Supporting Information

In-situ ball-milling gram-scale preparation of polyoxoniobatesintercalated MgAl-layered double hydroxides for selective Aldol and Michael addition cascade reactions in water

Jun Zheng^a, Shuhua Fan^a, Sen Liu^a, Guodong Shen^a, Wei-Dan Si^b, Xinyi Dong^a, Huaiwei Wang,^a

Xianqiang Huang*a, Yalin Zhang*a, Qingxia Yaoa, Zhen Lia and Di Sun*b

^aShandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.

^bSchool of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.

E-mail: hxq@lcu.edu.cn; zhangyalin@lcu.edu.cn; dsun@sdu.edu.cn

Table of contents

1. Experiment section	S 1										
2. Elemental analysis of Mg ₃ Al-LDH-Nb ₆ -X% composites											
3. The results of synthesis of polysubstituted cyclohexanols under various co											
	S4										
4. Gram scale for synthesis of Mg ₃ Al-LDH-Nb ₆ -29%	S5										
5. EDS spectra of Mg ₃ Al-LDH-Nb ₆ -29% catalyst	S6										
6. TG and UV spectra of Mg ₃ Al-LDH-Nb ₆ -29% catalyst	S 7										
7. Gram scale for synthesis of polysubstituted cyclohexanol product (41)	S7										
8. LC-MS experimental data of the intermediates 3a , 4a , 5a	S 8										
9. TPD spectra of Mg ₃ Al-LDH-Nb ₆ -29% catalyst	S11										
10. NMR spectra of products	S11										
11. References	S65										

Experiment section

Chemical materials. The sources of basic materials and testing kits were purchased from certified companies as following: aromatic aldehydes, aromatic ketones, niobium pentyloxide (Aladdin Chemicals Co., Ltd); sodium hydroxide, potassium hydroxide, ethyl acetate, petroleum ether, magnesium nitrate and aluminum nitrate (Sinopharm Chemical Reagent Co., Ltd.); 3-(4,5)-dimethylthiahiazo(-2)-3,5-diphenytetrazoliumromide (MTT) (Energy Chemical Co., Ltd.). All chemicals and solvents were used in this study without any further purification.

Synthesis of $K_7HNb_6O_{19}\cdot 13H_2O$. $K_7HNb_6O_{19}\cdot 13H_2O$ was synthesized according to the previous report.¹ Nb₂O₅ (0.05 mol, 13.3 g) was added to the melt of KOH (0.46 mol, 26 g) in a nickel crucible. After heating 30 min at 380 °C, the mixture was slowly cooled down to room temperature and quickly poured into 100 mL deionized water. The above mixture was filtrated and the filtrate was put in refrigerator at 0 °C for 12 h and needle-shaped solid was obtained. Finally, the solid was collected and cleaned five times with ethanol-water (V/V=1:1). They were dried in vacuo overnight to yield 9.6 g $K_7HNb_6O_{19}\cdot 13H_2O$ solid (denoted as Nb₆).

Synthesis of Mg₃Al-LDH-Nb₆-X%. Mg(NO₃)₂·6H₂O (18 mmol, 4.66 g), Al(NO₃)₃·9H₂O (8 mmol, 3 g), NaOH (0.05 mol, 2 g), with various amounts of Nb₆ (0.5 g, 1 g, 2 g and 4 g, respectively) were put into the 25 mL stainless steel milling pot. The powder of the starting materials was ball-milled with 2 mL amounts of H₂O as the initiator using 5 steel balls with 10 mm diameter for 30 min at a rotation speed of 250 r. In order to eliminate the excess Nb₆ and inorganic salts, which were in between the particles and attached to the surface of the composites, thus the obtained solids were extensively washed with large amounts of water consecutively, and they were further stirred and ultra-sonicated until no Nb₆ was present in the solution as evidenced by UV-vis spectroscopy. Then the products were dried under vacuum overnight to yield Mg₃Al-LDH-Nb₆-X% (X = 8, 15, 18 and 22) products. IR (KBr, cm⁻¹): 3365 (m), 2220 (m), 1655 (m), 1370 (w), 705 (w), 528 (m).

Catalyst characterization. ¹H NMR and ¹³C NMR spectra of the organic compounds were acquired on a AVANCE NEO 500 spectrometer by using CDCl₃ as the solvent and TMS (tetramethylsilane) as the internal reference. Fourier transform infrared spectra (FT-IR) were recorded on a NICOLET 5700 instrument ranging from 4000 to 400 cm⁻¹. Powder X-ray diffraction analysis (PXRD) patterns were collected on a smart lab diffractometer from Rigaku equipped with a 9 kW rotating anode Cu source (45 kV, 200 mA, 5-50°). Nitrogen sorption experiments were carried out at 77 K on ASAP-2460 analyser. The samples were degassed at 150 °C for 10 h before analysis. X-ray photoelectron spectroscopy (XPS) measurements were undertaken with a K-Alpha spectrometer (Thermo Scientific Ltd., USA). Scanning electron microscopic (SEM) images were viewed on a Thermo Fisher Scientific scanning electron microscope. Transmission electron microscopy (TEM) analysis was carried out on a Thermo Scientific TM TalosTM F200X electron microscope.

Selective synthesis of aromatic 1,5-dione derivatives. In a typical experiment, aromatic aldehydes (0.5 mmol), aromatic ketones (1 mmol), catalyst (0.05 mmol) and

2 mL H₂O were successively added into a 10 mL glass tube. After being stirred at 60 $^{\circ}$ C for 1 h, the reaction mixture was cooled to room, filtered through a sand core funnel and extracted with ethyl acetate, washed with brine (5 mL) for three times, dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel. The resulting products were identified by ¹H NMR and ¹³C NMR.

Selective synthesis of polysubstituted cyclohexanol derivatives. The synthetic procedure of polysubstituted cyclohexanols was similar to those of syntheses of aromatic 1,5-diones except that TBAB (0.25 mmol) was used, the amount of catalyst, the reaction time and temperature were changed in the reactions.

Recycling process for the selective synthesis of polysubstituted cyclohexanol derivatives. The reuse experiment was carried out for synthesis of polysubstituted cyclohexanols. In a typical experiment, benzaldehyde (0.5 mmol), acetophenone (1 mmol), catalyst (0.1 mmol) and TBAB (0.25 mmol) were successively added in a 10 mL double-neck round bottom flask with 2 mL H₂O. The reaction mixture was stirred for 24 h at 90 °C. After the reaction was completed, the catalyst was retrieved by filtration, washed and soaked with H₂O (10 mL) and EtOH (10 mL) three times, and air-dried prior to being used for the reuse experiment.

