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Electronic Supplementary Information

Experimental section

Materials: Ti2O3 (100 mesh, 99.9%) was purchased from Sigma-Aldrich. 

Hydrochloric acid (HCl, 36.0-38.0%), ammonium chloride (NH4Cl, 99.5%), sodium 

hypochlorite (NaClO, AR), sodium hydroxide (NaOH, AR), salicylic acid (C7H6O3, 

AR), sodium citrate dihydrate (C6H5Na3O7·2H2O, AR), sodium nitroferricyanide (III) 

dihydrate (Na2Fe(CN)5NO·2H2O, 99.0%), para-(dimethylamino) benzaldehyde 

(C9H11NO, 99.0%), and Nafion solution (5 wt%) were purchased from Aladdin 

Reagent Co., Ltd. Absolute ethanol (C2H5OH, 99.7%) and hydrazine hydrate 

(N2H4H2O, AR) were purchased from Beijing Chemical Corporation. Carbon paper 

was bought from Taiwan CeTech Company. The deionized water used throughout all 

experiments was purified by a Millipore system. All reagents were analytical reagent 

grade without further purification.

Preparation of OV-Ti2O3: Plasma treatment was performed on an AX-1000II 

plasma system with a radio frequency power generator (13.56 MHz) at room 

temperature. Ti2O3 particles were treated by Ar plasma for 300 s at a radiofrequency 

power of 600 W and a pressure of 20 Pa in Ar atmosphere (20 sccm) to obtain OV-

Ti2O3.

Preparation of OV-Ti2O3/CP and pristine Ti2O3/CP: Typically, 10 mg of catalyst 

and 40 L of the 5 wt% Nafion solution were dispersed in 720 L of absolute ethanol 

and 240 L of deionized water and ultrasonicated for 1 h to form a homogeneous ink. 
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Then 10 L of ink was loaded onto a 1 cm2 pretreated carbon paper (CP) and dried 

under infrared light for measurement.

Characterizations: X-ray powder diffraction (XRD) patterns were collected on a 

Shimadzu XRD-6100 diffractometer (Shimadzu, Japan) with a Cu Kα X-ray source. 

SEM images and corresponding EDX elemental mapping images were obtained from 

a GeminiSEM 300 field-emission scanning electron microscope (ZEISS, Germany) 

with an accelerating voltage of 5 kV. TEM and HRTEM images were performed on a 

Zeiss Libra 200FE transmission electron microscope at 200 kV. Raman spectra were 

obtained using a LabRAM HR Evolution Raman spectrometer. Electron paramagnetic 

resonance (EPR) measurements were conducted on a Bruker 500 spectrometer at 298 

K. X-ray photoelectron spectroscopy (XPS) measurements were carried out on an 

ESCALAB 250Xi spectrometer equipped with monochromatized Al Kα radiation. 

Absorbance data were acquired on a Shimadzu UV-1800 UV-vis spectrophotometer. 

Ion chromatography (IC) data were obtained by using a ThermoFisher ICS 5000 plus 

IC. Gaseous products were detected by a Shimadzu GC-2014 gas chromatograph (GC) 

with thermal conductivity detector.

Electrochemical measurements: N2 reduction experiments were carried out in a 

gastight H-type electrolytic cell separated by a Nafion 211 membrane under ambient 

conditions. The Nafion membrane was pretreated by heating in 3% H2O2 solution and 

0.5 M H2SO4 at 80 ℃ for 1 h, respectively, and then immersed in deionized water for 

another 1 h. Electrochemical data were collected with a CHI760E electrochemical 
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workstation (Shanghai, Chenhua). In this work, OV-Ti2O3/CP, Ag/AgCl/saturated 

KCl, and graphite rod were used as the working electrode, reference electrode, and 

counter electrode, respectively. All potentials were converted to the reversible 

hydrogen electrode (RHE) through calibration (E (vs RHE) = E (vs Ag/AgCl) + 0.197 

V + 0.059 × pH). Before NRR measurement, the HCl electrolyte was purged with N2 

for 30 min. For the NRR experiments, the chronoamperometry tests were performed 

in an N2-saturated 0.1 M HCl solution (pH=1, 35 mL). During the electrolysis process, 

high-purity N2 gas (99.999%) was continuously purged into the cathodic chamber at a 

flow rate of 20 mL min−1.

