## Electronic Supplementary Information

# **Chiral Copper(I)-Organic Frameworks for Dye Degradations and Enantioselective Recognition of Amino Acids**

Jianping Zhao,<sup>[a]</sup> Jie Luo,<sup>[a]</sup> Zhihong Lin,<sup>[a]</sup> Xu Chen,<sup>[a]</sup> Guo-Hong Ning,\*<sup>[a]</sup> Junzhi Liu,\*<sup>[b]</sup> and Dan Li\*<sup>[a]</sup>

<sup>a.</sup> College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
E-mail: guohongning@jnu.edu.cn, danli@jnu.edu.cn
<sup>b.</sup> Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong, Hong Kong 999077, China.
E-mail: juliu@hku.hk

#### Contents

- 1. Instruments and methods.
- 2. Synthetic procedures
- 3. Fourier-transform infrared (FT-IR) spectra
- 4. Solid-state <sup>13</sup>C CP/MAS NMR spectra
- 5. Scanning electron microscopy (SEM)
- 6. Energy Dispersive X-ray Spectroscopy (EDS)
- 7. Structural Simulation
- 8. Gas adsorption isotherms and the pore size distribution
- 9. Transmission electron microscopy (TEM)
- 10. Thermogravimetric analysis (TGA)
- 11. Various-Temperature PXRD
- 12. X-ray photoelectron spectroscopy (XPS)
- 13. Stability in various solvents
- 14. Solid state UV-vis spectroscopy
- 15. CD spectra comparison
- 16. Dye adsorption and degradation
- 17. Chiral recognition

#### 1. Instruments and methods.

Starting materials, reagents, and solvents were purchased from commercial sources and used without further purification. Powder X-ray diffraction (PXRD) data was collected at 40 kV, 30 mA using microcrystalline samples on a Rigaku Ultima IV diffractometer using Cu-Ka radiation ( $\lambda = 1.5418$  Å). The measurement parameters include a scan speed of 0.5 °/min, a step size of 0.02°, and a scan range of  $2\theta$  from 1.5° to 30°. For temperature-dependent PXRD, the measurement parameters include a scan speed of 2 °C/min, a step size of 0.02°, and a scan range of  $2\theta$  from 1.5° to 30°. Thermogravimetric analysis was performed on a Mettler-Toledo (TGA/DSC1) thermal analyzer. Measurement were made on approximately 5 mg of dried samples under a N<sub>2</sub> flow with a heating rate of 10 °C/min. The scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) images were obtained on a Helios Nanolab G3 CX microscope. Transmission electron microscopy (TEM) analysis was performed on a JEM-2100F. Fourier transform infrared (FT-IR) spectrum was measured using a Nicolet Avatar 360 FT-IR spectrophotometer. X-ray photoelectron spectroscopy (XPS) experiments were performed by a Thermo ESCALAB 250XI system. GC-MS analysis was carried out on an Agilent 7890B GC analyzer. Liquid <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker Biospin Avance (400 MHz) equipment using tetramethylsilane (TMS) as an internal standard. Solid-state NMR experiments were performed on a Bruker WB Avance II 400 MHz NMR spectrometer. The <sup>13</sup>C CP/MAS NMR spectra were recorded with a 4-mm double-resonance MAS probe and with a sample spinning rate of 10.0 kHz; a contact time of 2 ms (ramp 100) and a pulse delay of 3 s was applied. Gas sorption analyses were conducted using an ASAP 2020 PLUS Analyzer (Micromeritics) with extra-high pure gases. Surface areas were calculated from the adsorption data using Brunauer-Emmett-Teller (BET) methods. The pore size distribution curves were obtained from the adsorption branches using density functional theory (DFT) method. Circular dichroism (CD) spectra were obtained on a Bio-Logic MOS-500 at room temperature.

#### 2. Synthetic procedures

#### 2-1. Synthesis of monomers



(*R*)-DCDB-OH, (*S*)-DCDB-OH, (*R*)-DCDB-Et and (*S*)-DCDB-Et were synthesized according to the published procedure. (*Chem. Commun.* 2010, 46, 4911).