Cytotoxicity activity of cyclohexanols and aromatic 1,5-diones. For determination of cytotoxic or growth inhibition effect of polysubstituted cyclohexanols and aromatic 1,5-diones on cancerous cells, MTT assay was performed according to a reported method.² HeLa and A549 cells were employed for the cell viability study. Both of the cells were seeded at a concentration of 4000 cells per well

in a 96 well cell culture plate in DMEM/High glucose supplemented with 10% (v/v) fetal bovine serum (Gibco) and 1 x antibiotics (Hyclone) at 37 °C and humidified 5% CO₂. The media was replaced with same volume of DMEM with respective concentrations of polysubstituted cyclohexanols and aromatic 1,5-diones (0-20 mg/mL). Then the cells in the 96 well plate were allowed to grow for another 48 h at 37 °C and humidified 5% CO₂. After 48 h of treatment, the cells in the wells were incubated with 100 μ L (1 mg/ml in incomplete media) of MTT solution for 4 h at 37 °C and humidified 5% CO₂ atmosphere. The wells were replaced with 100 μ L of DMSO solution. The absorbance of the DMSO dissolved formazan crystals were measured at 490 nm with a spectrophotometer (I MarkTM Microplate Absorbance Reader). The cell viability was calculated as (A_{sample}/A_{control}) × 100, where A_{sample} is the absorbance of the sample and A_{control} is the absorbance of the control.

Entry Samples Mg X value Al (wt%) Nb (wt%) (wt%) 1 17 12.41 5.06 6.10 2 10.98 4.47 8.69 25 Mg₃Al-LDH-Nb₆-X% 3 10.54 4.34 10.10 29 4 9.82 4.02 10.45 32

Table S1. The elemental analysis of Mg₃Al-LDH-Nb₆-X% composites

Table 52. The results of synthesis of polysubstituted cyclonexan	able S2. T	The results	of s	ynthesis	of	polysubst	ituted o	cyclohexan	ols
--	------------	-------------	------	----------	----	-----------	----------	------------	-----

The starting materials	Conditions	Solvent	Yield (%)	Ref.
Chalcone	(20 mol%) NaOtBu, (1.5 eq) NHC	Et ₂ O	80	3
Benzaldehyde and acetophenone	Solid NaOH- K_2CO_3 (2:1, ground)	None	91	4
Chalcone and acetophenone	(16 eq) NaOH	None	86	5

under various conditions

Gram scale for synthesis of Mg₃Al-LDH-Nb₆-29%

Synthesis of Mg₃Al-LDH-Nb₆-29%. Mg(NO₃)₂·6H₂O (18 mmol, 4.66 g), Al(NO₃)₃·9H₂O (8 mmol, 3 g), NaOH (0.05 mol, 2 g), with 2 g Nb₆ were put into the 25 mL stainless steel milling pot. The powder of the starting materials was ball-milled with 2 mL amounts of H₂O as the initiator using 5 steel balls with 10 mm diameter for 30 min at a rotation speed of 250 r. In order to eliminate the excess Nb₆ and inorganic salts, which were in between the particles and attached to the surface of the composites, thus the obtained solids were extensively washed with large amounts of water consecutively, and they were further stirred and ultra-sonicated until no Nb₆ was present in the solution as evidenced by UV-vis spectroscopy.⁶ Then the products were dried under vacuum overnight to yield 2.16 g Mg₃Al-LDH-Nb₆-29% product.

Figure S1. One-pot synthetic protocol for producing Mg₃Al-LDH-Nb₆-29% (weight 2.16 g).

EDS spectra of Mg₃Al-LDH-Nb₆-29% catalyst

Figure S2. The EDS elemental mapping of Mg₃Al-LDH-Nb₆.

Figure S3. The EDS spectrum of $Mg_3Al-LDH-Nb_6$ composite, which gives the compositional information.

TG and UV spectra of Mg₃Al-LDH-Nb₆-29% catalyst

Figure S4. (a) TG patterns of $Mg_3Al-LDH-Nb_6$; (b) UV spectra of $Mg_3Al-LDH-Nb_6$ (H₂O), Nb₆ (H₂O) and 1 day, 7 days, 15 days.

Gram scale for synthesis of polysubstituted cyclohexanol product (41)

In a typical experiment, benzaldehyde (0.02 mol), *p*-bromoacetophenone (0.04 mol), catalyst (0.004 mol), TBAB (0.01 mol) and 15 mL H₂O were successively added into a 50 mL glass flask. After being stirred at 90 °C for 24 h, the reaction mixture was cooled to room, filtered through a sand core funnel and extracted with ethyl acetate, washed with brine (50 mL) for three times, dried over anhydrous Na_2SO_4 and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel. The resulting products were identified by ¹H NMR and ¹³C NMR.

Figure S5. One-pot synthetic protocol for achieving 4l (weight 4.45g).

LC-MS experimental data of the intermediates 3a, 4a, 5a

Figure S6. LC-MS spectra of 3a

Figure S7. LC-MS spectra of 4a

Figure S8. LC-MS spectra of 5a

Figure S9. TPD spectra of CO₂ obtained after CO₂ adsorption

NMR spectra of products

1,3,5-triphenylpentane-1,5-dione (3a). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 (d, J = 8.5 Hz, 4H), 7.54 (t, J = 7.4 Hz, 2H), 7.44 (t, J = 7.4 Hz, 4H), 7.30 – 7.25 (m, 4H), 7.19 – 7.16 (m, 1H), 4.09 – 4.06 (m, 1H), 3.49 (d, J = 16.6 Hz, 2H), 3.36 (d, J = 16.6 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 198.69, 143.96, 137.06, 133.20, 128.75, 128.72, 128.27, 127.60, 126.82, 45.04, 37.31. HRMS: (ESI) [M+H]⁺ calcd. for C₂₃H₂₀O₂, 329.1541 found, 329.1554.

3-(4-chlorophenyl)-1,5-diphenylpentane-1,5-dione (3b). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.93 (d, J = 7.7 Hz, 4H), 7.55 (t, J = 7.5 Hz, 2H), 7.44 (t, J = 7.5 Hz, 4H), 7.25 – 7.23 (m, 4H), 4.08 – 4.04 (m, 1H), 3.47 (d, J = 16.7 Hz, 2H), 3.35 (d, J = 16.7 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 198.35, 142.46, 136.94, 133.35, 132.49, 129.05, 128.87, 128.79, 128.24, 44.87, 36.66.

1,5-diphenyl-3-(p-tolyl)pentane-1,5-dione (3c). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 (d, J = 7.3 Hz, 4H), 7.53 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 4H), 7.17 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 4.06 – 4.0 (m, 1H), 3.47 (d, J = 16.5 Hz, 2H), 3.34 (d, J = 16.5 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 198.81, 140.92, 137.12, 136.32, 133.16, 129.44, 128.71, 128.29, 127.43, 45.19, 37.02, 29.84, 21.14.

