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Experiment section

Chemical materials. The sources of basic materials and testing kits were 

purchased from certified companies as following: aromatic aldehydes, aromatic 

ketones, niobium pentyloxide (Aladdin Chemicals Co., Ltd); sodium hydroxide, 

potassium hydroxide, ethyl acetate, petroleum ether, magnesium nitrate and aluminum 

nitrate (Sinopharm Chemical Reagent Co., Ltd.); 3-(4,5)-dimethylthiahiazo(-2)-3,5-

diphenytetrazoliumromide (MTT) (Energy Chemical Co., Ltd.). All chemicals and 

solvents were used in this study without any further purification.

Synthesis of K7HNb6O19·13H2O. K7HNb6O19·13H2O was synthesized according 

to the previous report.1 Nb2O5 (0.05 mol, 13.3 g) was added to the melt of KOH (0.46 

mol, 26 g) in a nickel crucible. After heating 30 min at 380 °C, the mixture was 

slowly cooled down to room temperature and quickly poured into 100 mL deionized 

water. The above mixture was filtrated and the filtrate was put in refrigerator at 0 °C 

for 12 h and needle-shaped solid was obtained. Finally, the solid was collected and 

cleaned five times with ethanol-water (V/V=1:1). They were dried in vacuo overnight 

to yield 9.6 g K7HNb6O19·13H2O solid (denoted as Nb6).

Synthesis of Mg3Al-LDH-Nb6-X%. Mg(NO3)2·6H2O (18 mmol, 4.66 g), 

Al(NO3)3·9H2O (8 mmol, 3 g), NaOH (0.05 mol, 2 g), with various amounts of Nb6 

(0.5 g, 1 g, 2 g and 4 g, respectively) were put into the 25 mL stainless steel milling 

pot. The powder of the starting materials was ball-milled with 2 mL amounts of H2O 

as the initiator using 5 steel balls with 10 mm diameter for 30 min at a rotation speed 
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of 250 r. In order to eliminate the excess Nb6 and inorganic salts, which were in 

between the particles and attached to the surface of the composites, thus the obtained 

solids were extensively washed with large amounts of water consecutively, and they 

were further stirred and ultra-sonicated until no Nb6 was present in the solution as 

evidenced by UV-vis spectroscopy. Then the products were dried under vacuum 

overnight to yield Mg3Al-LDH-Nb6-X% (X = 8, 15, 18 and 22) products. IR (KBr, 

cm-1): 3365 (m), 2220 (m), 1655 (m), 1370 (w), 705 (w), 528 (m).

Catalyst characterization. 1H NMR and 13C NMR spectra of the organic 

compounds were acquired on a AVANCE NEO 500 spectrometer by using CDCl3 as 

the solvent and TMS (tetramethylsilane) as the internal reference. Fourier transform 

infrared spectra (FT-IR) were recorded on a NICOLET 5700 instrument ranging from 

4000 to 400 cm-1. Powder X-ray diffraction analysis (PXRD) patterns were collected 

on a smart lab diffractometer from Rigaku equipped with a 9 kW rotating anode Cu 

source (45 kV, 200 mA, 5-50°). Nitrogen sorption experiments were carried out at 77 

K on ASAP-2460 analyser. The samples were degassed at 150 °C for 10 h before 

analysis. X-ray photoelectron spectroscopy (XPS) measurements were undertaken 

with a K-Alpha spectrometer (Thermo Scientific Ltd., USA). Scanning electron 

microscopic (SEM) images were viewed on a Thermo Fisher Scientific scanning 

electron microscope. Transmission electron microscopy (TEM) analysis was carried 

out on a Thermo Scientific TM Talos™ F200X electron microscope.

Selective synthesis of aromatic 1,5-dione derivatives. In a typical experiment, 

aromatic aldehydes (0.5 mmol), aromatic ketones (1 mmol), catalyst (0.05 mmol) and 
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2 mL H2O were successively added into a 10 mL glass tube. After being stirred at 60 

°C for 1 h, the reaction mixture was cooled to room, filtered through a sand core 

funnel and extracted with ethyl acetate, washed with brine (5 mL) for three times, 

dried over anhydrous Na2SO4 and the solvent was removed under reduced pressure. 

The crude product was purified by column chromatography on silica gel. The 

resulting products were identified by 1H NMR and 13C NMR.

Selective synthesis of polysubstituted cyclohexanol derivatives. The synthetic 

procedure of polysubstituted cyclohexanols was similar to those of syntheses of 

aromatic 1,5-diones except that TBAB (0.25 mmol) was used, the amount of catalyst, 

the reaction time and temperature were changed in the reactions.

Recycling process for the selective synthesis of polysubstituted cyclohexanol 

derivatives. The reuse experiment was carried out for synthesis of polysubstituted 

cyclohexanols. In a typical experiment, benzaldehyde (0.5 mmol), acetophenone (1 

mmol), catalyst (0.1 mmol) and TBAB (0.25 mmol) were successively added in a 10 

mL double-neck round bottom flask with 2 mL H2O. The reaction mixture was stirred 

for 24 h at 90 °C. After the reaction was completed, the catalyst was retrieved by 

filtration, washed and soaked with H2O (10 mL) and EtOH (10 mL) three times, and 

air-dried prior to being used for the reuse experiment.

Cytotoxicity activity of cyclohexanols and aromatic 1,5-diones. For 

determination of cytotoxic or growth inhibition effect of polysubstituted 

cyclohexanols and aromatic 1,5-diones on cancerous cells, MTT assay was performed 

according to a reported method.2 HeLa and A549 cells were employed for the cell 

viability study. Both of the cells were seeded at a concentration of 4000 cells per well 
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in a 96 well cell culture plate in DMEM/High glucose supplemented with 10% (v/v) 

fetal bovine serum (Gibco) and 1 x antibiotics (Hyclone) at 37 °C and humidified 5% 

CO2. The media was replaced with same volume of DMEM with respective 

concentrations of polysubstituted cyclohexanols and aromatic 1,5-diones (0-20 

mg/mL). Then the cells in the 96 well plate were allowed to grow for another 48 h at 

37 °C and humidified 5% CO2. After 48 h of treatment, the cells in the wells were 

incubated with 100 μL (1 mg/ml in incomplete media) of MTT solution for 4 h at 37 

°C and humidified 5% CO2 atmosphere. The wells were replaced with 100 μL of 

DMSO solution. The absorbance of the DMSO dissolved formazan crystals were 

measured at 490 nm with a spectrophotometer (I MarkTM Microplate Absorbance 

Reader). The cell viability was calculated as (Asample/Acontrol) × 100, where Asample is 

the absorbance of the sample and Acontrol is the absorbance of the control.