(*R*)-DCDB-OH (1.02 g, 2 mmol), 4-Formylphenylboronic acid (0.72 g, 4.8 mmol), K<sub>2</sub>CO<sub>3</sub> (1.38 g, 10 mmol) and PdCl<sub>2</sub>(dppf) (0.163 g, 0.2 mmol) were added in Dioxane/H<sub>2</sub>O (100 mL, 4:1, v/v). After the solution was stirred for 48 hours at 95 °C and filtered after cooling to room temperature. After the filtrate was concentrated, water (50 mL) was added, and the mixture was extracted with ethyl acetate, organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and then concentrated under reduced pressure to remove the solvent. The crude product was purified by silica gel column chromatography (hexanes/ethyl acetate, 3:1 v/v) to afford (*R*)-BINOL-L1. Yield: (0.506 g, 45%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  10.17 (s, 2H), 8.11 (d, *J* = 8.0 Hz, 4H),  $\delta$  7.76-7.83 (m, 6H), 7.42 (s, 2H), 7.31-7.34 (m, 2H), 7.21-7.23 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  191.79, 152.25, 145.22, 141.88, 135.97, 132.24, 130.89, 130.54, 130.07, 128.67, 128.25, 126.30, 125.25, 119.87, 111.04. (*S*)-BINOL-L1 was synthesized following the same method mentioned above except that (*S*)-DCDB-OH was used instead of (*R*)-DCDB-OH.



(*R*)-DCDB-Et (1.13 g, 2 mmol), 4-Formylphenylboronic acid (0.72 g, 4.8 mmol),  $K_2CO_3$  (1.38 g, 10 mmol) and PdCl<sub>2</sub>(dppf) (0.163 g, 0.2 mmol) were added in Dioxane/H<sub>2</sub>O (100 mL, 4:1, v/v). After the solution was stirred for 48 hours at 95 °C and filtered after cooling to room temperature. After the filtrate was concentrated, water

(50 mL) was added, and the mixture was extracted with ethyl acetate, organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and then concentrated under reduced pressure to remove the solvent. The crude product was purified by silica gel column chromatography (hexanes/ethyl acetate, 5:1 v/v) to afford (*R*)-BINOL-L2. Yield: (0.878 g, 71%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  10.18 (s, 2H), 8.10 (d, *J* = 8.0 Hz, 4H),  $\delta$  7.81-7.89 (m, 6H), 7.40 (s, 2H), 7.18-7.23 (m, 4H), 4.11-4.13 (m, 4H), 1.08 (t, *J* = 8.0 Hz, 6H).<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  191.89, 153.79, 146.39, 139.66, 135.67, 132.77, 130.79, 130.12, 129.97, 127.60, 127.47, 127.37, 124.50, 120.07, 117.35, 65.19, 14.96. (*S*)-BINOL-L2 was synthesized following the same method mentioned above except that (*S*)-DCDB-Et was used instead of (*R*)-DCDB-Et.





A 10 mL Schlenk tube was charged with Cu-CTU(1) (10.4 mg, 0.02 mmol), (R/S)-BINOL-L1 (16.9 mg, 0.03 mmol), 0.75 mL of mesitylene, 0.25 mL of 1,4-dioxane and 0.10 mL of 6 M aqueous acetic acid (AcOH). The mixture was flash frozen at 77 K in liquid nitrogen bath and degassed with three freeze-pump-thaw cycles. Upon warming to room temperature, the mixture was heated at 120 °C for 72 h. The yellowish brown powders were isolated by filtration, washed and solvent exchanged with EtOH, DMF and acetone. The resultants were dried under vacuum at 100 °C for 8 h. Yield: 11.05 mg (40.5%, based on 1). Elemental analysis calcd (%): C 57.3, H 4.0, N 10.7; Found: C 56.9, H 4.0, N 10.7.

#### 2-3. Synthesis of JNM-11



A 10 mL Schlenk tube was charged with **Cu-CTU(1)** (10.4 mg, 0.02 mmol), (*R/S*)-**BINOL-L2** (18.5 mg, 0.03 mmol), 0.75 mL of mesitylene, 0.25 mL of 1,4dioxane and 0.10 mL of 6 M aqueous acetic acid (AcOH). The mixture was flash frozen at 77 K in liquid nitrogen bath and degassed with three freeze-pump-thaw cycles. Upon warming to room temperature, the mixture was heated at 120 °C for 72 h. The yellowish brown powders were isolated by filtration, washed and solvent exchanged with EtOH, DMF and acetone. The resultants were dried under vacuum at 100 °C for 8 h. Yield: 14.9 mg (51.5%, based on 1). Elemental analysis calcd (%): C 58.8, H 4.5, N 10.2; Found: C 57.9, H 4.4, N 10.2.