Assembly of the Zn-N2 battery and electrochemical test: The homemade 

rechargeable Zn-N2 battery was assembled with OV-Ti2O3/CP (1  1 cm2) electrode 

as the cathode and a polished Zn plate (1  1 cm2) as the anode. A typical H-type cell 

containing 35 mL of cathode electrolyte (0.1 M HCl) and 35 mL of anode electrolyte 

(1 M KOH) is separated by a bipolar membrane (Nafion 211). N2 gas was 

continuously bubbled into the catholyte during electrochemical testing. The discharge 

polarization curves with a scan rate of 2 mV s–1 and galvanostatic tests were 

performed on a CHI760E electrochemical workstation. The power density (P) of the 

Zn-N2 battery was determined by P = I  V, where I and V are the discharge current 

density and voltage, respectively.

The electrochemical reactions in Zn-N2 battery are as follows:1-3

Cathode reaction: N2 + 6H2O + 6e− → 2NH3 + 6OH−
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Anode reaction: Zn + 2OH− → ZnO + H2O + 2e−

Overall reaction: 3Zn+ N2 + 3H2O → 3ZnO + 2NH3

Determination of NH3: The concentrations of NH3 produced were detected by the 

indophenol blue method using a UV-vis spectrophotometer. Firstly, 2 mL of 

electrolyte was pipetted from the cathodic chamber and mixed with 2 mL of 1 M 

NaOH solution containing 5% C7H6O3 and 5% C6H5Na3O7·2H2O. Then, 1 mL of 0.05 

M NaClO and 0.2 mL of 1% Na2Fe(CN)5NO·2H2O were added to the above solution 

in turn. Finally, after standing for 120 min at room temperature, the absorbance 

measurements were performed in the range of 500 nm to 800 nm. The concentration-

absorbance (at 655 nm) curves were calibrated by measuring a series of standard 

solutions with different NH4Cl concentrations. The fitting curve of NH3 (y = 0.3848x 

+ 0.036, R2 = 0.999) shows a good linear relationship between absorbance value and 

NH4
+ concentration.

Determination of N2H4: The concentration of N2H4 was determined by Watt and 

Chrisp method. 5.99 g of p-C9H11NO, 30 mL of concentrated HCl, and 300 mL of 

C2H5OH were homogeneously mixed as a color reagent. Typically, 2 mL of 

electrolyte was removed from the cathodic chamber and mixed with 2 mL of the 

above-prepared color reagent. After standing for 10 min at room temperature, the UV-

vis absorption spectra were collected at a wavelength of 455 nm. The fitting curve of 

N2H4 (y = 0.389x + 0.041, R2 = 0.999) shows a good linear relationship between 

absorbance value with N2H4 concentration.
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Calculations of NH3 yield and Faradaic efficiency (FE):

NH3 yield (VNH3) was calculated using the following equation:

VNH3 = c(NH3)  V / (t  mcat.)                   (1)

FE was calculated by the following equation:

FENH3 = 3F  c(NH3)  V / (17  Q)  100%        (2)

where c(NH3) is the measured NH3 concentration, V is the volume of the electrolyte in 

the cathodic chamber (35 mL), t is the electrolysis time (2 h), mcat. is the mass loading 

of the catalyst on CP (0.1 mg), F is the Faraday constant (96485 C mol−1), and Q is 

the total charge passed through the electrode.