Table S1. The elemental analysis of Mg3Al-LDH-Nb6-X% composites
Entry Samples Mg 

(wt%)
Al (wt%) Nb (wt%)

X value

1 12.41 5.06 6.10 17
2 10.98 4.47 8.69 25
3 10.54 4.34 10.10 29
4

Mg3Al-LDH-Nb6-X%

9.82 4.02 10.45 32

Table S2. The results of synthesis of polysubstituted cyclohexanols 

under various conditions

The starting materials  Conditions Solvent Yield 
(%) Ref.

Chalcone (20 mol%) NaOtBu, (1.5 eq) 
NHC Et2O 80 3

Benzaldehyde and 
acetophenone

Solid NaOH-K2CO3 
(2:1, ground) None 91 4

Chalcone and acetophenone (16 eq) NaOH None 86 5
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Gram scale for synthesis of Mg3Al-LDH-Nb6-29%

Synthesis of Mg3Al-LDH-Nb6-29%. Mg(NO3)2·6H2O (18 mmol, 4.66 g), 

Al(NO3)3·9H2O (8 mmol, 3 g), NaOH (0.05 mol, 2 g), with 2 g Nb6 were put into the 

25 mL stainless steel milling pot. The powder of the starting materials was ball-milled 

with 2 mL amounts of H2O as the initiator using 5 steel balls with 10 mm diameter for 

30 min at a rotation speed of 250 r. In order to eliminate the excess Nb6 and inorganic 

salts, which were in between the particles and attached to the surface of the 

composites, thus the obtained solids were extensively washed with large amounts of 

water consecutively, and they were further stirred and ultra-sonicated until no Nb6 was 

present in the solution as evidenced by UV-vis spectroscopy.6 Then the products were 

dried under vacuum overnight to yield 2.16 g Mg3Al-LDH-Nb6-29% product.

Figure S1. One-pot synthetic protocol for producing Mg3Al-LDH-Nb6-29% 

(weight 2.16 g).
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EDS spectra of Mg3Al-LDH-Nb6-29% catalyst

Figure S2. The EDS elemental mapping of Mg3Al-LDH-Nb6.
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Figure S3. The EDS spectrum of Mg3Al-LDH-Nb6 composite, which gives the 

compositional information.



S7

TG and UV spectra of Mg3Al-LDH-Nb6-29% catalyst

Figure S4. (a) TG patterns of Mg3Al-LDH-Nb6; (b) UV spectra of Mg3Al-LDH-Nb6 

(H2O), Nb6 (H2O) and 1 day, 7 days, 15 days.

Gram scale for synthesis of polysubstituted cyclohexanol product (4l)

In a typical experiment, benzaldehyde (0.02 mol), p-bromoacetophenone (0.04 

mol), catalyst (0.004 mol), TBAB (0.01 mol) and 15 mL H2O were successively 

added into a 50 mL glass flask. After being stirred at 90 °C for 24 h, the reaction 

mixture was cooled to room, filtered through a sand core funnel and extracted with 

ethyl acetate, washed with brine (50 mL) for three times, dried over anhydrous 

Na2SO4 and the solvent was removed under reduced pressure. The crude product was 

purified by column chromatography on silica gel. The resulting products were 

identified by 1H NMR and 13C NMR.

Figure S5. One-pot synthetic protocol for achieving 4l (weight 4.45g).
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LC-MS experimental data of the intermediates 3a, 4a, 5a

Figure S6. LC-MS spectra of 3a
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Figure S7. LC-MS spectra of 4a
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Figure S8. LC-MS spectra of 5a
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TPD spectra of Mg3Al-LDH-Nb6-29% catalyst

Figure S9. TPD spectra of CO2 obtained after CO2 adsorption

NMR spectra of products 

1,3,5-triphenylpentane-1,5-dione (3a). 1H NMR (500 MHz, Chloroform-d) δ 7.94 (d, 
J = 8.5 Hz, 4H), 7.54 (t, J = 7.4 Hz, 2H), 7.44 (t, J = 7.4 Hz, 4H), 7.30 – 7.25 (m, 4H), 
7.19 – 7.16 (m, 1H), 4.09 – 4.06 (m, 1H), 3.49 (d, J = 16.6 Hz, 2H), 3.36 (d, J = 16.6 
Hz, 2H). 13C NMR (126 MHz, Chloroform-d) δ 198.69, 143.96, 137.06, 133.20, 
128.75, 128.72, 128.27, 127.60, 126.82, 45.04, 37.31. HRMS: (ESI) [M+H]+ calcd. 
for C23H20O2, 329.1541 found, 329.1554.

3-(4-chlorophenyl)-1,5-diphenylpentane-1,5-dione (3b). 1H NMR (500 MHz, 
Chloroform-d) δ 7.93 (d, J = 7.7 Hz, 4H), 7.55 (t, J = 7.5 Hz, 2H), 7.44 (t, J = 7.5 Hz, 
4H), 7.25 – 7.23 (m, 4H), 4.08 – 4.04 (m, 1H), 3.47 (d, J = 16.7 Hz, 2H), 3.35 (d, J = 
16.7 Hz, 2H). 13C NMR (126 MHz, Chloroform-d) δ 198.35, 142.46, 136.94, 133.35, 
132.49, 129.05, 128.87, 128.79, 128.24, 44.87, 36.66.
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1,5-diphenyl-3-(p-tolyl)pentane-1,5-dione (3c). 1H NMR (500 MHz, Chloroform-d) 
δ 7.94 (d, J = 7.3 Hz, 4H), 7.53 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 4H), 7.17 (d, J 
= 7.9 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 4.06 – 4.0 (m, 1H), 3.47 (d, J = 16.5 Hz, 2H), 
3.34 (d, J = 16.5 Hz, 2H), 2.28 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 198.81, 
140.92, 137.12, 136.32, 133.16, 129.44, 128.71, 128.29, 127.43, 45.19, 37.02, 29.84, 
21.14.

3-(4-methoxyphenyl)-1,5-diphenylpentane-1,5-dione (3d). 1H NMR (500 MHz, 
Chloroform-d) δ 7.94 (d, J = 7.2 Hz, 4H), 7.53 (t, J =7.3 Hz, 2H), 7.44 (t, J = 7.3 Hz, 
4H), 7.19 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 4.03 – 4.00 (m, 1H), 3.76 (s, 
3H), 3.46 (d, J = 16.5 Hz, 2H), 3.31 (d, J = 16.5 Hz, 2H). 13C NMR (126 MHz, 
Chloroform-d) δ 198.89, 137.16, 133.19, 128.74, 128.57, 128.31, 114.18, 55.36, 
45.32, 36.72.