## 2-4. Optimization of synthetic condition



Figure S1. Optimization of (*R/S*)-JNM-10 reaction condition, showing the best condition is mesitylene (0.75 mL), 1,4-dioxane (0.25 mL) and AcOH (6 M, 0.12 mL) for 3 days.



**Figure S2.** Optimization of (*R/S*)-JNM-11 reaction condition, showing the best condition is mesitylene (0.75 mL), 1,4-dioxane (0.25 mL) and AcOH (6 M, 0.12 mL) for 3 days.

## 3. Fourier-transform infrared (FT-IR) spectra



Figure S3. FT-IR spectra of (*R*)-BINOL-L1, (*R*)-BINOL-L2, Cu-CTU(1), (*R*)-JNM-10 and (*R*)-JNM-11.



Figure S4. FT-IR spectra of (S)-BINOL-L1, (S)-BINOL-L2, Cu-CTU(1), (S)-JNM-10 and (S)-JNM-11.

## 4. Solid-state 13C CP/MAS NMR spectra



Figure S5. Solid-state <sup>13</sup>C CP/MAS NMR spectra and peak assignments of (*R*)-JNM-

10.



Figure S6. Solid-state <sup>13</sup>C CP/MAS NMR spectra and peak assignments of (*R*)-JNM-11.

5. Scanning electron microscopy (SEM)



Figure S7. SEM images of (*R*)-JNM-10.





Figure S8. SEM images of (*R*)-JNM-11.



Figure S9. SEM images of (S)-JNM-10.



Figure S10. SEM images of (S)-JNM-11.

6. Energy Dispersive X-ray Spectroscopy (EDS)



**Figure S11**. EDS of (*R*)-JNM-10 showing the uniform distribution of element C, N, Cl and Cu.



**Figure S12**. EDS of (*R*)-JNM-11 showing the uniform distribution of element C, N, Cl and Cu.



**Figure S13**. EDS of **(S)-JNM-10** showing the uniform distribution of element C, N, Cl and Cu.



Figure S14. EDS of (*S*)-JNM-11 showing the uniform distribution of element C, N, Cl and Cu.

#### 7. Structural Simulation of (R)-JNM-10

Theoretical simulations of (*R*)-JNM-10 were carried out in Accelrys Materials Studio 2019 software package. The relative total energies were calculated by molecular mechanics calculation using DMol<sup>3</sup> energy task, after which the simulated PXRD patterns were determined by the Reflex module. The Pawley refinement of the experimental PXRD was conducted with the Reflex module.<sup>[1]</sup>



Figure S15. PXRD patterns of (*R*)-JNM-10 with the experimental profiles in black, difference curve in light orange, and calculated profiles of AA (green), AB (blue) and ABC (magenta) packing modes. (refinement parameters of Rp = 6.75% and Rwp = 9.19%).



**Figure S16.** Space-filling mode of **(***R***)-JNM-10** in AA stacking model viewed from (left) c axis and (right) *a* axis.



**Figure S17.** Space-filling mode of (*R*)-JNM-10 in AB stacking model viewed from (left) c axis and (right) *a* axis.



**Figure S18.** Space-filling mode of **(***R***)-JNM-10** in ABC stacking model viewed from (left) c axis and (right) *a* axis.