3-(4-methoxyphenyl)-1,5-diphenylpentane-1,5-dione (3d). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 (d, J = 7.2 Hz, 4H), 7.53 (t, J =7.3 Hz, 2H), 7.44 (t, J = 7.3 Hz, 4H), 7.19 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 4.03 – 4.00 (m, 1H), 3.76 (s, 3H), 3.46 (d, J = 16.5 Hz, 2H), 3.31 (d, J = 16.5 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 198.89, 137.16, 133.19, 128.74, 128.57, 128.31, 114.18, 55.36, 45.32, 36.72.

3-(3,5-dimethoxyphenyl)-1,5-diphenylpentane-1,5-dione (3e). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 7.4 Hz, 4H), 7.52 (t, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 4H), 6.43 (s, 2H), 6.28 (s, 1H), 4.04 – 4.00 (m, 1H), 3.71 (s, 6H), 3.44 (d, *J* = 16.7 Hz, 2H), 3.33 (d, *J* = 16.7 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 198.56, 160.90, 146.47, 136.99, 133.13, 128.64, 128.18, 105.75, 98.39, 76.93, 55.28, 44.82, 37.40.

3-(furan-2-yl)-1,5-diphenylpentane-1,5-dione (3f). ¹H NMR (500 MHz, Chlorzoform-*d*) δ 7.97 (d, J = 8.6 Hz, 4H), 7.55 (t, J = 7.5 Hz, 2H), 7.44 (t, J = 7.5 Hz, 4H), 7.27 (d, J = 1.8 Hz, 1H), 6.23 (dd, J = 3.2, 1.9 Hz, 1H), 6.06 (d, J = 3.2 Hz, 1H), 4.17 – 4.22 (m, 1H), 3.45 – 3.43 (m, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 198.36, 156.52, 141.29, 136.93, 133.27, 128.73, 128.26, 110.34, 105.59, 42.27, 30.90.

1,5-bis(4-chlorophenyl)-3-(furan-2-yl)pentane-1,5-dione (3g). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.90 (d, J = 8.4 Hz, 4H), 7.42 (d, J = 8.4 Hz, 4H), 7.29 – 7.25 (m, 1H), 6.23 (dd, J = 2.6, 1.9 Hz, 1H), 6.04 (d, J = 2.6 Hz, 1H), 4.18 – 4.14 (m, 1H), 3.40 – 3.39 (m, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.12, 156.08, 141.43, 139.79, 135.19, 129.68, 129.06, 110.40, 105.74, 42.16, 30.92.

3-(furan-2-yl)-1,5-di-p-tolylpentane-1,5-dione (3h). ¹H NMR (500 MHz, Chloroform-d) δ 7.87 (d, J = 8.2 Hz, 4H), 7.26 – 7.24 (m, 5H), 6.22 (dd, J = 2.9, 1.9 Hz, 1H), 6.04 (d, J = 2.9 Hz, 1H), 4.18 – 4.15 (m, 1H), 3.40 – 3.39 (m, 4H), 2.40 (s, 6H).¹³C NMR (126 MHz, Chloroform-*d*) δ 198.05, 156.72, 144.04, 141.24, 134.52, 129.40, 128.41, 110.33, 105.51, 42.22, 31.07, 21.77.

1,5-diphenyl-3-(thiophen-2-yl)pentane-1,5-dione (3i). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.85 (d, J = 7.2 Hz, 4H), 7.44 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 7.5 Hz, 4H), 6.99 (d, J = 4.5 Hz, 1H), 6.84 – 6.72 (m, 2H), 4.36 – 4.31 (m, 1H), 3.42 (d, J = 16.9 Hz, 2H), 3.32 (d, J = 16.9 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 198.11, 147.57, 136.86, 133.23, 128.67, 128.17, 126.78, 124.32, 123.38, 45.64, 32.43.

3-(5-(hydroxymethyl)furan-2-yl)-1,5-diphenylpentane-1,5-dione (3j). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.96 (d, J = 7.3 Hz, 4H), 7.54 (t, J = 7.7 Hz, 2H), 7.44 (t, J = 7.7 Hz, 4H), 6.11 (d, J = 3.2 Hz, 1H), 5.98 (d, J = 3.2 Hz, 1H), 4.47 (s, 2H), 4.15 – 4.14 (m, 1H), 3.43 – 3.40 (m, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 198.47, 156.48, 152.91, 136.79, 133.30, 128.70, 128.24, 108.63, 106.43, 57.47, 42.17, 31.09.

1,5-bis(4-chlorophenyl)-3-phenylpentane-1,5-dione (3k). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 (d, J = 8.6 Hz, 4H), 7.41 (d, J = 8.6 Hz, 4H), 7.29 – 7.24 (m, 4H), 7.22 – 7.16 (m, 1H), 4.04 – 4.01 (m, 1H), 3.45 (d, J = 16.6 Hz, 2H), 3.30 (d, J = 12.5 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.47, 143.55, 139.74, 135.32, 129.70, 129.07, 128.87, 127.53, 127.04, 44.94, 37.35.

1,5-bis(4-bromophenyl)-3-phenylpentane-1,5-dione (31). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.79 (d, J = 8.6 Hz, 4H), 7.58 (d, J = 8.6 Hz, 4H), 7.30 – 7.23 (m, 4H), 7.21 – 7.15 (m, 1H), 4.04 – 4.01 (m, 1H), 3.45 (d, J = 16.6 Hz, 2H), 3.29 (d, J = 16.6 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.54, 143.39, 135.57, 131.94, 129.68, 128.75, 128.35, 127.40, 126.92, 44.79, 37.18.

3-phenyl-1,5-di-p-tolylpentane-1,5-dione (3m). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 8.2 Hz, 4H), 7.27 – 7.25 (m, 4H), 7.23 – 7.21 (m, 4H), 7.17 – 7.16 (m, 1H), 4.08 – 4.02 (m, 1H), 3.47 (d, *J* = 16.5 Hz, 2H), 3.31 (d, *J* = 16.5 Hz, 2H), 2.38 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.47, 143.55, 139.74, 135.33, 129.70, 129.07, 128.87, 127.53, 127.04, 44.94, 37.35.

1,5-bis(2-bromophenyl)-3-phenylpentane-1,5-dione (3n). ¹H NMR (500 MHz, Chloroform-d) δ 7.54 (d, J = 7.8 Hz, 2H), 7.29 – 7.20 (m, 8H), 7.19 – 7.14 (m, 3H), 3.96 (t, J = 7.2 Hz, 1H), 3.44 (d, J = 17.0 Hz, 2H), 3.31 (d, J = 17.0 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-d) δ 202.37, 142.74, 141.55, 133.60, 131.57, 128.64, 128.50, 127.74, 127.41, 126.90, 118.61, 48.63, 37.20.

