Supporting Information

Stabilized photoemission from organic molecules in zero-

dimensional hybrid Zn and Cd halides

*Tielyr D. Creason,*¹ *Hadiah Fattal,*¹ *Isaiah W. Gilley,*¹ *Brett N. Evans,*¹ *Jie Jiang,*² *Ruth Pachter,*² *Daniel T. Glatzhofer,*¹ *and Bayram Saparov*¹*

¹Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States ²Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH, USA

*Corresponding authors: saparov@ou.edu

Formula weight (g/mol) Temperature (K) Radiation, wavelength (Å)	618.67 295(2)
Temperature (K) Radiation, wavelength (Å)	295(2)
Radiation, wavelength (Å)	
	Μο Κα, 0.71073
Crystal system	Monoclinic
Space group	<i>C</i> 2/ <i>c</i>
Ζ	4
	a = 14.909(3) Å
	<i>b</i> = 12.1382(17) Å
Unit cell parameters	c = 15.403(8) Å
	$\beta = 104.058(4)^{\circ}$
Volume (Å ³)	2704.0(8)
Density (ρ_{calc}) (g/cm ³)	1.520
Absorption coefficient (μ) (mm ⁻¹)	1.220
$ heta_{\min} - heta_{\max}$ (°)	2.190 - 24.711
Reflections collected	24977
Independent reflections	2302
D_{i} indices $(I > 2 - (I))$	$R_1 = 0.0413$
π^* matces $(I \ge 2\sigma(I))$	$wR_2 = 0.0791$
Goodness-of-fit on F^2	1.224
Largest diff. peak and hole $(e^{-}/Å^3)$	0.440 and -0.235

Table S1. Selected single crystal data and structure refinement parameters for R_2CdCl_4 .

Atom	x	у	z	$U_{ m eq}, { m \AA}^2$
Cd(1)	0.000000	0.29030(5)	0.250000	0.0934(2)
Cl(1)	0.09694(8)	0.39169(13)	0.17127(9)	0.1058(5)
Cl(2)	0.11555(8)	0.16940(13)	0.34604(11)	0.1256(6)
N(1)	0.2897(3)	0.3416(6)	0.3283(4)	0.136(2)
C(1)	0.3335(4)	0.2750(6)	0.3920(5)	0.161(3)
C(2)	0.4240(4)	0.2909(6)	0.4311(4)	0.131(2)
C(3)	0.4705(3)	0.3769(5)	0.4052(3)	0.0922(15)
C(4)	0.4220(4)	0.4415(5)	0.3388(4)	0.1076(17)
C(5)	0.3319(4)	0.4247(6)	0.2998(4)	0.123(2)
C(6)	0.5683(4)	0.4017(5)	0.4445(4)	0.1087(18)
C(7)	0.6233(4)	0.3556(5)	0.5085(4)	0.1125(18)
C(8)	0.7215(3)	0.3805(5)	0.5484(4)	0.0939(15)
C(9)	0.7653(4)	0.3261(5)	0.6239(4)	0.1171(19)
C(10)	0.8554(4)	0.3452(5)	0.6636(4)	0.130(2)
C(11)	0.9051(4)	0.4194(5)	0.6293(4)	0.1062(17)
C(12)	0.8643(4)	0.4745(5)	0.5549(4)	0.118(2)
C(13)	0.7720(4)	0.4557(5)	0.5133(4)	0.1116(18)

Table S2. Atomic coordinates and equivalent isotropic displacement parameters (U_{eq}^{a}) for

 $R_2CdCl_4.$

 ^{a}U eq is defined as one-third of the trace of the orthogonalized Uij tensor.

Atom pair	Distance (Å)	Label	Angle (°)
Cd – Cl1	2.4343(14)	Cl1-Cd-Cl1	119.26(7)
Cd - Cl2	2.4641(14)	Cl1-Cd-Cl2 ×2	100.78(5)
		Cl1-Cd-Cl2 ×2	114.53(6)
		Cl2-Cd-Cl2	106.90

Table S3. A comparison of bond distances and angles within the $[CdCl_4]_{2-}$ tetrahedra in R₂CdCl₄.

Fig. S1. Picture of RCl single crystals synthesized from slow evaporation.

Fig. S2. Pictures of (a) R_2ZnCl_4 and (b) R_2CdCl_4 single crystals under (top) ambient light and (bottom) a 395 nm lamp.

Fig. S3. Room temperature powder X-ray diffraction (PXRD) patterns of (a) R_2ZnCl_4 and (b) R_2CdCl_4 . The green asterisk represents a small impurity of RCl that forms when grinding R_2CdCl_4 .

Fig. S4. PXRD measured over a 2-week period for (a) R_2ZnCl_4 and (b) R_2CdCl_4 . When left in ambient air, neither sample demonstrates noticeable degradation. The green asterisk indicates the presence of RCl impurity formed during the PXRD sample preparation.

Fig. S5. Thermogravimetric analysis (TGA, in blue) and differential scanning calorimetry (DSC, in red) plots for (a) R₂ZnCl₄ and (b) R₂CdCl₄.

Fig. S6. The Commission Internationale de l'Eclairage (CIE) emission color coordinates for R_2ZnCl_4 (blue dot), R_2CdCl_4 (red dot), and RCl (green dot).

Fig. S7. DFT-optimized (PBE functional) primitive unit cell for R₂CdCl₄

Fig. S8. The Kubelka-Munk pseudoabsorbance plots for (a) R₂ZnCl₄ and (b) R₂CdCl₄.