titration process. C_L = 0.023 mM, $C_{La(III)}$ = 0.24 mM, 0.31 mL titrant was added totally. (b) Top: the normalized absorption spectra of L₂ varied with the La(NO₃)₃ concentration; Middle: the fitted molar absorptivity of the ligand and La(III) complexes; Bottom: the species fraction curves obtained during the titration

process. $C_L{=}\,0.019$ mM, $C_{La(III)}{=}\,0.24$ mM, 0.29 mL titrant was added totally.

Figure S7. Spectra of ligands (L_1 and L_2) titrated with Lu(NO₃)₃ in methanol solution (T = 298 K, I = 0.01 M Et₄NNO₃, V₀ = 2.00 mL). (a) Top: the normalized absorption spectra of L_1 varied with the Lu(NO₃)₃ concentration; Middle: the fitted molar absorptivity of the ligand and Lu(III)

complexes; Bottom: the species fraction curves obtained during the titration process. $C_L {=}\ 0.024$

mM, $C_{Lu(III)} = 0.30$ mM, 0.31 mL titrant was added totally. (b) Top: the normalized absorption spectra of L_2 varied with the Lu(NO₃)₃ concentration; Middle: the fitted molar absorptivity of the ligand and Lu(III) complexes; Bottom: the species fraction curves obtained during the titration process. $C_L = 0.024$ mM, $C_{Lu(III)} = 0.30$ mM, 0.31 mL titrant was added totally. $C_L = 0.024$ mM,

 $C_{Lu(III)} = 0.30 \text{ mM}, 0.29 \text{ mL}$ titrant was added totally.

Figure S8. (a) Crystal structure, (b) π - π stacking interaction and (c) crystal packing of Lu(L₁)(NO₃)₃ viewed along with a-axis. Hydrogen bonds are presented by red dashed lines. The solvent molecules have been omitted for clarity. The Lu, O, N, P, C and H atoms are represented

by light cyan, red, pastel blue, orange, light grey, and white colours, respectively.

Crystal data and structure refinement.

	$La(L_1)(NO_3)_3$	$Eu(L_1)(NO_3)_3$	$Lu(L_1)(NO_3)_3$
CCDC	2112088	2112094	2112093
Empirical formula	$C_{28}H_{26}LaN_5O_{11}P_2$	$C_{28}H_{26}EuN_5O_{11}P_2$	$C_{28}H_{26}LuN_5O_{11}P_2$
Formula weight	809.39	822.44	845.45
Temperature/K	170	170	170
Crystal system	orthorhombic	orthorhombic	orthorhombic
Space group	Pbca	Pbca	Pbca
a/Å	17.6729(5)	17.6662(5)	17.275(8)
b/Å	17.7777(5)	17.5454(5)	17.814(8)
c/Å	20.2305(6)	20.1869(6)	20.383(9)
α/°	90	90	90
β/°	90	90	90
$\gamma/^{\circ}$	90	90	90
Volume/Å ³	6356.1(3)	6257.1(3)	6273(5)
Ζ	8	8	8
$ ho_{calc}g/cm^3$	1.692	1.746	1.79
μ/mm^{-1}	1.512	2.175	3.318
F(000)	3232	3280	3344
Crystal size/mm ³	$0.12\times0.1\times0.02$	$0.25\times0.13\times0.1$	$0.04 \times 0.02 \times 0.02$
Radiation	ΜοΚα (λ = 0.71073)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	3.822 to 60.078	3.844 to 72.202	4.572 to 55.598
Tu day managa	-24 \leq h \leq 20, -25 \leq	-29 \leq h \leq 24, -27 \leq k	$\textbf{-22} \le h \le 22, \textbf{-22} \le k$
index ranges	$k \le 25, -28 \le l \le 28$	$\leq 26, -32 \leq l \leq 32$	\leq 22, -25 \leq 1 \leq 23
Reflections collected	131263	169270	47883
Independent reflections	9295 [$R_{int} = 0.0687$,	13957 [$R_{int} = 0.0411$,	$6809 [R_{int} = 0.0768,$
	$R_{sigma} = 0.0270$]	$R_{sigma} = 0.0254$]	$R_{sigma} = 0.0471$]
Data/restraints/parameters	9295/0/426	13957/0/426	6809/0/426
Goodness-of-fit on F ²	1.043	1.031	1.04
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0289, wR_2 = 0.0596$	$R_1 = 0.0257, wR_2 = 0.0489$	R1 = 0.0364, wR2 = 0.0750
Final R indexes [all data]	$R_1 = 0.0422, wR_2 = 0.0662$	$R_1 = 0.0439, wR_2 = 0.0537$	R1 = 0.0580, wR2 = 0.0850
Largest diff. peak/hole/e Å-3	0.43/-0.76	0.59/-0.95	1.57/-0.92

Table S2. Crystal data and structure refinement for the crystals related to L_1 .