|    | Space g                        | group: <i>P3</i>           |         |
|----|--------------------------------|----------------------------|---------|
|    | a = b = 55.44210 Å             | Å, and c = 4.0898 Å        |         |
|    | $\alpha = \beta = 90^{\circ},$ | and $\gamma = 120^{\circ}$ |         |
|    | Х                              | Y                          | Z       |
| Cu | 0.32217                        | 0.62743                    | 0.08994 |
| С  | 0.37285                        | 0.62215                    | 0.13298 |
| Cu | 0.69463                        | 0.37263                    | 0.74183 |
| С  | 0.44301                        | 0.60459                    | 0.36606 |
| С  | 0.46912                        | 0.62249                    | 0.22523 |
| С  | 0.49041                        | 0.61599                    | 0.23974 |
| С  | 0.48608                        | 0.59158                    | 0.39562 |
| С  | 0.45997                        | 0.57381                    | 0.5373  |
| С  | 0.4387                         | 0.58031                    | 0.52402 |
| С  | 0.50058                        | 0.55787                    | 0.24884 |
| С  | 0.50759                        | 0.58296                    | 0.39562 |
| С  | 0.53258                        | 0.59689                    | 0.56906 |
| С  | 0.54839                        | 0.58337                    | 0.62813 |
| С  | 0.54173                        | 0.55726                    | 0.47353 |
| С  | 0.51635                        | 0.54437                    | 0.28422 |
| С  | 0.5487                         | 0.51478                    | 0.58506 |
| С  | 0.59115                        | 0.55894                    | 0.46861 |
| С  | 0.60692                        | 0.54481                    | 0.49718 |
| С  | 0.59366                        | 0.51676                    | 0.59648 |
| С  | 0.56541                        | 0.50322                    | 0.65847 |
| С  | 0.59551                        | 0.4734                     | 0.47431 |
| С  | 0.60764                        | 0.49975                    | 0.6247  |
| С  | 0.63153                        | 0.50837                    | 0.81761 |
| С  | 0.64325                        | 0.49134                    | 0.85627 |
| С  | 0.6308                         | 0.46492                    | 0.71067 |
| С  | 0.60685                        | 0.45611                    | 0.51806 |
| С  | 0.64265                        | 0.44667                    | 0.76827 |
| С  | 0.41994                        | 0.61056                    | 0.34702 |
| N  | 0.36164                        | -0.27697                   | 0.09378 |
| N  | 0.33522                        | -0.2836                    | 0.09137 |
| N  | 0.6189                         | 0.28347                    | 0.7424  |
| С  | 0.62725                        | 0.24918                    | 0.72246 |
| С  | 0.59859                        | 0.23756                    | 0.71744 |
| Ν  | 0.57905                        | 0.20856                    | 0.67113 |
| С  | 0.2604                         | 0.59394                    | 0.1271  |
| С  | 0.23801                        | 0.59837                    | 0.15832 |
| Ν  | 0.2095                         | 0.57696                    | 0.1969  |
| Ν  | -0.27697                       | 0.36182                    | 0.74141 |
| C  | -0.26005                       | 0.33386                    | 0 72623 |

| Table S1. AA stacking mo | del for ( <i>R</i> )-JNM-10 |
|--------------------------|-----------------------------|
|--------------------------|-----------------------------|

| С  | -0.01695 | 0.43923 | 0.50887  |
|----|----------|---------|----------|
| С  | 0.57036  | 0.59638 | 0.84925  |
| С  | 0.58031  | 0.62371 | 0.95658  |
| С  | 0.56622  | 0.63758 | 0.87519  |
| С  | 0.5421   | 0.62404 | 0.68995  |
| С  | 0.63575  | 0.55913 | 0.42404  |
| С  | 0.64967  | 0.58707 | 0.33906  |
| С  | 0.63533  | 0.60146 | 0.33109  |
| С  | 0.60693  | 0.58774 | 0.39673  |
| Cl | 0.5783   | 0.67168 | 1.01377  |
| Cl | 0.68534  | 0.60414 | 0.24605  |
| Ο  | 0.50672  | 0.51805 | 0.13722  |
| Ο  | 0.51986  | 0.49648 | 0.5957   |
| С  | 0.76588  | 0.40909 | 0.69846  |
| С  | 0.43312  | 0.69318 | 0.14787  |
| С  | 0.35636  | 0.59103 | 0.13642  |
| С  | 0.56704  | 0.2599  | 0.68523  |
| Н  | 0.47301  | 0.64244 | 0.09834  |
| Н  | 0.51152  | 0.63056 | 0.12431  |
| Н  | 0.45601  | 0.55385 | 0.66465  |
| Н  | 0.41768  | 0.56584 | 0.64209  |
| Н  | 0.48116  | 0.54694 | 0.08917  |
| Н  | 0.5558   | 0.48168 | 0.77488  |
| Н  | 0.57621  | 0.46598 | 0.31467  |
| Н  | 0.64158  | 0.52949 | 0.94491  |
| Н  | 0.66305  | 0.4989  | 1.00695  |
| Н  | 0.59658  | 0.43474 | 0.39653  |
| Н  | 0.6635   | 0.45514 | 0.89909  |
| Н  | 0.39903  | 0.59575 | 0.46523  |
| Н  | 0.58026  | 0.58396 | 0.94296  |
| Н  | 0.60005  | 0.63455 | 1.11117  |
| Н  | 0.52965  | 0.63483 | 0.63331  |
| Н  | 0.64752  | 0.54717 | 0.43624  |
| Н  | 0.64678  | 0.62465 | 0.2706   |
| Н  | 0.59518  | 0.59975 | 0.3943   |
| Н  | 0.76992  | 0.41553 | 0.4304   |
| Н  | 0.78658  | 0.41809 | 0.83396  |
| Н  | 0.75265  | 0.41733 | 0.81267  |
| Н  | 0.43913  | 0.70311 | -0.10497 |
| Н  | 0.44998  | 0.68888 | 0.24147  |
| Н  | 0.43091  | 0.70797 | 0.32296  |
| Н  | 0.36835  | 0.58257 | 0.27613  |
| Н  | 0.35268  | 0.58288 | -0.12535 |
| Н  | 0.33546  | 0.58391 | 0.26112  |
|    |          |         |          |