1,5-bis(3-bromophenyl)-3-phenylpentane-1,5-dione (30). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05 (t, *J* = 1.6 Hz, 2H), 7.87 (d, *J* = 7.8 Hz, 2H), 7.67 (d, *J* = 7.9 Hz, 2H), 7.33 (t, *J* = 7.9 Hz, 2H), 7.31 – 7.28 (m, 4H), 7.21 – 7.18 (m, 1H), 4.06 – 4.00 (m, 1H), 3.45 (d, *J* = 16.8 Hz, 2H), 3.32 (d, *J* = 16.8 Hz, 2H). ¹³C NMR (126 MHz, 2H), 7.21 – 7.18 (m, 1H), 4.06 – 4.00 (m, 1H), 3.45 (d, *J* = 16.8 Hz, 2H), 3.32 (d, *J* = 16.8 Hz, 2H). ¹³C NMR (126 MHz, 14) (126 MHz, 14) (126 MHz).

Chloroform-*d*) δ 197.20, 143.45, 138.67, 136.13, 131.34, 130.35, 128.89, 127.53, 127.07, 126.78, 123.13, 44.93, 37.02.

1,5-bis(4-bromophenyl)-3-(4-chlorophenyl)pentane-1,5-dione (3p). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.79 – 7.77 (m, 4H), 7.59 – 7.56 (m, 4H), 7.26 – 7.18 (m, 4H), 4.00 – 3.99 (m, 1H), 3.43 (d, *J* = 16.9 Hz, 2H), 3.26 (d, *J* = 16.9 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.24, 142.03, 135.51, 132.65, 132.09, 129.72, 128.94, 128.61, 44.70, 36.52.

1,3,5-tris(4-chlorophenyl)pentane-1,5-dione (3q). ¹H NMR (500 MHz, Chloroformd) δ 7.87 (d, J = 8.5 Hz, 4H), 7.42 (d, J = 8.5 Hz, 4H), 7.26 – 7.18 (m, 4H), 4.03 – 3.99 (m, 1H), 3.47 – 3.41 (m, 2H), 3.29 – 3.24 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.08, 142.07, 139.91, 135.17, 132.72, 129.66, 129.13, 128.98, 128.97, 44.76, 36.62.

1,5-bis(4-chlorophenyl)-3-(4-methoxyphenyl)pentane-1,5-dione (3r). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.4 Hz, 4H), 7.38 (d, *J* = 8.6 Hz, 4H), 7.16 (d, *J* = 8.5 Hz, 2H), 6.79 (d, *J* = 8.5 Hz, 2H), 3.98 – 3.95 (m, 1H), 3.72 (s, 3H), 3.42 (d, *J* = 16.6 Hz, 2H), 3.25 (d, *J* = 16.6 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.43, 158.34, 139.48, 135.42, 135.20, 129.57, 128.88, 128.37, 114.06, 55.16, 45.04, 36.47.

1,5-bis(4-bromophenyl)-3-(4-methoxyphenyl)pentane-1,5-dione (3s). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.86 (d, J = 8.5 Hz, 4H), 7.38 (d, J = 8.5 Hz, 4H), 7.16 (d, J = 8.6 Hz, 2H), 6.79 (d, J = 8.6 Hz, 2H), 3.98 – 3.95 (m, 1H), 3.72 (s, 3H), 3.44 (d, J = 16.6 Hz, 2H), 3.25 (d, J = 16.6 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ

197.43, 158.34, 139.48, 135.42, 135.20, 129.57, 128.88, 128.37, 114.06, 55.16, 45.04, 36.47.

3-(4-chlorophenyl)-1,5-di-p-tolylpentane-1,5-dione (3t). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 (d, J = 8.2 Hz, 4H), 7.24 – 7.18 (m, 8H), 4.09 – 3.99 (m, 1H), 3.43 (d, J = 16.7 Hz, 2H), 3.28 (d, J = 16.7 Hz, 2H), 2.37 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.89, 144.01, 142.56, 134.36, 132.21, 129.34, 128.97, 128.68, 128.26, 44.67, 36.66, 21.66.

1,3,5-tri-p-tolylpentane-1,5-dione (3u). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.85 (d, J = 8.2 Hz, 4H), 7.23 (d, J = 8.2 Hz, 4H), 7.16 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 4.03 – 3.99 (m, 1H), 3.43 (d, J = 16.4 Hz, 2H), 3.30 (d, J = 16.4 Hz, 2H), 2.39 (s, 6H), 2.28 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 198.51, 143.91, 141.06, 136.22, 134.64, 129.41, 129.38, 128.43, 127.43, 45.13, 37.17, 21.76, 21.15.

(4-hydroxy-2,4,6-triphenylcyclohexane-1,3-diyl)bis(phenylmethanone) (4a). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.54 (d, J = 7.5 Hz, 2H), 7.28 – 7.26 (m, 4H), 7.24 – 7.21 (m, 4H), 7.20 – 7.17 (m, 3H), 7.09 (t, J = 7.6 Hz, 2H), 7.05 – 7.01 (m, 5H), 6.98 (t, J = 7.0 Hz, 1H), 6.82 (t, J = 7.5 Hz, 2H), 6.72 (t, J = 7.5 Hz, 1H), 5.38 (d, J = 2.5 Hz, 1H), 4.49 (d, J = 11.0 Hz, 1H), 4.24 – 4.20 (m, 2H), 4.09 – 4.03 (m, 1H), 2.54 – 2.48 (m, 1H), 2.27 (d, J = 14.1 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 207.32, 203.72, 146.07, 142.26, 139.16, 138.80, 138.32, 132.80, 131.91, 128.51, 128.33, 128.23, 128.14, 127.86, 127.82, 127.70, 127.54, 127.15, 127.06, 126.86, 124.97, 75.50, 56.94, 56.92, 48.23, 46.03, 43.51. HRMS: (ESI) [M+H]⁺ calcd. for C₃₈H₃₂O₃, 537.2430 found, 537.2437.

(2,6-bis(4-chlorophenyl)-4-hydroxy-4-phenylcyclohexane-1,3-

diyl)bis(phenylmethanone) (4b). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.53 (d, J = 7.7 Hz, 2H), 7.28 – 7.23 (m, 6H), 7.20 – 7.17 (m, 4H), 7.10 – 7.05 (m, 9H), 6.80 (d, J = 8.1 Hz, 2H), 5.32 (d, J = 2.5 Hz, 1H), 4.44 (d, J = 10.7 Hz, 1H), 4.18 – 4.11 (m, 2H), 4.07 – 4.01 (m, 1H), 2.48 – 2.42 (m, 1H), 2.22 (d, J = 14.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.81, 203.0, 145.64, 140.60, 138.68, 138.07, 137.31, 133.14, 132.89, 132.47, 129.43, 128.68, 128.43, 128.41, 128.03, 128.02, 127.83, 127.52, 127.34, 124.88, 75.39, 56.72, 56.67, 47.61, 45.90, 42.94.