	$(La)_2(L_2)_2(NO_3)_6$ ·CH ₃ OH	$Eu(L_2)(NO_3)_3$
CCDC	2112095	2124871
Empirical formula	$C_{58}H_{60}La_2N_{10}O_{28}P_4$	$C_{28}H_{26}EuN_5O_{13}P_2$
Formula weight	1746.86	854.44
Temperature/K	170	170
Crystal system	monoclinic	orthorhombic
Space group	$P2_1/c$	Pna21
a/Å	16.500(6)	16.516(5)
b/Å	25.533(7)	14.612(5)
c/Å	17.385(9)	13.254(4)
α/°	90	90
β/°	95.61(2)	90
$\gamma/^{\circ}$	90	90
Volume/Å ³	7289(5)	3198.5(17)
Z	4	4
$\rho_{calc}g/cm^3$	1.592	1.774
µ/mm⁻¹	1.331	2.136
F(000)	3504	1704
Crystal size/mm ³	$0.39 \times 0.26 \times 0.16$	$0.09 \times 0.03 \times 0.02$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	3.922 to 61.088	4.826 to 54.336
Index ranges	-23 \leq h \leq 23, -36 \leq k \leq	-21 \leq h \leq 21, -18 \leq k \leq
index ranges	$34, -24 \le 1 \le 24$	$18, -17 \le l \le 17$
Reflections collected	146615	105406
Independent reflections	22284 [$R_{int} = 0.0564$,	7094 [$R_{int} = 0.0610$,
1	$R_{sigma} = 0.0382$]	$R_{sigma} = 0.0244$]
Data/restraints/parameters	22284/167/997	7094/1/444
Goodness-of-fit on F ²	1.03	1.054
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0440, WR_2 =$	R1 = 0.0308, wR2 =
	0.1034	0.0788
Final R indexes [all data]	$R_1 = 0.0724, wR_2 =$	R1 = 0.0342, wR2 =
	0.1179	0.0814
Largest diff. peak/hole/e Å ⁻³	1.61/-1.19	1.31/-0.85

Table S3. Crystal data and structure refinement for the crystals related to L_2 .

Main bond distances and angles.

Bond/Angle	Å/°
La-O1	2.4357(15)
La-O2	2.4852(15)
La-O3	2.5925(17)
La-O4	2.5988(19)
La-O6	2.6770(18)
La-O7	2.5941(16)
La-O9	2.6259(17)
La-O10	2.6029(17)
La-N1	2.7947(17)
La-N2	2.7722(18)
O1-La-O2	158.69(5)

Table S4. Main bond distances and angles for the $La(L_1)(NO_3)_3$ complex.

Table S5. Main bond distances and angles for the $Eu(L_1)(NO_3)_3$ complex.

Bond/Angle	Å/°
Eu-O1	2.3465(11)
Eu-O2	2.3971(10)
Eu-O3	2.4973(11)
Eu-O4	2.4952(12)
Eu-O6	2.6569(13)
Eu-O7	2.4869(11)
Eu-O9	2.5415(12)
Eu-O10	2.4921(11)
Eu-N1	2.7150(11)
Eu-N2	2.6844(12)
O1-Eu-O2	155.41(4)

Bond/Angle	Å/°
Lu-O1	2.372(3)
Lu-O2	2.301(3)
Lu-O3	2.370(4)
Lu-O4	2.421(4)
Lu-O6	2.270(3)
Lu-O9	2.482(4)
Lu-O10	2.314(3)
Lu-N1	2.551(4)
Lu-N2	2.639(4)
O1-Lu-O2	152.29(12)

Table S6. Main bond distances and angles for the $Lu(L_1)(NO_3)_3$ complex.

Table S7. Main bond distances and angles for the $(La)_2(L_2)_2(NO_3)_6$ ·CH₃OH complex.

Bond/Angle	Å/°	Bond/Angle	Å/°
La1-O1	2.516(2)	La2-O15	2.469(3)
La1-O3	2.523(2)	La2-O17	2.482(2)
La1-O5	2.730(3)	La2-O22	2.678(3)
La1-O6	2.612(3)	La2-O23	2.586(3)
La1-O8	2.628(3)	La2-O25	2.620(5)
La1-O9	2.705(3)	La2-O26	2.628(4)
La1-O11	2.743(3)	La2-O19	2.531(14)
La1-O12	2.640(3)	La2-O19A	2.553(5)
La1-O14	2.550(3)	La2-O21A	2.575(4)
La1-N1	2.787(3)	La2-N6	2.774(2)
La1-N2	2.790(3)	La2-N7	2.768(3)
O1-La1-O3	168.71(7)	O15-La2-O17	149.49(10)

Bond/Angle	Å/°
Eu1-O1	2.355(4)
Eu1-O3	2.361(4)
Eu1-O5	2.539(5)
Eu1-O6	2.498(6)
Eu1-O8	2.496(6)
Eu1-O9	2.567(9)
Eu1-O11	2.513(5)
Eu1-O12	2.468(5)
Eu1-N1	2.672(6)
Eu1-N2	2.668(5)
O1-La1-O3	154.29(15)

Table S8. Main bond distances and angles for the $Eu(L_2)(NO_3)_3$ complex.