| Н | 0.54896 | 0.23846 | 0.75204 |
|---|---------|---------|---------|
| Н | 0.5648  | 0.26483 | 0.42014 |
| Н | 0.56687 | 0.27628 | 0.85221 |
| Н | 0.48371 | 0.50549 | 0.16071 |
| Н | 0.51035 | 0.504   | 0.77876 |

| Space group: P3                        |                      |                                          |         |  |  |  |  |  |
|----------------------------------------|----------------------|------------------------------------------|---------|--|--|--|--|--|
| a = b = 55.4210 Å, and $c = 15.2174$ Å |                      |                                          |         |  |  |  |  |  |
|                                        | $\alpha = \beta = 9$ | $0^{\circ}$ , and $\gamma = 120^{\circ}$ |         |  |  |  |  |  |
|                                        | X Y Z                |                                          |         |  |  |  |  |  |
| Cu                                     | 0.32217              | 0.62743                                  | 0.13672 |  |  |  |  |  |
| С                                      | 0.37285              | 0.62215                                  | 0.14828 |  |  |  |  |  |
| Cu                                     | 0.69463              | 0.37263                                  | 0.31191 |  |  |  |  |  |
| С                                      | 0.44301              | 0.60459                                  | 0.21093 |  |  |  |  |  |
| С                                      | 0.46912              | 0.62249                                  | 0.17308 |  |  |  |  |  |
| С                                      | 0.49041              | 0.61599                                  | 0.17698 |  |  |  |  |  |
| С                                      | 0.48608              | 0.59158                                  | 0.21887 |  |  |  |  |  |
| С                                      | 0.45997              | 0.57381                                  | 0.25695 |  |  |  |  |  |
| С                                      | 0.4387               | 0.58031                                  | 0.25338 |  |  |  |  |  |
| С                                      | 0.50058              | 0.55787                                  | 0.17942 |  |  |  |  |  |
| С                                      | 0.50759              | 0.58296                                  | 0.21887 |  |  |  |  |  |
| С                                      | 0.53258              | 0.59689                                  | 0.26548 |  |  |  |  |  |
| С                                      | 0.54839              | 0.58337                                  | 0.28136 |  |  |  |  |  |
| С                                      | 0.54173              | 0.55726                                  | 0.23981 |  |  |  |  |  |
| С                                      | 0.51635              | 0.54437                                  | 0.18893 |  |  |  |  |  |
| С                                      | 0.5487               | 0.51478                                  | 0.26978 |  |  |  |  |  |
| С                                      | 0.59115              | 0.55894                                  | 0.23849 |  |  |  |  |  |
| С                                      | 0.60692              | 0.54481                                  | 0.24616 |  |  |  |  |  |
| С                                      | 0.59366              | 0.51676                                  | 0.27285 |  |  |  |  |  |
| С                                      | 0.56541              | 0.50322                                  | 0.28951 |  |  |  |  |  |
| С                                      | 0.59551              | 0.4734                                   | 0.24002 |  |  |  |  |  |
| С                                      | 0.60764              | 0.49975                                  | 0.28044 |  |  |  |  |  |
| С                                      | 0.63153              | 0.50837                                  | 0.33228 |  |  |  |  |  |
| С                                      | 0.64325              | 0.49134                                  | 0.34267 |  |  |  |  |  |
| С                                      | 0.6308               | 0.46492                                  | 0.30354 |  |  |  |  |  |
| С                                      | 0.60685              | 0.45611                                  | 0.25178 |  |  |  |  |  |
| С                                      | 0.64265              | 0.44667                                  | 0.31902 |  |  |  |  |  |
| С                                      | 0.41994              | 0.61056                                  | 0.20581 |  |  |  |  |  |
| Ν                                      | 0.36164              | 0.72303                                  | 0.13775 |  |  |  |  |  |
| Ν                                      | 0.33522              | 0.7164                                   | 0.1371  |  |  |  |  |  |
| Ν                                      | 0.6189               | 0.28347                                  | 0.31207 |  |  |  |  |  |
| С                                      | 0.62725              | 0.24918                                  | 0.30671 |  |  |  |  |  |
| С                                      | 0.59859              | 0.23756                                  | 0.30536 |  |  |  |  |  |