3-(3,5-dimethoxyphenyl)-1,5-diphenylpentane-1,5-dione (3e). 1H NMR (500 MHz, 
Chloroform-d) δ 7.94 (d, J = 7.4 Hz, 4H), 7.52 (t, J = 7.4 Hz, 2H), 7.42 (t, J = 7.7 Hz, 
4H), 6.43 (s, 2H), 6.28 (s, 1H), 4.04 – 4.00 (m, 1H), 3.71 (s, 6H), 3.44 (d, J = 16.7 Hz, 
2H), 3.33 (d, J = 16.7 Hz, 2H). 13C NMR (126 MHz, Chloroform-d) δ 198.56, 160.90, 
146.47, 136.99, 133.13, 128.64, 128.18, 105.75, 98.39, 76.93, 55.28, 44.82, 37.40.

3-(furan-2-yl)-1,5-diphenylpentane-1,5-dione (3f). 1H NMR (500 MHz, 
Chlorzoform-d) δ 7.97 (d, J = 8.6 Hz, 4H), 7.55 (t, J = 7.5 Hz, 2H), 7.44 (t, J = 7.5 Hz, 
4H), 7.27 (d, J = 1.8 Hz, 1H), 6.23 (dd, J = 3.2, 1.9 Hz, 1H), 6.06 (d, J = 3.2 Hz, 1H), 
4.17 – 4.22 (m, 1H), 3.45 – 3.43 (m, 4H). 13C NMR (126 MHz, Chloroform-d) δ 
198.36, 156.52, 141.29, 136.93, 133.27, 128.73, 128.26, 110.34, 105.59, 42.27, 30.90. 
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1,5-bis(4-chlorophenyl)-3-(furan-2-yl)pentane-1,5-dione (3g). 1H NMR (500 MHz, 
Chloroform-d) δ 7.90 (d, J = 8.4 Hz, 4H), 7.42 (d, J = 8.4 Hz, 4H), 7.29 – 7.25 (m, 
1H), 6.23 (dd, J = 2.6, 1.9 Hz, 1H), 6.04 (d, J = 2.6 Hz, 1H), 4.18 – 4.14 (m, 1H), 3.40 
– 3.39 (m, 4H). 13C NMR (126 MHz, Chloroform-d) δ 197.12, 156.08, 141.43, 139.79, 
135.19, 129.68, 129.06, 110.40, 105.74, 42.16, 30.92.

3-(furan-2-yl)-1,5-di-p-tolylpentane-1,5-dione (3h). 1H NMR (500 MHz, 
Chloroform-d) δ 7.87 (d, J = 8.2 Hz, 4H), 7.26 – 7.24 (m, 5H), 6.22 (dd, J = 2.9, 1.9 
Hz ,1H), 6.04 (d, J = 2.9 Hz, 1H), 4.18 – 4.15 (m, 1H), 3.40 – 3.39 (m, 4H), 2.40 (s, 
6H).13C NMR (126 MHz, Chloroform-d) δ 198.05, 156.72, 144.04, 141.24, 134.52, 
129.40, 128.41, 110.33, 105.51, 42.22, 31.07, 21.77.

1,5-diphenyl-3-(thiophen-2-yl)pentane-1,5-dione (3i). 1H NMR (500 MHz, 
Chloroform-d) δ 7.85 (d, J = 7.2 Hz, 4H), 7.44 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 7.5 Hz, 
4H), 6.99 (d, J = 4.5 Hz, 1H), 6.84 – 6.72 (m, 2H), 4.36 – 4.31 (m, 1H), 3.42 (d, J = 
16.9 Hz, 2H), 3.32 (d, J = 16.9 Hz, 2H). 13C NMR (126 MHz, Chloroform-d) δ 
198.11, 147.57, 136.86, 133.23, 128.67, 128.17, 126.78, 124.32, 123.38, 45.64, 32.43.

3-(5-(hydroxymethyl)furan-2-yl)-1,5-diphenylpentane-1,5-dione (3j). 1H NMR 
(500 MHz, Chloroform-d) δ 7.96 (d, J = 7.3 Hz, 4H), 7.54 (t, J = 7.7 Hz, 2H), 7.44 (t, 
J = 7.7 Hz, 4H), 6.11 (d, J = 3.2 Hz, 1H), 5.98 (d, J = 3.2 Hz, 1H), 4.47 (s, 2H), 4.15 
– 4.14 (m, 1H), 3.43 – 3.40 (m, 4H). 13C NMR (126 MHz, Chloroform-d) δ 198.47, 
156.48, 152.91, 136.79, 133.30, 128.70, 128.24, 108.63, 106.43, 57.47, 42.17, 31.09.
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1,5-bis(4-chlorophenyl)-3-phenylpentane-1,5-dione (3k). 1H NMR (500 MHz, 
Chloroform-d) δ 7.88 (d, J = 8.6 Hz, 4H), 7.41 (d, J = 8.6 Hz, 4H), 7.29 – 7.24 (m, 
4H), 7.22 – 7.16 (m, 1H), 4.04 – 4.01 (m, 1H), 3.45 (d, J = 16.6 Hz, 2H), 3.30 (d, J = 
12.5 Hz, 2H). 13C NMR (126 MHz, Chloroform-d) δ 197.47, 143.55, 139.74, 135.32, 
129.70, 129.07, 128.87, 127.53, 127.04, 44.94, 37.35.

1,5-bis(4-bromophenyl)-3-phenylpentane-1,5-dione (3l). 1H NMR (500 MHz, 
Chloroform-d) δ 7.79 (d, J = 8.6 Hz, 4H), 7.58 (d, J = 8.6 Hz, 4H), 7.30 – 7.23 (m, 
4H), 7.21 – 7.15 (m, 1H), 4.04 – 4.01 (m, 1H), 3.45 (d, J = 16.6 Hz, 2H), 3.29 (d, J = 
16.6 Hz, 2H). 13C NMR (126 MHz, Chloroform-d) δ 197.54, 143.39, 135.57, 131.94, 
129.68, 128.75, 128.35, 127.40, 126.92, 44.79, 37.18.

3-phenyl-1,5-di-p-tolylpentane-1,5-dione (3m). 1H NMR (500 MHz, Chloroform-d) 
δ 7.84 (d, J = 8.2 Hz, 4H), 7.27 – 7.25 (m, 4H), 7.23 – 7.21 (m, 4H), 7.17 – 7.16 (m, 
1H), 4.08 – 4.02 (m, 1H), 3.47 (d, J = 16.5 Hz, 2H), 3.31 (d, J = 16.5 Hz, 2H), 2.38 (s, 
6H). 13C NMR (126 MHz, Chloroform-d) δ 197.47, 143.55, 139.74, 135.33, 129.70, 
129.07, 128.87, 127.53, 127.04, 44.94, 37.35.