(4-hydroxy-4-phenyl-2,6-di-p-tolylcyclohexane-1,3-diyl)bis(phenylmethanone)

(4c). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.54 – 7.49 (m, 2H), 7.26 – 7.21 (m, 6H), 7.20 – 7.13 (m, 5H), 7.06 – 6.99 (m, 6H), 6.88 (d, *J* = 7.8 Hz, 2H), 6.61 (d, *J* = 5.7 Hz, 2H), 5.33 (d, *J* = 2.5 Hz, 1H), 4.44 (d, *J* = 11.1 Hz, 1H), 4.15 (d, *J* = 14.2 Hz, 2H), 4.03 – 3.98 (m, 1H), 2.50 – 2.41 (m, 1H), 2.21 (d, *J* = 14.2 Hz, 1H), 2.12 (s, 3H), 1.92 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 207.49, 203.92, 146.15, 139.29, 138.43, 136.47, 136.23, 132.62, 131.69, 129.13, 128.84, 128.27, 127.97, 127.89, 127.75, 127.63, 127.06, 124.99, 75.54, 57.23, 57.19, 47.78, 46.24, 43.10, 29.85, 20.99, 20.81.

(4-hydroxy-2,6-bis(4-methoxyphenyl)-4-phenylcyclohexane-1,3-

diyl)bis(phenylmethanone) (4d). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.54 – 7.51 (m, 2H), 7.25 – 7.20 (m, 7H), 7.19 – 7.15 (m, 4H), 7.07 – 7.02 (m, 6H), 6.65 – 6.61 (m, 2H), 6.38 – 6.34 (m, 2H), 5.34 (d, J = 2.4 Hz, 1H), 4.45 – 4.40 (m, 1H), 4.14 – 4.09 (m, 2H), 4.00 (d, J = 14.0 Hz, 1H), 3.64 (s, 3H), 3.47 (s, 3H), 2.47 – 2.41 (m, 1H), 2.20 (d, J = 14.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 207.53, 204.05, 158.37, 146.14, 139.25, 138.39, 134.49, 132.75, 131.87, 130.95, 129.04, 128.30, 127.87, 127.84, 127.76, 127.58, 127.09, 124.97, 113.94, 113.70, 75.57, 57.48, 57.23, 55.30, 55.15, 47.40, 46.30, 42.69, 29.85.

(2,6-bis(3,5-dimethoxyphenyl)-4-hydroxy-4-phenylcyclohexane-1,3diyl)bis(phenylmethanone) (4e). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.52 (d, J = 7.7 Hz, 2H), 7.39 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 7.8 Hz, 2H), 7.26 – 7.23 (m, 2H), 7.18 (t, J = 7.6 Hz, 2H), 7.12 – 7.03 (m, 5H), 6.41 (s, 2H), 6.26 (s, 2H), 6.08 (s, 1H), 5.79 (s, 1H), 5.40 (s, 1H), 4.41 (d, J = 11.6 Hz, 1H), 4.17 (t, J = 11.0 Hz, 1H), 4.07 (t, J = 11.3 Hz, 1H), 3.99 – 3.93 (m, 1H), 3.64 (s, 6H), 3.49 (s, 6H), 2.43 – 2.38 (m, 1H), 2.28 – 2.18 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 207.20, 203.32, 160.77, 160.49, 145.98, 144.67, 141.08, 139.22, 138.34, 132.82, 132.01, 128.34, 127.88, 127.81, 127.76, 127.68, 127.17, 124.93, 106.42, 99.41, 98.98, 75.48, 56.70, 56.13, 55.42, 55.36, 48.41, 46.17, 43.83.

(2,6-di(furan-2-yl)-4-hydroxy-4-phenylcyclohexane-1,3-

diyl)bis(phenylmethanone) (4f). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58 – 7.56 (m, 2H), 7.52 – 7.50 (m, 2H), 7.47 – 7.42 (m, 2H), 7.37 – 7.30 (m, 2H), 7.24 (t, J = 11.1 Hz, 2H), 7.20 – 7.14 (m, 4H), 7.09 (d, J = 1.9 Hz, 1H), 7.07 – 7.03 (m, 1H), 6.85 (d, J = 1.8 Hz, 1H), 6.00 – 5.99 (m, 1H), 5.92 – 5.91 (m, 1H), 5.75 – 5.74 (m, 1H), 5.68 – 5.67 (m, 1H), 5.35 (d, J = 2.5 Hz, 1H), 4.62 (d, J = 11.7 Hz, 1H), 4.48 (t, J = 11.7 Hz, 1H), 4.19 (t, J = 11.7 Hz, 1H), 4.12 – 4.06 (m, 1H), 2.48 – 2.42 (m, 1H), 2.21 (d, J = 14.1 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.99, 203.24, 155.34, 151.76, 145.68, 141.48, 141.26, 133.18, 132.44, 128.34, 128.04, 128.02, 127.96, 127.79, 127.16, 124.87, 110.24, 110.17, 108.53, 106.35, 75.16, 53.87, 51.86, 43.98, 41.21, 36.70.

(4-(4-chlorophenyl)-2,6-di(furan-2-yl)-4-hydroxycyclohexane-1,3-diyl)bis((4-

chlorophenyl)methanone) (4g). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.53 – 7.49 (m, 2H), 7.45 – 7.40 (m, 4H), 7.22 – 7.16 (m, 6H), 7.10 (d, *J* = 1.9 Hz, 1H), 6.91 (d, *J* = 1.4 Hz, 1H), 6.02 (d, *J* = 3.2 Hz, 1H), 5.91 (d, *J* = 3.2 Hz, 1H), 5.73 (d, *J* = 1.3 Hz, 2H), 5.32 (d, *J* = 2.6 Hz, 1H), 4.50 (d, *J* = 11.7 Hz, 1H), 4.40 (t, *J* = 11.4 Hz, 1H), 4.14 (t, *J* = 11.4 Hz, 1H), 4.06 – 4.01 (m, 1H), 2.39 – 2.33 (m, 1H), 2.17 (d, *J* = 14.1 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 205.36, 201.77, 154.82, 151.32, 144.22, 141.70, 141.43, 140.23, 139.07, 135.87, 135.28, 133.21, 129.30, 129.17, 128.66, 128.61, 128.45, 126.30, 110.53, 110.33, 108.76, 106.56, 74.95, 53.48, 51.67, 43.92, 41.11, 36.63.

