Supporting Information

 AAg_2PS_4 (A = K, Na/K): the first-type of noncentrosymmetric alkali metal Ag-based thiophosphates exhibiting excellent secondorder nonlinear optical performances

Wenfeng Zhou,^a Bingxuan Li,^b Wenlong Liu,^a and Sheng-Ping Guo*^a

^a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu
225002, P. R. China
^b Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

Corresponding author: <u>spguo@yzu.edu.cn</u>

Supplementary Information Index

Tables and Figures

- Table S1. Crystal data and structure refinement parameters for 1 and 2.
- Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² ×

10³) for 1 and 2. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Table S3. Bond lengths (Å) for 1.

Table S4. The EDS results of 1 and 2.

Table S5. Bond valence sums 1 and 2.

Table S6. The calculated dipole moment and distortion $(\sigma_{\theta(tet)}^2)$ of single AgS₄ tetrahedron among **1** and the known Ag-based thiophosphates.

Table S7. The NLO data of known NLO-active thiophosphates with 3D framework.

Table S8. The measured birefringence of **2** at the wavelength of 546.1 nm with polarizing microscope.

Fig. S1. Photographs of the crystals for 1 and 2.

Fig. S2. The EDS images for single crystals of 1 and 2.

Fig. S3. AgS₄ tetrahedra in (a) **1**, (b) Ag₃PS₄, (c) AgZnPS₄, (d) AgHgPS₄, (e) AgHg₃PS₆, and (f) AgCd₃PS₆.

Fig. S4. Structural evolution from (a) AGS to (b) 1.

Fig. S5. Tauc plots of **1** and **2**. n = 2 (red and blue lines): direct band gap; n = 1/2 (green line): indirect band gap.

Fig. S6. FT-IR spectra of for 1 and 2.

Fig. S7. TGA-DSC curves for 1 and 2.

Fig. S8. The calculated real parts (a and b) and imaginary parts (b and d) of optical dielectric functions for **1** and **2**.

Fig. S9. The frequency-dependent birefringence Δn of (a) 1 and (b) 2.

Fig. S10. Photograph of 2 for the measurement of birefringence.

Empirical formula	$KAg_2PS_4(1)$	$(Na_{0.30}K_{0.70})Ag_2PS_4(2)$
Formula weight	414.05	409.30
Temperature/K	293(2)	293(2)
Crystal system	Tetragonal	Tetragonal
Space group	$I^{\overline{4}}2m$	<i>I</i> ⁴ 2 <i>m</i>
a/Å	6.5985(3)	6.5992(3)
$c/{ m \AA}$	8.1549(9)	8.1499(6)
$V/\text{\AA}^3$	355.07(5)	354.92(5)
Z	2	2
$D_{\rm calc} {\rm g/cm^3}$	3.873	3.830
μ/mm^{-1}	7.383	7.231
F(000)	384.0	379.0
2θ range for data collection/°	7.994 to 54.984	7.946 to 60.264
Index ranges	$-8 \le h \le 5, -8 \le k \le 7, -10 \le l \le 10$	$-9 \le h \le 6, -6 \le k \le 9, -11 \le l \le 11$
Reflections collected	852	932
Independent reflections	220 [$R_{int} = 0.0230, R_{\sigma} = 0.0220$]	280 [$R_{int} = 0.02301, R_{\sigma} = 0.0227$]
Data/restraints/parameters	220/0/14	280/0/15
Goodness-of-fit on F ²	1.065	1.058
Flack parameter	0.04 (3)	0.00 (3)
Final R indexes [I $\ge 2\sigma$ (I)]	R1 = 0.0238, wR2 = 0.0666	R1 = 0.0223, wR2 = 0.0699
Final R indexes [all data]	R1 = 0.0241, wR2 = 0.0669	R1 = 0.0225, wR2 = 0.0700
Largest diff. peak/hole/e Å-3	0.79/-0.67	0.50/-0.68

 Table S1. Crystal data and structure refinement parameters for 1 and 2.

^{*a*}*R*1= ||*F*_o| - |*F*_c||/|*F*_o|. ^{*b*}*wR*2 = [*w*(*F*_o² - *F*_c²)²]/[*w*(*F*_o²)²]^{1/2}.

