Supporting Information

Modulated electronic structure of Pd nanoparticles on Mg(OH)₂ for selective benzonitrile hydrogenation into benzylamine at low temperature

Mingkai Zhang,^a Yong Zou,^b Sai Zhang,^{*b,c} and Yongquan Qu^{*a,b}

^a Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an,
 710049, China

^b Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Poly-technical University, Xi'an 710072, China

^c Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.

Email: zhangsai1112@nwpu.edu.cn and yongquan@nwpu.edu.cn

Table of Contents

1. Supporting Figure	3
2. Supporting Table	
3. GC/GCMS Spectrum	11
4. References	15

Fig. S1. XRD of the synthesized Mg(OH)₂.

Fig. S2. TEM image of the synthesized Mg(OH)₂.

Fig. S3. (a) Nitrogen adsorption/desorption isotherm plot of the (a) $Mg(OH)_2$ and (b) C supports. Pore size distribution of the (c) $Mg(OH)_2$ and (d) C supports obtained from BET testing.

Fig. S4. TEM image of the synthesized carbon black.

Fig. S5. Size distribution of (a) Pd/Mg(OH)₂ and (b) Pd/C catalysts.

Fig. S6. Catalytic performance in different solvent. (a) Comparison on activity of different solvent. (b) Comparison on selectivity of different solvent at 11 h reaction.
Reaction condition: 0.5 mmol of benzonitrile, 2 mL of solvent, 20 mg of catalyst, 30 °C, 1 MPa of H₂, or 0.5 mmol of benzonitrile, 2 mL of isopropanol, 20 mg of catalyst, 30 °C, 1 MPa of N₂.

Fig. S7. Comparison between the different metal precursor. Reaction conditions: 0.5 mmol of benzonitrile, 2 mL of isopropanol, 20 mg of catalyst, 30 °C, 1 MPa of H_2 .

Fig. S8. TEM image of the used Pd/Mg(OH)₂.

Fig. S9. Apparent activation energy calculation for *N*-benzylidenemethanamine hydrogenation. Reaction condition: 2 mmol of *N*-benzylidenemethanamine, 5 mg of catalyst, 2 mL of isopropanol, 1 MPa of H_2 .

Fig. S10. *N*-benzylidenemethanamine hydrogenation in the presence of benzylamine on (a) $Pd/Mg(OH)_2$ and (b) Pd/C. **Reaction condition:** 1 mmol of *N*benzylidenemethanamine, 1 mmol of benzylamine, 5 mg of catalyst, 2 mL of isopropanol, 30 °C, 1 MPa of H₂.

Fig. S11. Apparent activation energy calculation for *N*-benzylidenebenzylamine hydrogenation. Reaction condition: 1 mmol of *N*-benzylidenebenzylamine, 5 mg of catalyst, 2 mL of isopropanol, 1 MPa of H_2 .

Fig. S12. Benzonitrile hydrogenation on (a) fresh Pd/Mg(OH)₂ and benzylamine treated Pd/Mg(OH)₂, and (b) fresh Pd/C and benzylamine treated Pd/C. Reaction condition:
0.5 mmol of benzonitrile, 2 mL of isopropanol, 20 mg of catalyst, 30 °C, 1 MPa of H₂.

Fig. S13. N 1s spectrum of the fresh and the benzylamine treated supports.

Fig. S14. FTIR characterization on the fresh and the benzylamine treated supports.

No.	Catalyst	T (°C) • pH ₂ (bar)	Solvent	Additive	X _{BN} (%)	S _{BA} (%)	Ref.
1	Pd/C	30 °C, 6 bar,	H ₂ O/dichloromethane	NaH ₂ PO ₄	95.0	95.0	1
2	Raney Ni	100, 40	Methanol	None	n. a.	76.0	2
3	Sn-Pt/SiO ₂	60, 4	Ethanol	None	100	20	3
4	Pt/Al ₂ O ₃	100, 15	Methanol	Dibenzyl- hydrazine	40	40	4
5	Pd/Al ₂ O ₃	80 °C, 10 bar,	2-Propanol	None	50.0	94.0	5
6	Pd/MCM-41	50, 20	n. a.	CO ₂ (10MPa)	90.2	90.9	6
7	Ni/Al ₂ O ₃	80, 40	H ₂ O, hexane, ethanol	CO ₂ (10 MPa)	97.0	94.4	7
8	Co/Phen@- Al ₂ O ₃ -800	85, 5	i-PrOH	NH ₃ (aq.)	98.0	98.0	8
9	Co@NC-700	110, 10	Methanol	NH ₃ (aq.)	n. a.	94.9 (yield)	9
10	Co ₂ P	130, 40	2-Propanol	NH ₃ (aq.)	n. a.	93.0 (yield)	10
11	Ni@mSiO ₂ @L DH	100, 20	H_2O	None	100	76.1	11
12	Ru _{3-CO} /K-Alu C	70 °C, 1	Dehydrated 1,4- dioxane/n-nonane	None	>99.0	93.0	12
13	12Cu-MgO	240, H ₂ /Benzontrile = 7.5	n. a.	None	98.0	70.0	13
14	$Pd/\gamma -Al_2O_3$ and $Pd/$ $\eta -Al_2O_3$	90, 15	n. a.	None	100	>90.0%	14
15	Pd/Al ₂ O ₃	80, n.a.	n. a.	None	60	100	15
16	Pd/Mg(OH) ₂	30, 10	2-Propanol	None	99.2	96.1	This work