1,5-bis(2-bromophenyl)-3-phenylpentane-1,5-dione (3n). 1H NMR (500 MHz, 
Chloroform-d) δ 7.54 (d, J = 7.8 Hz, 2H), 7.29 – 7.20 (m, 8H), 7.19 – 7.14 (m, 3H), 
3.96 (t, J = 7.2 Hz, 1H), 3.44 (d, J = 17.0 Hz, 2H), 3.31 (d, J = 17.0 Hz, 2H). 13C 
NMR (126 MHz, Chloroform-d) δ 202.37, 142.74, 141.55, 133.60, 131.57, 128.64, 
128.50, 127.74, 127.41, 126.90, 118.61, 48.63, 37.20.

1,5-bis(3-bromophenyl)-3-phenylpentane-1,5-dione (3o). 1H NMR (500 MHz, 
Chloroform-d) δ 8.05 (t, J = 1.6 Hz, 2H), 7.87 (d, J = 7.8 Hz, 2H), 7.67 (d, J = 7.9 Hz, 
2H), 7.33 (t, J = 7.9 Hz, 2H), 7.31 – 7.28 (m, 4H), 7.21 – 7.18 (m, 1H), 4.06 – 4.00 (m, 
1H), 3.45 (d, J = 16.8 Hz, 2H), 3.32 (d, J = 16.8 Hz, 2H). 13C NMR (126 MHz, 
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Chloroform-d) δ 197.20, 143.45, 138.67, 136.13, 131.34, 130.35, 128.89, 127.53, 
127.07, 126.78, 123.13, 44.93, 37.02.

 
1,5-bis(4-bromophenyl)-3-(4-chlorophenyl)pentane-1,5-dione (3p). 1H NMR (500 
MHz, Chloroform-d) δ 7.79 – 7.77 (m, 4H), 7.59 – 7.56 (m, 4H), 7.26 – 7.18 (m, 
4H),4.00 – 3.99 (m, 1H), 3.43 (d, J = 16.9 Hz, 2H), 3.26 (d, J = 16.9 Hz, 2H). 13C 
NMR (126 MHz, Chloroform-d) δ 197.24, 142.03, 135.51, 132.65, 132.09, 129.72, 
128.94, 128.61, 44.70, 36.52.

1,3,5-tris(4-chlorophenyl)pentane-1,5-dione (3q). 1H NMR (500 MHz, Chloroform-
d) δ 7.87 (d, J = 8.5 Hz, 4H), 7.42 (d, J = 8.5 Hz, 4H), 7.26 – 7.18 (m, 4H), 4.03 – 
3.99 (m, 1H), 3.47 – 3.41 (m, 2H), 3.29 – 3.24 (m, 2H). 13C NMR (126 MHz, 
Chloroform-d) δ 197.08, 142.07, 139.91, 135.17, 132.72, 129.66, 129.13, 128.98, 
128.97, 44.76, 36.62.

1,5-bis(4-chlorophenyl)-3-(4-methoxyphenyl)pentane-1,5-dione (3r). 1H NMR 
(500 MHz, Chloroform-d) δ 7.86 (d, J =8.4 Hz, 4H), 7.38 (d, J = 8.6 Hz, 4H), 7.16 (d, 
J = 8.5 Hz, 2H), 6.79 (d, J = 8.5 Hz, 2H), 3.98 – 3.95 (m, 1H), 3.72 (s, 3H), 3.42 (d, J 
= 16.6 Hz, 2H), 3.25 (d, J = 16.6 Hz, 2H). 13C NMR (126 MHz, Chloroform-d) δ 
197.43, 158.34, 139.48, 135.42, 135.20, 129.57, 128.88, 128.37, 114.06, 55.16, 45.04, 
36.47.

1,5-bis(4-bromophenyl)-3-(4-methoxyphenyl)pentane-1,5-dione (3s). 1H NMR 
(500 MHz, Chloroform-d) δ 7.86 (d, J = 8.5 Hz, 4H), 7.38 (d, J = 8.5 Hz, 4H), 7.16 (d, 
J = 8.6 Hz, 2H), 6.79 (d, J = 8.6 Hz, 2H), 3.98 – 3.95 (m, 1H), 3.72 (s, 3H), 3.44 (d, J 
= 16.6 Hz, 2H), 3.25 (d, J = 16.6 Hz, 2H). 13C NMR (126 MHz, Chloroform-d) δ 
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197.43, 158.34, 139.48, 135.42, 135.20, 129.57, 128.88, 128.37, 114.06, 55.16, 45.04, 
36.47.

3-(4-chlorophenyl)-1,5-di-p-tolylpentane-1,5-dione (3t). 1H NMR (500 MHz, 
Chloroform-d) δ 7.83 (d, J = 8.2 Hz, 4H), 7.24 – 7.18 (m, 8H), 4.09 – 3.99 (m, 1H), 
3.43 (d, J = 16.7 Hz, 2H), 3.28 (d, J = 16.7 Hz, 2H), 2.37 (s, 6H). 13C NMR (126 MHz, 
Chloroform-d) δ 197.89, 144.01, 142.56, 134.36, 132.21, 129.34, 128.97, 128.68, 
128.26, 44.67, 36.66, 21.66.

1,3,5-tri-p-tolylpentane-1,5-dione (3u). 1H NMR (500 MHz, Chloroform-d) δ 7.85 
(d, J = 8.2 Hz, 4H), 7.23 (d, J = 8.2 Hz, 4H), 7.16 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 
Hz, 2H), 4.03 – 3.99 (m, 1H), 3.43 (d, J = 16.4 Hz, 2H), 3.30 (d, J = 16.4 Hz, 2H), 
2.39 (s, 6H), 2.28 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 198.51, 143.91, 
141.06, 136.22, 134.64, 129.41, 129.38, 128.43, 127.43, 45.13, 37.17, 21.76, 21.15.