Atom	Wyckoff site	x	x y		U _{eq}
			1		
K	2 <i>a</i>	5000	5000	5000	25.9(8)
Ag	4 <i>d</i>	0	5000	2500	40.8(6)
Р	2b	0	10000	5000	8.9(7)
S	8 <i>i</i>	1819(2)	8181(2)	3602(2)	18.1(6)
			2		
Na/K	2 <i>a</i>	5000	5000	5000	27.7(16)
Ag	4 <i>d</i>	5000	10000	7500	39.6(4)
Р	2b	0	10000	5000	11.4(5)
S	8 <i>i</i>	1822.9(18)	8177.1(18)	6393.1(18)	21.5(5)

Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **1** and **2**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Table S3. Bond lengths (Å) for 1.

Bond	Length/Å	Bond	Length/Å
	1	2	
K(1)–S(1)	3.180(2) × 4	Na(1)/K(1)–S(1)	3.175(2) × 4
Ag(1)–S(1)	2.580(8) × 4	Ag(1)–S(1)	2.580(6) × 4
P(1)–S(1)	2.044(2) × 4	P(1)–S(1)	2.045(2) × 4

Table S4. The EDS results of 1 and 2.

Molar ratio	Na	K	Ag	Р	S
1	-	10.15	21.21	15.69	52.95
2	3.89	9.18	20.79	13.82	52.33

Atoms	BVS	Atoms	BVS
	1	2	
Κ	0.90	Na/K	0.73
Ag	1.15	Ag	1.15
Р	4.89	Р	4.90
S	-2.02	S	-1.95

Table S5. Bond valence sums 1 and 2.

Table S6. The calculated dipole moment and distortion $(\sigma_{\theta(tet)}^2)$ of single AgS₄ tetrahedron among **1** and the known Ag-based thiophosphates.

Compound	Magnitude (deby)	$\sigma_{ heta(ext{tet})}^2$	Compound	magnitude (deby)	$\sigma_{ heta(ext{tet})}^2$
1	13.43	474.9	AgHgPS ₄	9.29	14.85
Ag ₃ PS ₄	4.76	20.54	AgHg ₃ PS ₆	8.36	73.42
AgZnPS ₄	7.40	18.23	AgCd ₃ PS ₆	4.28	159.4

Note:
$$\sigma_{\theta(\text{tet})}^{2} = i = 1^{6} (\theta_{t} - 109.47^{\circ})/5$$

, where $\sigma_{\theta(\text{tet})}^2$ is used to describe the distortion and θ_t is the

bond angle.