(2,6-di(furan-2-yl)-4-hydroxy-4-(p-tolyl)cyclohexane-1,3-diyl)bis(p-

tolyImethanone) (4h). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 (d, J = 8.3 Hz, 2H), 7.40 – 7.37 (m, 4H), 7.08 (d, J = 1.9 Hz, 1H), 7.07 – 6.90 (m, 6H), 6.85 (d, J = 1.8 Hz, 1H), 5.99 (d, J = 3.2 Hz, 1H), 5.89 (d, J = 3.1 Hz, 1H), 5.71 (d, J = 3.2 Hz, 1H), 5.67 (d, J = 3.2 Hz, 1H), 5.44 (d, J = 2.7 Hz, 1H), 4.57 (d, J = 11.8 Hz, 1H), 4.42 (t, J = 11.4 Hz, 1H), 4.16 (t, J = 11.4 Hz, 1H), 4.09 – 4.04 (m, 1H), 2.42 – 2.36 (m, 1H), 2.28 (s, 3H), 2.26 (s, 3H), 2.22 – 2.18 (m, 1H), 2.17 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.43, 202.68, 155.61, 152.01, 144.05, 143.03, 141.35, 141.17, 136.56, 134.89, 128.99, 128.75, 128.74, 128.22, 127.95, 124.77, 110.17, 110.12, 108.34, 106.18, 75.06, 53.34, 51.64, 44.30, 41.27, 36.71, 21.71, 21.68, 20.98.

(4-hydroxy-4-phenyl-2,6-di(thiophen-2-yl)cyclohexane-1,3-

diyl)bis(phenylmethanone) (4i). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.45 (d, J = 7.8 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 7.8 Hz, 2H), 7.23 – 7.19 (m, 2H), 7.12 – 7.07 (m, 4H), 7.05 – 7.0 (m, 2H), 6.97 (t, J = 5.0 Hz, 1H), 6.87 (d, J = 5.0 Hz, 1H), 6.73 – 6.50 (m, 4H), 6.32 (d, J = 5.0 Hz, 1H), 5.21 (d, J = 2.5 Hz, 1H), 4.47 (t, J = 11.3 Hz, 1H), 4.40 – 4.27 (m, 2H), 4.05 (t, J = 11.3 Hz, 1H), 2.44 – 2.38 (m, 1H), 2.36 – 2.29 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.68, 203.09, 145.49, 145.17, 142.06, 138.63, 137.84, 132.93, 132.16, 128.23, 127.92, 127.75, 127.71, 127.66, 127.14, 127.01, 126.57, 126.27, 125.56, 124.83, 123.91, 123.26, 75.23, 58.93, 57.71, 46.90, 43.33, 39.04.

(4-hydroxy-2,6-bis(5-(hydroxymethyl)furan-2-yl)-4-phenylcyclohexane-1,3diyl)bis(phenylmethanone) (4j). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.70 – 7.65 (m, 2H), 7.54 – 7.49 (m, 4H), 7.41 – 7.37 (m, 1H), 7.36 – 7.33 (m, 1H), 7.29 – 7.26 (m, 2H), 7.21 – 7.17 (m, 4H), 7.10 – 7.05 (m, 1H), 5.93 – 5.87 (m, 2H), 5.70 (d, J = 3.2 Hz, 1H), 5.56 (d, J = 3.2 Hz, 1H), 5.36 (d, J = 2.7 Hz, 1H), 4.66 (d, J = 11.7 Hz, 1H), 4.58 (t, J = 11.7 Hz, 1H), 4.34 – 4.27 (m, 2H), 4.12 – 4.03 (m, 4H), 2.47 – 2.40 (m, 1H), 2.25 – 2.19 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.83, 203.12, 155.58, 153.21, 152.85, 151.99, 138.00, 137.42, 133.33, 132.66, 128.42, 128.15, 128.13, 128.07, 127.96, 127.26, 124.82, 109.33, 108.59, 108.55, 107.12, 75.21, 57.49, 57.20, 53.65, 51.66, 44.07, 41.40, 36.85.

(4-(4-chlorophenyl)-4-hydroxy-2,6-diphenylcyclohexane-1,3-diyl)bis((4-

chlorophenyl)methanone) (4k). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.40 (d, J = 8.6 Hz, 2H), 7.3 (d, J = 8.6 Hz, 2H), 7.25 – 7.20 (m, 4H), 7.17 (d, J = 8.5 Hz, 2H), 7.15 – 7.11 (m, 4H), 7.13 – 7.06 (m, 4H), 7.03 – 7.0 (m, 1H), 6.88 (t, J = 7.5 Hz, 2H), 6.82 – 6.77 (m, 1H), 5.34 (d, J = 2.5 Hz, 1H), 4.41 – 4.31 (m, 1H), 4.16 – 4.08 (m, 2H), 4.03 – 3.98 (m, 1H), 2.44 – 2.38 (m, 1H), 2.21 (d, J = 14.1 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 205.63, 202.28, 144.57, 141.75, 139.84, 138.52, 138.40, 137.16, 136.13, 133.20, 129.23, 128.89, 128.70, 128.58, 128.51, 128.42, 128.12, 127.98, 127.49, 127.18, 126.39, 75.26, 56.70, 56.49, 48.12, 45.83, 43.41.

(4-(4-bromophenyl)-4-hydroxy-2,6-diphenylcyclohexane-1,3-diyl)bis((4-

bromophenyl)methanone) (41). ¹H NMR (500 MHz, Chloroform-d) δ 7.45 – 7.37 (m, 2H), 7.35 – 7.30 (m, 2H), 7.27 – 7.21 (m, 4H), 7.20 – 7.04 (m, 10H), 7.04 – 6.99 (m, 1H), 6.91 – 6.83 (m, 2H), 6.82 – 6.74 (m, 1H), 5.35 (d, J = 2.4 Hz, 1H), 4.46 – 4.26 (m, 1H), 4.17 – 4.09 (m, 2H), 4.07 – 3.91 (m, 1H), 2.41 (d, J = 14.0, 1H), 2.22 (d, J = 14.0, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 205.74, 202.37, 144.96, 141.57, 138.20, 137.42, 136.39, 131.41, 131.29, 130.97, 129.16, 128.86, 128.59, 128.56, 128.41, 127.84, 127.40, 127.16, 127.08, 126.61, 121.25, 75.18, 56.56, 56.25, 47.99, 45.65, 43.28.