Calculation of FE for H2:

FE for H2 was calculated using the following equation:

FEH2 = 2F  n(H2) / Q  100%                  (3)

Calculations of electrochemical active surface area (ECSA) and turnover 

frequency (TOF): The ECSA of the electrode was determined by the electrochemical 

double-layer capacitance (Cdl). We tested the cyclic voltammetry curves of OV-Ti2O3 

and pristine Ti2O3 at scanning rates of 20, 40, 60, 80, 100, 120, 140, and 160 mV s−1 

to calculate the Cdl value. Moreover, the specific capacitance (Cs) for a flat surface is 

generally found to be in the range of 2060 μF cm−2. The ECSA was calculated by 

dividing the Cdl with the specific capacitance (Cs = 60 μF cm−2) of flat electrodes in 

0.1 M HCl.4,5

AECSA = CdI / Cs                       (4)
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The TOF value of the electrocatalyst was calculated by the following equation:6

TOF = VNH3  mcat.  NA / 17  surface sites  AECSA       (5)

where NA is Avogadro constant (6.023  1023 mol−1). Since the exact nitrogen binding 

site is unknown, we conservatively estimate the number of active sites as the total 

number of surface sites. Surface Ti ions of Ti2O3 are considered to be catalytic active 

species (two Ti atoms and three O atoms with a volume of 313.5 Å3).

Surface sites per real surface area:7,8

      (6)

2 2
3 3

3

Atoms per unit cell 5 Atoms unit cellSurface sites = =
Volume unit cell 313.5 unit ceÅ ll
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Fig. S1. XPS spectra of pristine Ti2O3 and OV-Ti2O3 in the Ti 2p region.
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Fig. S2. TEM image of OV-Ti2O3.
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Fig. S3. SEM image of pristine Ti2O3.
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Fig. S4. SEM image and corresponding EDX elemental mapping images of OV-Ti2O3.
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Fig. S5. Schematic illustration of the NRR process.
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Fig. S6. (a) UV-vis absorption spectra of indophenol assays with NH4
+ concentrations 

after incubated for 2 h at room temperature. (b) Calibration curve used for calculation 

of NH4
+ concentrations.
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Fig. S7. (a) UV-vis absorption spectra of various N2H4 concentrations after incubated 

for 10 min at room temperature. (b) Calibration curve used for calculation of N2H4 

concentrations.
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Fig. S8. Tafel plots of OV-Ti2O3 and pristine Ti2O3 catalysts for NRR.
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Fig. S9. UV-vis absorption spectra of the electrolytes stained with the indophenol 

indicator for the OV-Ti2O3 electrode at different potentials after NRR electrolysis for 

2 h.



S16

Fig. S10. (a) Chronoamperometry curves of pristine Ti2O3 at different potentials in 

N2-saturated 0.1 M HCl solution. (b) Corresponding UV-vis absorption spectra of the 

electrolytes stained with the indophenol indicator after NRR electrolysis for 2 h.
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Fig. S11. (a) Ion chromatogram curves of the standard solution with NH4
+ 

concentrations in 0.1 M HCl. (b) Calibration curve used for estimation of NH4
+. (c) 

Ion chromatogram for the electrolytes at a series of potentials after electrolysis for 2 h. 

(d) NH3 yields of OV-Ti2O3/CP at corresponding potentials.
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Fig. S12. NH3 yields and FEs of OV-Ti2O3/CP at −0.25 V in 0.1 M HCl and 0.1 M 

Na2SO4.
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Fig. S13. UV-vis absorption spectra of the electrolytes detected by the method of 

Watt and Chrisp after 2 h electrolysis in N2 atmosphere at a series of potentials.
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Fig. S14. Comparisons of the NH3 yields at different applied potentials over OV-

Ti2O3 using a feed gas of 99.999% N2, and purified 99.999% N2 with 0.05 M H2SO4 

or 10 M NaOH.
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Fig. S15. (a) UV-vis spectra of the electrolytes with different electrolysis times at 

−0.25 V on the OV-Ti2O3 catalyst. (b) The mass of produced NH3 vs electrolysis time 

at −0.25 V.



S22

Fig. S16. (a) Chronoamperometry curves of OV-Ti2O3/CP under recycling tests for 

NRR at −0.25 V in 0.1 M HCl. (b) UV-vis absorption spectra of the electrolytes 

stained with indophenol indicator after NRR electrolysis.
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Fig. S17. Photographs of pH test strips in 0.1 M HCl before and after 12-h electrolysis.
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Fig. S18. XRD pattern for OV-Ti2O3/CP after long-term NRR electrolysis.
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Fig. S19. TEM image for OV-Ti2O3/CP after long-term NRR electrolysis.
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Fig. S20. XPS spectra of OV-Ti2O3/CP after long-term NRR electrolysis.
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Fig. S21. Cyclic voltammetry curves of (a) OV-Ti2O3/CP, and (b) pristine Ti2O3/CP 

with various scan rates (20-160 mV s1) in the region of −0.05 to 0.05 V vs Ag/AgCl. 