	Space		Band gap			PM/	
Compound	group	Structural units	(eV)	SHG	LIDT	NPM	Ref.
Ag ₃ PS ₄	$Pmn2_1$	AgS ₄ , PS ₄	2.43	$1.3 \times AGS$	_	PM	[1]
Cu_3PS_4	$Pmn2_1$	CuS ₄ , PS ₄	2.25	$0.5 \times AGS$	_	NPM	[1]
Ag _{1.5} Cu _{1.5} PS ₄	$Pmn2_1$	(Ag/Cu)S ₄ , PS ₄	2.37	$0.8 \times AGS$	-	PM	[1]
$Eu_2P_2S_6$	Pn	EuS_8, P_2S_6	2.54	$0.9 \times AGS$	$3.4 \times AGS$	PM	[2]
$Ba_2P_2S_6$	Pn	BaS_6, P_2S_6	4.3	$1.7 \times AGS$	$5.5 \times AGS$	NPM	[3]
$Pb_2P_2S_6$	Pn	PbS_6, P_2S_6	2.6	$1.4 \times AGS$	$2.5 \times AGS$	PM	[3]
$Zn_3P_2S_8$	$P^{\overline{4}}n^2$	ZnS ₄ , PS ₄	3.12	$2.6 \times AGS$	-	PM	[4]
$Hg_3P_2S_8$	Aea2	HgS ₄ , PS ₄	2.77	$4.2 \times AGS$	$4 \times AGS$	PM	[5]
SnPS ₃	Pn	$\mathrm{SnS}_8, \mathrm{P}_2\mathrm{S}_6$	2.35	$1.1 \times AGS$	$6.9 \times AGS$	PM	[6]
KAg ₂ PS ₄	I ⁴ 2m	AgS ₄ , PS ₄	2.92	$1.40 \times AGS$	$3.49 \times AGS$	PM	This work
(Na _{0.30} K _{0.70})Ag ₂ PS ₄	I ⁴ 2m	AgS ₄ , PS ₄	2.89	$1.65 \times AGS$	2.77 × AGS	PM	This work
AgZnPS ₄	$Pna2_1$	AgS ₄ , ZnS ₄ , PS ₄	2.76	$1.8 \times AGS$	-	PM	[7]
CuZnPS ₄	I ⁴ 2m	CuS ₄ , ZnS ₄ , PS ₄	3.00	$3 \times AGS$	$6 \times AGS$	PM	[8]
LiZnPS ₄	Ī4	LiS ₄ , ZnS ₄ , PS ₄	3.38	$0.8 \times AGS$	-	PM	[7]
$Cu_5Zn_{0.5}P_2S_8$	$Pmn2_1$	(Cu/Zn)S ₄ , ZnS ₄ , PS ₄	2.31	$0.3 \times AGS$	$3.2 \times AGS$	PM	[9]
AgHgPS ₄	Pn	AgS ₄ , HgS ₄ , PS ₄	2.63	$5.09 \times AGS$	_	PM	[10]
CuHgPS ₄	$Pna2_1$	CuS ₄ , HgS ₄ , PS ₄	2.03	$6.5 \times AGS$	$4.2 \times AGS$	PM	[11]
NaHgPS ₄	$P^{\overline{4}}n^2$	HgS ₄ , PS ₄	2.78	$3.14 \times AGS$	_	PM	[12]
KHgPS ₄	Pnn2	HgS ₄ , PS ₄	2.90	$4.15 \times AGS$	_	PM	[12]
AgHg ₃ PS ₆	Сс	AgS ₄ , HgS ₄ , PS ₄	1.85	$0.5 \times AGS$	_	NPM	[13]
$Cu_5Hg_{0.5}P_2S_8$	$Pmn2_1$	CuS ₄ , HgS ₄ , PS ₄	2.12	$0.8 \times AGS$	_	PM	[13]
AgCd ₃ PS ₆	Сс	AgS ₄ , CdS ₄ , PS ₄	2.56	$0.45 \times AGS$	-	-	[14]
CuCd ₃ PS ₆	Сс	CuS ₄ , CdS ₄ , PS ₄	2.24	0.9× AGS	$4.1 \times AGS$	NPM	[15]
LiCd ₃ PS ₆	Сс	LiS_4 , CdS_4 , PS_4	2.97	$0.8 \times AGS$	$5.5 \times AGS$	PM	[16]
AgGa ₂ PS ₆	Сс	AgS ₃ , GaS ₄ , PS ₄	2.75	$1 \times AGS$	$5.1 \times AGS$	PM	[17]
LiGa ₂ PS ₆	Сс	LiS ₄ , GaS ₄ , PS ₄	3.15	$0.5 \times AGS$	$10.4 \times AGS$	-	[16]

 Table S7. The NLO data of known NLO-active thiophosphates with 3D framework.

								_
KSbP ₂ S ₆	$Pna2_1$	KS ₉ , SbS ₇ , P ₂ S ₆	2.9	$2.2 \times AGS$	$3 \times AGS$	PM	[18]	
KBiP ₂ S ₆	$Pna2_1$	KS ₉ , BiS ₇ , P ₂ S ₆	2.3	$1.8 \times AGS$	$3 \times AGS$	PM	[18]	
$K_2BaP_2S_6$	$Pna2_1$	$KS_7, KS_8, BaS_{10}, P_2S_6$	4.1	$2.1 \times AGS$	$8 \times AGS$	PM	[18]	
RbBiP ₂ S ₆	$P2_1$	BiS_7, P_2S_6	2.10	11.9 × AGS	11.3 × AGS	PM	[19]	

 Table S8. The measured birefringence of 2 at the wavelength of 546.1 nm with polarizing microscope.