(4-hydroxy-2,6-diphenyl-4-(p-tolyl)cyclohexane-1,3-diyl)bis(p-tolylmethanone)

(4m). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.42 (d, J = 8.0 Hz, 2H), 7.27 – 7.24 (m, 3H), 7.19 (t, J = 7.9 Hz, 4H), 7.14 – 7.03 (m, 4H), 6.97 (d, J = 7.8 Hz, 2H), 6.86 – 6.78 (m, 6H), 6.70 (t, J = 7.5 Hz, 1H), 5.46 (d, J = 2.4 Hz, 1H), 4.44 (d, J = 11.0 Hz, 1H), 4.20 – 4.13 (m, 2H), 4.07 – 4.00 (m, 1H), 2.48 – 2.44 (m, 1H), 2.22 (d, J = 3.5 Hz, 1H), 2.19 (s, 3H), 2.17 (s, 3H), 2.16 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.72, 203.08, 143.65, 143.36, 142.55, 142.45, 138.98, 136.51, 128.94, 128.51, 128.42, 128.40, 128.17, 128.12, 128.10, 127.76, 126.87, 126.71, 124.85, 75.39, 56.51, 56.34, 48.24, 46.35, 43.50, 21.60, 21.52, 20.95.

(4-(3-bromophenyl)-4-hydroxy-2,6-diphenylcyclohexane-1,3-diyl)bis((3-bromophenyl)methanone) (4o). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.69 (s, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.39 (d, J = 7.0 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.28 – 7.24 (m, 2H), 7.21 (d, J = 7.8 Hz, 1H), 7.18 (d, J = 7.9 Hz, 1H), 7.16 – 7.11 (m, 4H), 7.08 (t, J = 8.0 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.98 (t, J = 7.9 Hz, 1H), 6.94 – 6.89 (m, 3H), 6.82 (t, J = 7.5 Hz, 1H), 5.16 (d, J = 2.5 Hz, 1H), 4.42 – 4.29 (m, 1H), 4.16 – 4.09 (m, 2H), 4.01 – 3.96 (m, 1H), 2.47 – 2.41 (m, 1H), 2.25 (d, J = 14.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 205.56, 202.29, 148.20, 141.54, 140.61, 139.66, 138.29, 135.90, 134.86, 130.81, 130.56, 130.50, 130.11, 129.59, 129.38, 128.72, 128.58, 128.37, 128.02, 127.61, 127.26, 126.23, 125.88, 123.59, 122.85, 122.31, 122.04, 75.24, 57.08, 57.01, 47.91, 45.61, 43.45.

(4-(4-bromophenyl)-2,6-bis(4-chlorophenyl)-4-hydroxycyclohexane-1,3-

diyl)bis((4-bromophenyl)methanone) (4p). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.37 (d, J = 8.5 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 7.28 – 7.26 (m, 1H), 7.25 – 7.24 (m, 1H), 7.19 – 7.07 (m, 10H), 7.06 – 7.01 (m, 2H), 6.88 – 6.85 (m, 2H), 5.23 (d, J = 2.5 Hz, 1H), 4.32 (d, J = 11.5 Hz, 1H), 4.15 – 4.11 (m, 1H), 4.05 – 3.97 (m, 2H), 2.38 – 2.32 (m, 1H), 2.18 (d, J = 14.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 205.84, 202.62, 158.59, 158.50, 144.61, 139.75, 138.43, 137.19, 136.14, 133.88, 133.09, 130.40, 129.23, 128.93, 128.89, 128.51, 128.47, 128.41, 128.15, 126.36, 114.04, 113.86, 75.31, 57.16, 56.71, 55.27, 55.14, 55.10, 47.30, 46.10, 42.60.

(2,4,6-tris(4-chlorophenyl)-4-hydroxycyclohexane-1,3-diyl)bis((4-

chlorophenyl)methanone) (4q). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.43 (d, J = 8.6 Hz, 2H), 7.23 (t, J = 8.6 Hz, 4H), 7.19 – 7.14 (m, 4H), 7.13 – 7.09 (m, 6H), 7.08 (d, J = 3.0 Hz, 2H), 7.04 (d, J = 10.0 Hz, 2H), 6.89 – 6.84 (m, 2H), 5.24 (d, J = 2.5 Hz, 1H), 4.32 (d, J = 11.5 Hz, 1H), 4.12 (t, J = 11.0 Hz, 1H), 4.06 – 3.96 (m, 2H), 2.37 – 2.33 (m, 1H), 2.18 (d, J = 14.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 205.04, 201.50, 144.10, 140.33, 140.10, 139.26, 136.91, 135.88, 133.43, 132.99, 129.29, 129.21, 128.89, 128.73, 128.68, 128.66, 128.49, 126.31, 75.14, 56.40, 56.27, 47.46, 45.74, 42.84.

(4-(4-chlorophenyl)-4-hydroxy-2,6-bis(4-methoxyphenyl)cyclohexane-1,3-

diyl)bis((4-chlorophenyl)methanone) (4r). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 (d, J = 8.6 Hz, 2H), 7.22 – 7.12 (m, 8H), 7.08 (d, J = 8.6 Hz, 2H), 7.04 (d, J = 8.6 Hz, 2H), 6.99 (m, 2H), 6.65 – 6.64 (m, 2H), 6.41 – 6.39 (m, 2H), 5.30 (d, J = 2.4 Hz, 1H), 4.32 (d, J = 10.9 Hz, 1H), 4.08 – 4.02 (m, 2H), 3.96 – 3.91 (m, 1H), 3.65 (s, 3H), 3.51 (s, 3H), 2.37 – 2.32 (m, 2H), 2.16 (d, J = 14.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 205.24, 201.67, 144.62, 140.06, 137.06, 136.87, 136.29, 133.42, 133.00, 131.63, 131.46, 129.27, 129.24, 128.96, 128.89, 128.73, 126.64, 121.58, 75.18, 56.38, 56.19, 47.45, 45.70, 42.82, 27.06.

(4-(4-bromophenyl)-4-hydroxy-2,6-bis(4-methoxyphenyl)cyclohexane-1,3-

diyl)bis((4-bromophenyl)methanone) (4s). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.38(d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 7.26 – 7.20 (m, 4H), 7.15 – 7.13 (m, 2H), 7.12 – 7.08 (m, 4H), 6.99 (d, J = 7.7 Hz, 2H), 6.63 (d, J = 8.6 Hz, 2H), 6.40 (d, J = 8.8 Hz, 2H), 5.29 (d, J = 2.4 Hz, 1H), 4.33 – 4.27 (m, 1H), 4.06 – 4.03 (m, 2H), 3.96 – 3.91 (m, 1H), 3.66 (s, 3H), 3.52 (s, 3H), 2.37 – 2.32 (m, 1H), 2.16 (d, J = 14.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.02, 202.65, 145.18, 138.73, 137.70, 137.10, 136.69, 136.66, 135.31, 131.49, 131.35, 131.02, 129.35, 129.32, 129.14, 128.49, 127.81, 127.06, 126.75, 121.29, 75.34, 56.89, 56.68, 47.64, 46.00, 43.00, 21.03, 20.89.