(4-hydroxy-2,4,6-triphenylcyclohexane-1,3-diyl)bis(phenylmethanone) (4a). 1H 
NMR (500 MHz, Chloroform-d) δ 7.54 (d, J = 7.5 Hz, 2H), 7.28 – 7.26 (m, 4H), 7.24 
– 7.21 (m, 4H), 7.20 – 7.17 (m, 3H), 7.09 (t, J = 7.6 Hz, 2H), 7.05 – 7.01 (m, 5H), 
6.98 (t, J = 7.0 Hz, 1H), 6.82 (t, J = 7.5 Hz, 2H), 6.72 (t, J = 7.5 Hz, 1H), 5.38 (d, J = 
2.5 Hz, 1H), 4.49 (d, J = 11.0 Hz, 1H), 4.24 – 4.20 (m, 2H), 4.09 – 4.03 (m, 1H), 2.54 
– 2.48 (m, 1H), 2.27 (d, J = 14.1 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 
207.32, 203.72, 146.07, 142.26, 139.16, 138.80, 138.32, 132.80, 131.91, 128.51, 
128.33, 128.23, 128.14, 127.86, 127.82, 127.70, 127.54, 127.15, 127.06, 126.86, 
124.97, 75.50, 56.94, 56.92, 48.23, 46.03, 43.51. HRMS: (ESI) [M+H]+ calcd. for 
C38H32O3, 537.2430 found, 537.2437.

(2,6-bis(4-chlorophenyl)-4-hydroxy-4-phenylcyclohexane-1,3-
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diyl)bis(phenylmethanone) (4b). 1H NMR (500 MHz, Chloroform-d) δ 7.53 (d, J = 
7.7 Hz, 2H), 7.28 – 7.23 (m, 6H), 7.20 – 7.17 (m, 4H), 7.10 – 7.05 (m, 9H), 6.80 (d, J 
= 8.1 Hz, 2H), 5.32 (d, J = 2.5 Hz, 1H), 4.44 (d, J = 10.7 Hz, 1H), 4.18 – 4.11 (m, 2H), 
4.07 – 4.01 (m, 1H), 2.48 – 2.42 (m, 1H), 2.22 (d, J = 14.0 Hz, 1H). 13C NMR (126 
MHz, Chloroform-d) δ 206.81, 203.0, 145.64, 140.60, 138.68, 138.07, 137.31, 133.14, 
132.89, 132.47, 129.43, 128.68, 128.43, 128.41, 128.03, 128.02, 127.83, 127.52, 
127.34, 124.88, 75.39, 56.72, 56.67, 47.61, 45.90, 42.94.

 
(4-hydroxy-4-phenyl-2,6-di-p-tolylcyclohexane-1,3-diyl)bis(phenylmethanone) 
(4c). 1H NMR (500 MHz, Chloroform-d) δ 7.54 – 7.49 (m, 2H), 7.26 – 7.21 (m, 6H), 
7.20 – 7.13 (m, 5H), 7.06 – 6.99 (m, 6H), 6.88 (d, J = 7.8 Hz, 2H), 6.61 (d, J =5.7 Hz, 
2H), 5.33 (d, J = 2.5 Hz, 1H), 4.44 (d, J = 11.1 Hz, 1H), 4.15 (d, J = 14.2 Hz, 2H), 
4.03 – 3.98 (m, 1H), 2.50 – 2.41 (m, 1H), 2.21 (d, J = 14.2 Hz, 1H), 2.12 (s, 3H), 1.92 
(s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 207.49, 203.92, 146.15, 139.29, 
138.43, 136.47, 136.23, 132.62, 131.69, 129.13, 128.84, 128.27, 127.97, 127.89, 
127.75, 127.63, 127.06, 124.99, 75.54, 57.23, 57.19, 47.78, 46.24, 43.10, 29.85, 20.99, 
20.81.

(4-hydroxy-2,6-bis(4-methoxyphenyl)-4-phenylcyclohexane-1,3-
diyl)bis(phenylmethanone) (4d). 1H NMR (500 MHz, Chloroform-d) δ 7.54 – 7.51 
(m, 2H), 7.25 – 7.20 (m, 7H), 7.19 – 7.15 (m, 4H), 7.07 – 7.02 (m, 6H), 6.65 – 6.61 
(m, 2H), 6.38 – 6.34 (m, 2H), 5.34 (d, J = 2.4 Hz, 1H), 4.45 – 4.40 (m, 1H), 4.14 – 
4.09 (m, 2H), 4.00 (d, J = 14.0 Hz, 1H), 3.64 (s, 3H), 3.47 (s, 3H), 2.47 – 2.41 (m, 
1H), 2.20 (d, J = 14.0 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 207.53, 204.05, 
158.37, 146.14, 139.25, 138.39, 134.49, 132.75, 131.87, 130.95, 129.04, 128.30, 
127.87, 127.84, 127.76, 127.58, 127.09, 124.97, 113.94, 113.70, 75.57, 57.48, 57.23, 
55.30, 55.15, 47.40, 46.30, 42.69, 29.85.

(2,6-bis(3,5-dimethoxyphenyl)-4-hydroxy-4-phenylcyclohexane-1,3-
diyl)bis(phenylmethanone) (4e). 1H NMR (500 MHz, Chloroform-d) δ 7.52 (d, J = 
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7.7 Hz, 2H), 7.39 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 7.8 Hz, 2H), 7.26 – 7.23 (m, 2H), 
7.18 (t, J = 7.6 Hz, 2H), 7.12 – 7.03 (m, 5H), 6.41 (s, 2H), 6.26 (s, 2H), 6.08 (s, 1H), 
5.79 (s, 1H), 5.40 (s, 1H), 4.41 (d, J = 11.6 Hz, 1H), 4.17 (t, J = 11.0 Hz, 1H), 4.07 (t, 
J = 11.3 Hz, 1H), 3.99 – 3.93 (m, 1H), 3.64 (s, 6H), 3.49 (s, 6H), 2.43 – 2.38 (m, 1H), 
2.28 – 2.18 (m, 1H). 13C NMR (126 MHz, Chloroform-d) δ 207.20, 203.32, 160.77, 
160.49, 145.98, 144.67, 141.08, 139.22, 138.34, 132.82, 132.01, 128.34, 127.88, 
127.81, 127.76, 127.68, 127.17, 124.93, 106.42, 99.41, 98.98, 75.48, 56.70, 56.13, 
55.42, 55.36, 48.41, 46.17, 43.83.