Table S1. Comparison on performance of benzonitrile hydrogenation in the reported literature

GC spectrums

GCMS spectrum

GCMS standard spectrum of benzylamine

References

- L. Hegedűs and T. Máthé, Selective heterogeneous catalytic hydrogenation of nitriles to primary amines in liquid phase: Part I. Hydrogenation of benzonitrile over palladium, *Appl. Catal. A*, 2017, **544**, 1-9.
- O. G., Degischer, F. Roessler, and P. Rys, Catalytic Hydrogenation of Benzonitrile over Raney Nickel: Influence of Reaction Parameters on Reaction Rates and Selectivities, *Chem. Ind.: Catal Org. React.*, 2001, 82, 241-254.
- O. Domínguez-Quintero, S. Martínez, Y. Henríquez, L. D'Ornelas, H. Krentzien and J. Osuna, Silica-supported palladium nanoparticles show remarkable hydrogenation catalytic activity, *J. Mol. Catal. A: Chem.*, 2003, **197**, 185-191.
- 4. H. Paul, S. Basu, S. Bhaduri and G.K. Lahiri, Platinum carbonyl derived catalysts on inorganic and organic supports: a comparative study. *J. Organomet. Chem.*, 2004, **689**, 309-316.
- J.J.W. Bakker, A.G.v.d. Neut, M.T. Kreutzer, J.A. Moulijn and F. Kapteijn, Catalyst performance changes induced by palladium phase transformation in the hydrogenation of benzonitrile, *J. Catal.*, 2010, 274, 176–191.
- M. Chatterjee, H. Kawanami, M. Sato, T. Ishizaka, T. Yokoyama and T. Suzuki, Hydrogenation of nitrile in supercritical carbon dioxide: a tunable approach to amine selectivity, *Green Chem.*, 2010, 12, 87-93.
- H. Cheng, X. Meng, C. Wu, X. Shan, Y. Yu and F. Zhao, Selective hydrogenation of benzonitrile in multiphase reaction systems including compressed carbon dioxide over Ni/Al₂O₃ catalyst, *J. Mol. Catal. A*, 2013, **379**, 72-79.
- F. Chen, C. Topf, J. Radnik, C. Kreyenschulte, H. Lund, M. Surkus, A.E. Schneider, L. He, K. Junge and M. Beller, Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C=N and C=O Bonds, J. Am. Chem. Soc., 2016, 138, 8781–8788.
- J. Liu, W. Guo, H. Sun, R. Li, Z. Feng, X. Zhou and J. Huang, Reductive Amination of Carbonyl Compounds with Ammonia and Hydrogenation of Nitriles to Primary Amines with Heterogeneous Cobalt Catalysts, *Chem. Res. Chinese U.*, 2019, **35**, 457-462.
- 10. T. Mitsudome, M. Sheng, A. Nakata, J. Yamasaki, T. Mizugaki and K. Jitsukawa, A cobalt phosphide catalyst for the hydrogenation of nitriles, Chem. Sci. 2020, **11**, 6682-6689.

- Y. Cao, L. Niu, X. Wen, W. Feng, L. Huo and G. Bai, Novel layered double hydroxide/oxidecoated nickel-based core-shell nanocomposites for benzonitrile selective hydrogenation: An interesting water switch, *J. Catal.*, 2016, **339**, 9-13.
- S. Muratsugu, S. Kityakarn, F. Wang, N. Ishiguro, T. Kamachi, K. Yoshizawa, O. Sekizawa, T. Uruga and M. Tada, Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al₂O₃ surface, *Phys. Chem. Chem. Phys.*, 2015, **17**, 24791-24802.
- R. K. Marella, K. S. Koppadi, Y. Jyothi, K. S. Rama Rao and D. R. Burri, Selective gas-phase hydrogenation of benzonitrile into benzylamine over Cu–MgO catalysts without using any additives, *New J. Chem.*, 2013, **37**, 3229-3235.
- C. Dai, Y. Li, C. Ning, W. Zhang, X. Wang and C. Zhang, The influence of alumina phases on the performance of Pd/Al₂O₃ catalyst in selective hydrogenation of benzonitrile to benzylamine, *Appl. Catal. A*, 2017, **545**, 97-103.
- Y. Hao, M. Li, F. Cárdenas-Lizana and M. A. Keane, Selective Production of Benzylamine via Gas Phase Hydrogenation of Benzonitrile over Supported Pd Catalysts, *Catal. Letters*, 2015, 146, 109-116.