Crystal	Retardation (ΔR , μ m)	Thickness (µm)	Birefringence (∆ <i>n</i>)
2	1.618	6.7	0.24

Fig. S1. Photographs of the crystals for (a) 1 and (b) 2.

Fig. S2. The EDS images for single crystals of (a) 1 and (b) 2.

Fig. S3. AgS₄ tetrahedra in (a) **1**, (b) Ag₃PS₄, (c) AgZnPS₄, (d) AgHgPS₄, (e) AgHg₃PS₆, and (f) AgCd₃PS₆.

Fig. S4. Structural evolution from (a) AGS to (b) 1.

Fig. S5. Tauc plots of **1** and **2**. n = 2 (red and blue lines): direct band gap; n = 1/2 (green lines): indirect band gap.

Fig. S6. FT-IR spectra for 1 and 2.

Fig. S7. TGA-DSC curves for 1 and 2.

Fig. S8. The calculated real parts (a and b) and imaginary parts (b and d) of optical dielectric functions for **1** and **2**.

Fig. S9. The frequency-dependent birefringence Δn of (a) 1 and (b) 2.

Fig. S10. Photograph of 2 for the birefringence measurement.

REFERENCES

- Y. Yang, B. B. Zhang, X. W. Wu and K. Wu, A Series of M₃PS₄ (M = Ag, Cu and Ag/Cu) Thiophosphates with Diamond-Like Structures Exhibiting Large Second Harmonic Generation Responses and Moderate Ion Conductivities, *Dalton Trans.*, 2021, 50, 4129–4132.
- X. Huang, S. H. Yang, X. H. Li, W. L. Liu and S. P. Guo, Eu₂P₂S₆: The First Rare-Earth Chalcogenophosphate Exhibiting Large Second-Harmonic Generation Response and High Laser-Induced Damage Threshold, *Angew. Chem. Int. Ed.*, 2022, e202206791.
- B. H. Ji, A. Sarkar, K. Wu, A. Swindle and J. Wang, A₂P₂S₆ (A = Ba and Pb): A Good Platform to Study the Polymorph Effect and Lone Pair Effect to Form an Acentric Structure, *Dalton Trans.*, 2022, **51**, 4522–4531.
- Z. Li, X. X. Jiang, M. L. Zhou, Y. W. Guo, X. Y. Luo, Y. C. Wu, Z. S. Lin and J. Y. Yao, Zn₃P₂S₈: A Promising Infrared Nonlinear-Optical Material with Excellent Overall Properties, *Inorg. Chem.*, 2018, 57, 10503–10506.
- W. H. Xing, F. Liang, C. L. Tang, E. Uykur, Z. S. Lin, J. Y. Yao, W. L. Yin and B. Kang, Highly Distorted [HgS₄] Motif-Driven Structural Symmetry Degradation and Strengthened Second-Harmonic Generation Response in the Defect Diamond-Like Chalcogenide Hg₃P₂S₈, ACS. Appl. Mater. Interfaces, 2021, 13, 37331–37338.
- Z. H. Shi, M. Yang, W. D. Yao, W. L. Liu and S. P. Guo, SnPQ₃ (Q = S, Se, S/Se): A Series of Lone-Pair Cationic Chalcogenophosphates Exhibiting Balanced NLO Activity Originating from SnQ₈ Units, *Inorg. Chem.*, 2021, 60, 14390–14398.
- M. L. Zhou, L. Kang, J. Y. Yao, Z. S. Lin, Y. C. Wu and C. T. Chen, Midinfrared Nonlinear Optical Thiophosphates from LiZnPS₄ to AgZnPS₄: A Combined Experimental and Theoretical Study, *Inorg. Chem.*, 2016, 55, 3724–3726.
- Z. Li, S. Z. Zhang, Z. W. Huang, L. D. Zhao, E. Uykur, W. H. Xing, Z. S. Lin, J. Y. Yao and Y. C. Wu, Molecular Construction from AgGaS₂ to CuZnPS₄: Defect-Induced Second Harmonic Generation Enhancement and Cosubstitution-Driven Band Gap Enlargement, *Chem. Mater.*, 2020, **32**, 3288–3296.