4t

(2,6-bis(4-chlorophenyl)-4-hydroxy-4-(p-tolyl)cyclohexane-1,3-diyl)bis(p-

tolyImethanone) (4t). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.39 (d, J = 7.9 Hz, 2H), 7.22 – 7.16 (m, 6H), 7.05 (d, J = 7.9 Hz, 4H), 6.99 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 8.3 Hz, 4H), 6.79 (d, J = 8.2 Hz, 2H), 5.40 (d, J = 2.5 Hz, 1H), 4.39 (d, J = 11.2 Hz, 1H), 4.17 – 4.05 (m, 2H), 4.01 (d, J = 12.2 Hz, 1H), 2.37 (d, J = 13.3 Hz, 2H), 2.23 (s, 6H), 2.17 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.22, 202.31, 144.17, 144.17, 142.93, 140.79, 137.52, 136.77, 135.98, 135.49, 132.67, 132.45, 129.41, 129.05, 128.75, 128.72, 128.61, 128.32, 128.16, 127.78, 124.76, 75.27, 56.22, 56.11, 47.57, 46.21, 42.92, 21.66, 21.59, 20.96.

(4-hydroxy-2,4,6-tri-p-tolylcyclohexane-1,3-diyl)bis(p-tolylmethanone) (4u). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.49 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 9.1 Hz, 4H), 7.12 (d, J = 8.0 Hz, 2H), 7.01 – 6.93 (m, 4H), 7.01 – 6.93 (m, 6H), 6.61 (d, J = 7.9 Hz, 2H), 5.40 (d, J = 2.5 Hz, 2H), 4.39 (d, J = 11.0 Hz, 1H), 4.15 – 4.07 (m, 2H), 4.00 – 3.98 (m, 1H), 2.44 – 2.38 (m, 1H), 2.20 (s, 6H), 2.18 – 2.14 (m, 4H), 2.12 (s, 3H), 1.92 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.91, 203.25, 143.46, 143.43, 142.34, 139.48, 136.62, 136.42, 136.23, 136.05, 135.96, 135.87, 129.05, 128.89, 128.75, 128.43, 128.34, 128.21, 127.94, 127.89, 124.87, 75.43, 56.66, 47.75, 46.57, 43.08, 29.85, 21.60, 21.53, 21.01, 20.95, 20.84.

¹H NMR of 3a

 $\begin{array}{c} 7.95\\ 7.95\\ 7.93\\ 7.93\\ 7.93\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.75\\ 7.25\\ 7.72\\ 7.25\\$

¹³C NMR of **3a**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR of $\mathbf{3b}$

¹³C NMR of **3b**

¹H NMR of 3c

36 6	စ်	3	3	ŝ	5	5	4	4	4	38	2	27	35	6	4	16	16	4	80	6	8	3	5	49	48	46	45	35	33	3	30	38	26	8
アア	7	۲.	2	2	2	2	7	۲.	2	2	2	Ч.	۲.	۲.	7	7	۲.	Ъ.	۲.	7	4	4	4	ы.	ς.	ы.	ы.	ы.	ς.	ς.	ς.	ы М	÷	o.

¹³C NMR of **3**c

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR of **3d**

¹H NMR of 3f

¹³C NMR of 3f

¹H NMR of 3g

¹³C NMR of **3**g

¹³C NMR of **3h**

¹³C NMR of **3i**

¹³C NMR of **3**k

¹³C NMR of **3**l

¹H NMR of **3n**

¹³C NMR of **3n**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR of **30**

¹³C NMR of **3p**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR of 3q

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR of **3**r

¹H NMR of 3s

¹³C NMR of **3s**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR of 3u

f1 (ppm)

¹³C NMR of **4a**

 13 C NMR of **4b**

¹³C NMR of **4**c

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of 4d

¹³C NMR of **4d**

¹³C NMR of **4e**

 13 C NMR of **4f**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR of **4g**

¹H NMR of **4h**

¹³C NMR of **4h**

¹³C NMR of **4i**

¹H NMR of **4**j

 44
 44
 45
 56
 73
 67

 44
 45
 56
 56
 73
 73
 74
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 75
 <t

¹³C NMR of **4j**

$\begin{array}{c} 7.41\\ 7.42\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.22\\ 7.23\\ 7.22\\ 7.22\\ 7.12\\$

¹³C NMR of **4**k

¹H NMR of **4**I

¹³C NMR of **4**I

 13 C NMR of **4m**

¹³C NMR of **40**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of **4**p

¹³C NMR of **4p**

¹H NMR of 4q

¹³C NMR of **4q**

II (pp

¹H NMR of 4r

¹³C NMR of **4r**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of **4s**

¹³C NMR of **4s**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of 4u

 13 C NMR of **4u**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

References

1. Flynn, C.; Jr, F.; Stucky, O. D. Heteropolyniobate Complexes of Manganese (IV) and Nickel (IV). *Inorg. Chem.* **1969**, *8*, 332–334.

2. Zhang, J. Antitumor Effect and Mechanisms Research of the PARP Inhibition Combination with Platinum Salts and PI3K Inhibition on Human Triple Negative Breast Cancer Cell. J. Clin. Oncol. 2018, 36, e12535–e12535.

Zhang, Y.-X.; Wu, X.-X.; Hao, L.; Wong, Z.-R.; Lauw, S. J. L.; Yang, S.; Webster,
 R. D.; Chi, Y.-R. Trimerization of Enones under Air Enabled by NHC/NaOtBu via a
 SET Radical Pathway. Org. Chem. Front. 2017, 4, 467–471.

4. Shan, Z.-X.; Luo, X.-X.; Hu, L.; Hu, X.-Y. New Observation on a Class of Old Reactions: Chemoselectivity for The Solvent-free Reaction of Aromatic Aldehydes with Alkylketones Catalyzed by a Double-component Inorganic Base system. *Sci. China Chem.*, **2010**, *53*, 1095–1101.

5. Rong, L.-C.; Wei, X.-Y.; Lu, Y.; Zong, Z.-M. A Facile and Efficient Synthesis of Polysubstituted Cyclohexanol Derivatives under Solvent-Free Conditions. *Chin. J. Org. Chem.*, **2012**, *32*, 1999–2002.

6. Li, R.; Ren, X.-Q.; Zhao, J.-S.; Feng, X.; Jiang, X.; Fan, X.-X.; Lin, Z.-G.; Li, X.;
Hu, C.-W.; Wang, B. Polyoxometallates Trapped in a Zeolitic Imidazolate
Framework Leading to High Uptake and Selectivity of Bioactive Molecules. *J. Mater. Chem. A.* 2014, *2*, 2168–2173.