(c) The corresponding double-layer capacitance (Cdl) of OV-Ti2O3/CP and pristine 

Ti2O3/CP.
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Fig. S22. Nyquist plots of OV-Ti2O3 and pristine Ti2O3.
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Fig. S23. Schematic illustration of Zn-N2 battery.
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Table S1. Comparison of the electrocatalytic NRR performances of OV-Ti2O3 with 

other reported Ti-based catalysts under ambient conditions.

Catalyst Electrolyte NH3 yield FE (%) Ref.

OV-Ti2O3 0.1 M HCl 37.24 µg h–1 mgcat.
–1 19.29 This work

Ti2O3 0.1 M HCl 26.01 μg h−1 mgcat.
–1 9.16 9

TiO2(VO) 0.1 M HCl 3.0 μg h−1 mgcat.
–1 6.5 10

OV-TiO2 nanosheets 0.005 M H2SO4 35.6 µg h–1 mgcat.
–1 5.3 11

Ru/TiO2-VO 0.1 M KOH 2.11 µg h–1 cm–2 0.72 12

Pd-Co/TiO2-VO 0.1 M KOH 4.11 µg h–1 cm–2 2.83 13

Ag@TiO2 0.1 M Na2SO4 14.88 µg h–1 mgcat.
–1 6.2 14

B-doped TiO2 0.1 M Na2SO4 14.4 µg h–1 mgcat.
–1 3.4 15

Mn-doped TiO2 0.1 M Na2SO4 20.05 µg h–1 mgcat.
–1 11.93 16

Pd-doped TiO2 0.1 M Na2SO4 17.4 µg h–1 mgcat.
–1 12.7 17

TiO2/JE-CMTs 0.1 M Na2SO4 20.03 µg h–1 mgcat.
–1 10.76 18

V-doped TiO2 0.5 M LiClO4 17.73 µg h–1 mgcat.
–1 15.3 19

TiO2/Ti 0.1 M Na2SO4 5.6 µg h–1 mgcat.
–1 2.5 20

Ti3+–TiO2-x/TM 0.1 M Na2SO4 3.511010 mol s1 cm2 14.62 21

d-TiO2/TM 0.1 M HCl 7.58 µg h–1 mgcat.
–1 9.17 22

C-TixOy/C 0.1 M Li2SO4 14.8 µg h−1 mgcat.
–1 17.8 23

TiC/C NF 0.1 M HCl 14.1 µg h−1 mgcat.
–1 5.8 24

Zr-doped TiO2 1.0 M KOH 8.9 g h1 cm2 17.3 25

La‐doped TiO2 0.1 M LiClO4 23.06 g h−1 mgcat.
–1 14.54 26
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Table S2. Comparison of NH3 yield and power density of our battery with the 

reported Zn-N2 battery systems.

Battery systems Catalysts Power density NH3 yield Ref.

Zn-N2 OV-Ti2O3 1.02 mW cm2 4.3 µg h–1 mgcat.
–1 This work

Zn-N2 CoPi/HSNPC 0.33 mW cm2 11.58 g h1 mgcat.
–1 1

Zn-N2 CoPi/NPCS 0.49 mW cm2 14.7 g h1 mgcat.
–1 27

Zn-N2 nano-Cu 0.0101 mW cm2 0.125 g h1 cm2 2

Zn-N2 NbS2 nanosheets 0.31 mW cm2 / 28

Zn-N2 VN@NSC-900 0.01642 mW cm2 0.172 g h1 cm2 3

Zn-N2 Fe1.0HTNs 0.02765 mW cm2 0.137 g h1 cm2 29

Zn-N2 Vs-FePS3 NSs 2.6 mW cm2 / 30
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