- B. J. Song, Z. J. Ma, B. X. Li, X. T. Wu, H. Lin and Q. L. Zhu, Structural Modulation from Cu₃PS₄ to Cu₅Zn_{0.5}P₂S₈: Single-Site Aliovalent-Substitution-Driven Second-Harmonic-Generation Enhancement, *Inorg. Chem.*, 2021, 60, 4357–4361.
- W. H. Xing, N. Z. Wang, C. L. Tang, C. X. Li, Z. S. Lin, J. Y. Yao, W. L. Yin and B. Kang, From AgGaS₂ to AgHgPS₄: Vacancy Defects and Highly Distorted HgS₄ Tetrahedra Double-Induced Remarkable Second-Harmonic Generation Response, *J. Mater. Chem. C*, 2021, 9, 1062–1068.
- M. Y. Li, Z. Ma, B. Li, X. T. Wu, H. Lin and Q. L. Zhu, HgCuPS₄: An Exceptional Infrared Nonlinear Optical Material with Defect Diamond-like Structure, *Chem. Mater.*, 2020, **32**, 4331–4339.
- W. H. Xing, C. L. Tang, P. F. Gong, J. Y. Wu, Z. S. Lin, J. Y. Yao, W. L. Yin and B. Kang, Investigation into Structural Variation from 3D to 1D and Strong Second Harmonic Generation of the AHgPS₄ (A⁺ = Na⁺, K⁺, Rb⁺, Cs⁺) Family, *Inorg. Chem.*, 2021, 60, 18370–18378.
- Y. Wang, Y. Q. Fang, Y. Z. Cao and F. Q. Huang, Two Nonlinear Optical Thiophosphates Cu₅Hg_{0.5}P₂S₈ and AgHg₃PS₆ Activated by Their Tetrahedra-Stacking Architecture, *Inorg. Chem.*, 2022, **61**, 1620–1626.
- Y. H. Fan, X. M. Jiang, B. W. Liu, S. F. Li, W. H. Guo, H. Y. Zeng, G. C. Guo and J. S. Huang, Phase Transition and Second Harmonic Generation in Thiophosphates Ag₂Cd(P₂S₆) and AgCd₃(PS₄)S₂ Containing Two Second-Order Jahn–Teller Distorted Cations, *Inorg. Chem.*, 2017, 56, 114–124.
- Z. Li, S. Z. Zhang, W. H. Xing, Y. W. Guo, C. X. Li, Z. S. Lin, J. Y. Yao and Y. C. Wu, Mixed-Metal Thiophosphate CuCd₃PS₆: An Infrared Nonlinear Optical Material Activated by Its Three-in-One Tetrahedra-Stacking Architecture, *J. Mater. Chem. C*, 2020, 8, 5020–5024.
- J. H. Feng, C. L. Hu, B. X. Li and J. G. Mao, LiGa₂PS₆ and LiCd₃PS₆: Molecular Designs of Two New Mid-Infrared Nonlinear Optical Materials, *Chem. Mater.*, 2018, 30, 3901–3908.

- J. H. Feng, C. L. Hu, X. Xu, B. X. Li, M. J. Zhang and J. G. Mao, AgGa₂PS₆: A New Mid-Infrared Nonlinear Optical Material with a High Laser Damage Threshold and a Large Second Harmonic Generation Response, *Chem. - Eur. J.*, 2017, 23, 10978–10982.
- V. Nguyen, B. H. Ji, K. Wu, B. B. Zhang and J. Wang, Unprecedented Mid-Infrared Nonlinear Optical Materials Achieved by Crystal Structure Engineering, a Case Study of (KX)P₂S₆ (X = Sb, Bi, Ba), *Chem. Sci.*, 2022, 13, 2640–2648.
- M. M. Chen, S. H. Zhou, W. B. Wei, M. Y. Ran, B. X. Li, X. T. Wu, H. Lin and Q. L. Zhu, RbBiP₂S₆: A Promising IR Nonlinear Optical Material with a Giant Second-Harmonic Generation Response Designed by Aliovalent Substitution, *ACS Mater. Lett.*, 2022, 4, 1264–1269