(2,6-di(furan-2-yl)-4-hydroxy-4-phenylcyclohexane-1,3-
diyl)bis(phenylmethanone) (4f). 1H NMR (500 MHz, Chloroform-d) δ 7.58 – 7.56 
(m, 2H), 7.52 – 7.50 (m, 2H), 7.47 – 7.42 (m, 2H), 7.37 – 7.30 (m, 2H),7.24 (t, J = 
11.1 Hz, 2H), 7.20 – 7.14 (m, 4H), 7.09 (d, J = 1.9 Hz, 1H), 7.07 – 7.03 (m, 1H), 6.85 
(d, J = 1.8 Hz, 1H), 6.00 – 5.99 (m, 1H), 5.92 – 5.91 (m, 1H),5.75 – 5.74 (m, 1H),5.68 
– 5.67 (m, 1H), 5.35 (d, J = 2.5 Hz, 1H), 4.62 (d, J = 11.7 Hz, 1H), 4.48 (t, J = 11.7 
Hz, 1H), 4.19 (t, J = 11.7 Hz, 1H), 4.12 – 4.06 (m, 1H), 2.48 – 2.42 (m, 1H), 2.21 (d, 
J = 14.1 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 206.99, 203.24, 155.34, 
151.76, 145.68, 141.48, 141.26, 133.18, 132.44, 128.34, 128.04, 128.02, 127.96, 
127.79, 127.16, 124.87, 110.24, 110.17, 108.53, 106.35, 75.16, 53.87, 51.86, 43.98, 
41.21, 36.70.

(4-(4-chlorophenyl)-2,6-di(furan-2-yl)-4-hydroxycyclohexane-1,3-diyl)bis((4-
chlorophenyl)methanone) (4g). 1H NMR (500 MHz, Chloroform-d) δ 7.53 – 7.49 (m, 
2H), 7.45 – 7.40 (m, 4H), 7.22 – 7.16 (m, 6H), 7.10 (d, J = 1.9 Hz, 1H), 6.91 (d, J = 
1.4 Hz, 1H), 6.02 (d, J = 3.2 Hz, 1H), 5.91 (d, J = 3.2 Hz, 1H), 5.73 (d, J = 1.3 Hz, 
2H), 5.32 (d, J = 2.6 Hz, 1H), 4.50 (d, J = 11.7 Hz, 1H), 4.40 (t, J = 11.4 Hz, 1H), 
4.14 (t, J = 11.4 Hz, 1H), 4.06 – 4.01 (m, 1H), 2.39 – 2.33 (m, 1H), 2.17 (d, J = 14.1 
Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 205.36, 201.77, 154.82, 151.32, 
144.22, 141.70, 141.43, 140.23, 139.07, 135.87, 135.28, 133.21, 129.30, 129.17, 
128.66, 128.61, 128.45, 126.30, 110.53, 110.33, 108.76, 106.56, 74.95, 53.48, 51.67, 
43.92, 41.11, 36.63.
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(2,6-di(furan-2-yl)-4-hydroxy-4-(p-tolyl)cyclohexane-1,3-diyl)bis(p-
tolylmethanone) (4h). 1H NMR (500 MHz, Chloroform-d) δ 7.50 (d, J = 8.3 Hz, 2H), 
7.40 – 7.37 (m, 4H), 7.08 (d, J = 1.9 Hz, 1H), 7.07 – 6.90 (m, 6H), 6.85 (d, J = 1.8 Hz, 
1H), 5.99 (d, J = 3.2 Hz, 1H), 5.89 (d, J = 3.1 Hz, 1H), 5.71 (d, J = 3.2 Hz, 1H), 5.67 
(d, J = 3.2 Hz, 1H), 5.44 (d, J = 2.7 Hz, 1H), 4.57 (d, J = 11.8 Hz, 1H), 4.42 (t, J = 
11.4 Hz, 1H), 4.16 (t, J = 11.4 Hz, 1H), 4.09 – 4.04 (m, 1H), 2.42 – 2.36 (m, 1H), 
2.28 (s, 3H), 2.26 (s, 3H), 2.22 – 2.18 (m, 1H), 2.17 (s, 3H). 13C NMR (126 MHz, 
Chloroform-d) δ 206.43, 202.68, 155.61, 152.01, 144.05, 143.03, 141.35, 141.17, 
136.56, 134.89, 128.99, 128.75, 128.74, 128.22, 127.95, 124.77, 110.17, 110.12, 
108.34, 106.18, 75.06, 53.34, 51.64, 44.30, 41.27, 36.71, 21.71, 21.68, 20.98.

(4-hydroxy-4-phenyl-2,6-di(thiophen-2-yl)cyclohexane-1,3-
diyl)bis(phenylmethanone) (4i). 1H NMR (500 MHz, Chloroform-d) δ 7.45 (d, J = 
7.8 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 7.8 Hz, 2H), 7.23 – 7.19 (m, 2H), 
7.12 – 7.07 (m, 4H), 7.05 – 7.0 (m, 2H), 6.97 (t, J = 5.0 Hz, 1H), 6.87 (d, J = 5.0 Hz, 
1H), 6.73 – 6.50 (m, 4H), 6.32 (d, J = 5.0 Hz, 1H), 5.21 (d, J = 2.5 Hz, 1H), 4.47 (t, J 
= 11.3 Hz, 1H), 4.40 – 4.27 (m, 2H), 4.05 (t, J = 11.3 Hz, 1H), 2.44 – 2.38 (m, 1H), 
2.36 – 2.29 (m, 1H). 13C NMR (126 MHz, Chloroform-d) δ 206.68, 203.09, 145.49, 
145.17, 142.06, 138.63, 137.84, 132.93, 132.16, 128.23, 127.92, 127.75, 127.71, 
127.66, 127.14, 127.01, 126.57, 126.27, 125.56, 124.83, 123.91, 123.26, 75.23, 58.93, 
57.71, 46.90, 43.33, 39.04.

(4-hydroxy-2,6-bis(5-(hydroxymethyl)furan-2-yl)-4-phenylcyclohexane-1,3-
diyl)bis(phenylmethanone) (4j). 1H NMR (500 MHz, Chloroform-d) δ 7.70 – 7.65 
(m, 2H), 7.54 – 7.49 (m, 4H), 7.41 – 7.37 (m, 1H), 7.36 – 7.33 (m, 1H), 7.29 – 7.26 
(m, 2H), 7.21 – 7.17 (m, 4H), 7.10 – 7.05 (m, 1H), 5.93 – 5.87 (m, 2H), 5.70 (d, J = 
3.2 Hz, 1H), 5.56 (d, J = 3.2 Hz, 1H), 5.36 (d, J = 2.7 Hz, 1H), 4.66 (d, J = 11.7 Hz, 
1H), 4.58 (t, J = 11.7 Hz, 1H), 4.34 – 4.27 (m, 2H), 4.12 – 4.03 (m, 4H), 2.47 – 2.40 
(m, 1H), 2.25 – 2.19 (m, 1H). 13C NMR (126 MHz, Chloroform-d) δ 206.83, 203.12, 
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155.58, 153.21, 152.85, 151.99, 138.00, 137.42, 133.33, 132.66, 128.42, 128.15, 
128.13, 128.07, 127.96, 127.26, 124.82, 109.33, 108.59, 108.55, 107.12, 75.21, 57.49, 
57.20, 53.65, 51.66, 44.07, 41.40, 36.85.

(4-(4-chlorophenyl)-4-hydroxy-2,6-diphenylcyclohexane-1,3-diyl)bis((4-
chlorophenyl)methanone) (4k). 1H NMR (500 MHz, Chloroform-d) δ 7.40 (d, J = 
8.6 Hz, 2H), 7.3 (d, J = 8.6 Hz, 2H), 7.25 – 7.20 (m, 4H), 7.17 (d, J = 8.5 Hz, 2H), 
7.15 – 7.11 (m, 4H), 7.13 – 7.06 (m, 4H), 7.03 – 7. 0 (m, 1H), 6.88 (t, J = 7.5 Hz, 2H), 
6.82 – 6.77 (m, 1H), 5.34 (d, J = 2.5 Hz, 1H), 4.41 – 4.31 (m, 1H), 4.16 – 4.08 (m, 
2H), 4.03 – 3.98 (m, 1H),2.44 – 2.38 (m, 1H), 2.21 (d, J = 14.1 Hz, 1H). 13C NMR 
(126 MHz, Chloroform-d) δ 205.63, 202.28, 144.57, 141.75, 139.84, 138.52, 138.40, 
137.16, 136.13, 133.20, 129.23, 128.89, 128.70, 128.58, 128.51, 128.42, 128.12, 
127.98, 127.49, 127.18, 126.39, 75.26, 56.70, 56.49, 48.12, 45.83, 43.41.

(4-(4-bromophenyl)-4-hydroxy-2,6-diphenylcyclohexane-1,3-diyl)bis((4-
bromophenyl)methanone) (4l). 1H NMR (500 MHz, Chloroform-d) δ 7.45 – 7.37 (m, 
2H), 7.35 – 7.30 (m, 2H), 7.27 – 7.21 (m, 4H), 7.20 – 7.04 (m, 10H), 7.04 – 6.99 (m, 
1H), 6.91 – 6.83 (m, 2H), 6.82 – 6.74 (m, 1H), 5.35 (d, J = 2.4 Hz, 1H), 4.46 – 4.26 
(m, 1H), 4.17 – 4.09 (m, 2H), 4.07 – 3.91 (m, 1H), 2.41 (d, J = 14.0, 1H), 2.22 (d, J = 
14.0, 1H). 13C NMR (126 MHz, Chloroform-d) δ 205.74, 202.37, 144.96, 141.57, 
138.20, 137.42, 136.39, 131.41, 131.29, 130.97, 129.16, 128.86, 128.59, 128.56, 
128.41, 127.84, 127.40, 127.16, 127.08, 126.61, 121.25, 75.18, 56.56, 56.25, 47.99, 
45.65, 43.28.

(4-hydroxy-2,6-diphenyl-4-(p-tolyl)cyclohexane-1,3-diyl)bis(p-tolylmethanone) 
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(4m). 1H NMR (500 MHz, Chloroform-d) δ 7.42 (d, J = 8.0 Hz, 2H), 7.27 – 7.24 (m, 
3H), 7.19 (t, J = 7.9 Hz, 4H), 7.14 – 7.03 (m, 4H), 6.97 (d, J = 7.8 Hz, 2H), 6.86 – 
6.78 (m, 6H), 6.70 (t, J = 7.5 Hz, 1H), 5.46 (d, J = 2.4 Hz, 1H), 4.44 (d, J = 11.0 Hz, 
1H), 4.20 – 4.13 (m, 2H), 4.07 – 4.00 (m, 1H), 2.48 – 2.44 (m, 1H), 2.22 (d, J = 3.5 
Hz, 1H), 2.19 (s, 3H), 2.17 (s, 3H), 2.16 (s, 3H). 13C NMR (126 MHz, Chloroform-d) 
δ 206.72, 203.08, 143.65, 143.36, 142.55, 142.45, 138.98, 136.51, 128.94, 128.51, 
128.42, 128.40, 128.17, 128.12, 128.10, 127.76, 126.87, 126.71, 124.85, 75.39, 56.51, 
56.34, 48.24, 46.35, 43.50, 21.60, 21.52, 20.95. 

(4-(3-bromophenyl)-4-hydroxy-2,6-diphenylcyclohexane-1,3-diyl)bis((3-bromo 
phenyl)methanone) (4o). 1H NMR (500 MHz, Chloroform-d) δ 7.69 (s, 1H), 7.45 (d, 
J = 7.9 Hz, 1H), 7.39 (d, J = 7.0 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.28 – 7.24 (m, 2H), 
7.21 (d, J = 7.8 Hz, 1H), 7.18 (d, J = 7.9 Hz, 1H), 7.16 – 7.11 (m, 4H), 7.08 (t, J = 8.0 
Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.98 (t, J = 7.9 Hz, 1H), 6.94 – 6.89 (m, 3H), 6.82 (t, 
J = 7.5 Hz, 1H), 5.16 (d, J = 2.5 Hz, 1H), 4.42 – 4.29 (m, 1H), 4.16 – 4.09 (m, 2H), 
4.01 – 3.96 (m, 1H), 2.47 – 2.41 (m, 1H), 2.25 (d, J = 14.0 Hz, 1H). 13C NMR (126 
MHz, Chloroform-d) δ 205.56, 202.29, 148.20, 141.54, 140.61, 139.66, 138.29, 
135.90, 134.86, 130.81, 130.56, 130.50, 130.11, 129.59, 129.38, 128.72, 128.58, 
128.37, 128.02, 127.61, 127.26, 126.23, 125.88, 123.59, 122.85, 122.31, 122.04, 
75.24, 57.08, 57.01, 47.91, 45.61, 43.45.

 
(4-(4-bromophenyl)-2,6-bis(4-chlorophenyl)-4-hydroxycyclohexane-1,3-
diyl)bis((4-bromophenyl)methanone) (4p). 1H NMR (500 MHz, Chloroform-d) δ 
7.37 (d, J =8.5 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 7.28 – 7.26 (m, 1H), 7.25 – 7.24 (m, 
1H), 7.19 – 7.07 (m, 10H), 7.06 – 7.01 (m, 2H), 6.88 – 6.85 (m, 2H), 5.23 (d, J = 2.5 
Hz, 1H), 4.32 (d, J = 11.5 Hz, 1H), 4.15 – 4.11 (m, 1H), 4.05 – 3.97 (m, 2H), 2.38 – 
2.32 (m, 1H), 2.18 (d, J = 14.0 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 205.84, 
202.62, 158.59, 158.50, 144.61, 139.75, 138.43, 137.19, 136.14, 133.88, 133.09, 
130.40, 129.23, 128.93, 128.89, 128.51, 128.47, 128.41, 128.15, 126.36, 114.04, 
113.86, 75.31, 57.16, 56.71, 55.27, 55.14, 55.10, 47.30, 46.10, 42.60.
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(2,4,6-tris(4-chlorophenyl)-4-hydroxycyclohexane-1,3-diyl)bis((4-
chlorophenyl)methanone) (4q). 1H NMR (500 MHz, Chloroform-d) δ 7.43 (d, J = 
8.6 Hz, 2H), 7.23 (t, J = 8.6 Hz, 4H), 7.19 – 7.14 (m, 4H), 7.13 – 7.09 (m, 6H), 7.08 
(d, J = 3.0 Hz, 2H), 7.04 (d, J =10.0 Hz, 2H), 6.89 – 6.84 (m, 2H), 5.24 (d, J = 2.5 Hz, 
1H), 4.32 (d, J = 11.5 Hz, 1H), 4.12 (t, J = 11.0 Hz, 1H), 4.06 – 3.96 (m, 2H), 2.37 – 
2.33 (m, 1H), 2.18 (d, J = 14.0 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 205.04, 
201.50, 144.10, 140.33, 140.10, 139.26, 136.91, 135.88, 133.43, 132.99, 129.29, 
129.21, 128.89, 128.73, 128.68, 128.66, 128.49, 126.31, 75.14, 56.40, 56.27, 47.46, 
45.74, 42.84.

(4-(4-chlorophenyl)-4-hydroxy-2,6-bis(4-methoxyphenyl)cyclohexane-1,3-
diyl)bis((4-chlorophenyl)methanone) (4r). 1H NMR (500 MHz, Chloroform-d) δ 
7.44 (d, J = 8.6 Hz, 2H), 7.22 – 7.12 (m, 8H), 7.08 (d, J = 8.6 Hz, 2H), 7.04 (d, J = 
8.6 Hz, 2H), 6.99 (m, 2H), 6.65 – 6.64 (m, 2H), 6.41 – 6.39 (m, 2H), 5.30 (d, J = 2.4 
Hz, 1H), 4.32 (d, J = 10.9 Hz, 1H), 4.08 – 4.02 (m, 2H), 3.96 – 3.91 (m, 1H), 3.65 (s, 
3H), 3.51 (s, 3H), 2.37 – 2.32 (m, 2H), 2.16 (d, J = 14.0 Hz, 1H). 13C NMR (126 MHz, 
Chloroform-d) δ 205.24, 201.67, 144.62, 140.06, 137.06, 136.87, 136.29, 133.42, 
133.00, 131.63, 131.46, 129.27, 129.24, 128.96, 128.89, 128.73, 126.64, 121.58, 
75.18, 56.38, 56.19, 47.45, 45.70, 42.82, 27.06.

(4-(4-bromophenyl)-4-hydroxy-2,6-bis(4-methoxyphenyl)cyclohexane-1,3-
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diyl)bis((4-bromophenyl)methanone) (4s). 1H NMR (500 MHz, Chloroform-d) δ 
7.38(d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 7.26 – 7.20 (m, 4H), 7.15 – 7.13 (m, 
2H), 7.12 – 7.08 (m, 4H), 6.99 (d, J = 7.7 Hz, 2H), 6.63 (d, J = 8.6 Hz, 2H), 6.40 (d, J 
= 8.8 Hz, 2H), 5.29 (d, J = 2.4 Hz, 1H), 4.33 – 4.27 (m, 1H), 4.06 – 4.03 (m, 2H), 
3.96 – 3.91 (m, 1H), 3.66 (s, 3H), 3.52 (s, 3H), 2.37 – 2.32 (m, 1H), 2.16 (d, J = 14.0 
Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 206.02, 202.65, 145.18, 138.73, 
137.70, 137.10, 136.69, 136.66, 135.31, 131.49, 131.35, 131.02, 129.35, 129.32, 
129.14, 128.49, 127.81, 127.06, 126.75, 121.29, 75.34, 56.89, 56.68, 47.64, 46.00, 
43.00, 21.03, 20.89.

(2,6-bis(4-chlorophenyl)-4-hydroxy-4-(p-tolyl)cyclohexane-1,3-diyl)bis(p-
tolylmethanone) (4t). 1H NMR (500 MHz, Chloroform-d) δ 7.39 (d, J = 7.9 Hz, 2H), 
7.22 – 7.16 (m, 6H), 7.05 (d, J = 7.9 Hz, 4H), 6.99 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 
8.3 Hz, 4H), 6.79 (d, J = 8.2 Hz, 2H), 5.40 (d, J = 2.5 Hz, 1H), 4.39 (d, J = 11.2 Hz, 
1H), 4.17 – 4.05 (m, 2H), 4.01 (d, J = 12.2 Hz, 1H), 2.37 (d, J = 13.3 Hz, 2H), 2.23 (s, 
6H), 2.17 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 206.22, 202.31, 144.17, 
144.17, 142.93, 140.79, 137.52, 136.77, 135.98, 135.49, 132.67, 132.45, 129.41, 
129.05, 128.75, 128.72, 128.61, 128.32, 128.16, 127.78, 124.76, 75.27, 56.22, 56.11, 
47.57, 46.21, 42.92, 21.66, 21.59, 20.96.

(4-hydroxy-2,4,6-tri-p-tolylcyclohexane-1,3-diyl)bis(p-tolylmethanone) (4u). 1H 
NMR (500 MHz, Chloroform-d) δ 7.49 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 9.1 Hz, 4H), 
7.12 (d, J = 8.0 Hz, 2H), 7.01 – 6.93 (m, 4H), 7.01 – 6.93 (m, 6H), 6.61 (d, J = 7.9 Hz, 
2H), 5.40 (d, J = 2.5 Hz, 2H), 4.39 (d, J = 11.0 Hz, 1H), 4.15 – 4.07 (m, 2H), 4.00 – 
3.98 (m, 1H), 2.44 – 2.38 (m, 1H), 2.20 (s, 6H), 2.18 – 2.14 (m, 4H), 2.12 (s, 3H), 
1.92 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 206.91, 203.25, 143.46, 143.43, 
142.34, 139.48, 136.62, 136.42, 136.23, 136.05, 135.96, 135.87, 129.05, 128.89, 
128.75, 128.43, 128.34, 128.21, 127.94, 127.89, 124.87, 75.43, 56.66, 47.75, 46.57, 
43.08, 29.85, 21.60, 21.53, 21.01, 20.95, 20.84.
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