 Table S2. AB stacking model for (R)-JNM-10.

| N         0.57905         0.20856         0.29292           C         0.2604         0.59394         0.1467           C         0.23801         0.59837         0.1551           N         0.72303         0.36182         0.3118           C         0.73995         0.33386         0.30772           C         0.98305         0.43923         0.24931           C         0.57036         0.59638         0.34079           C         0.58031         0.62371         0.36963           C         0.58031         0.62371         0.36963           C         0.5421         0.62404         0.29797           C         0.63575         0.55913         0.22651           C         0.63533         0.60146         0.20153           C         0.63533         0.60146         0.21917           Cl         0.65533         0.67168         0.385           Cl         0.63533         0.60146         0.21917           Cl         0.5783         0.67168         0.385           Cl         0.66534         0.60144         0.17867           O         0.51986         0.49909         0.30026       |    |         |         |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|---------|---------|
| C         0.2604         0.59394         0.1467           C         0.23801         0.59837         0.1551           N         0.2095         0.57696         0.16546           N         0.72303         0.36182         0.3118           C         0.73995         0.33386         0.30772           C         0.98305         0.43923         0.24931           C         0.56622         0.63758         0.34776           C         0.56622         0.63758         0.34776           C         0.56622         0.63758         0.34776           C         0.63575         0.55913         0.22651           C         0.64967         0.58777         0.20367           C         0.63533         0.60146         0.20153           C         0.60693         0.58774         0.21917           C1         0.5783         0.67168         0.3385           C1         0.68534         0.604414         0.17867           O         0.51986         0.49099         0.30026           C         0.35636         0.59103         0.14942           O         0.51752         0.63056         0.14932     | Ν  | 0.57905 | 0.20856 | 0.29292 |
| C         0.23801         0.59837         0.1551           N         0.2095         0.57696         0.16546           N         0.72303         0.36182         0.3118           C         0.73995         0.33386         0.30772           C         0.98305         0.43923         0.24931           C         0.57036         0.59638         0.34079           C         0.58031         0.62371         0.36963           C         0.56622         0.63758         0.34776           C         0.63575         0.55913         0.22651           C         0.64967         0.58707         0.20367           C         0.63533         0.60146         0.20153           C         0.63533         0.60146         0.20153           C         0.63575         0.51805         0.14942           O         0.50672         0.51805         0.14942           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921    | С  | 0.2604  | 0.59394 | 0.1467  |
| N         0.2095         0.57696         0.16546           N         0.73303         0.36182         0.3118           C         0.73995         0.33386         0.30772           C         0.98305         0.43923         0.24931           C         0.57036         0.59638         0.34079           C         0.56022         0.63758         0.34776           C         0.5421         0.62404         0.29797           C         0.63575         0.55513         0.22651           C         0.64967         0.58707         0.20367           C         0.63533         0.60146         0.20153           C         0.6693         0.58774         0.21917           Cl         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.36636         0.59103         0.14921           C         0.36636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921    | С  | 0.23801 | 0.59837 | 0.1551  |
| N         0.72303         0.36182         0.3118           C         0.73995         0.33386         0.30772           C         0.98305         0.43923         0.24931           C         0.57036         0.59638         0.34079           C         0.58031         0.62371         0.36963           C         0.56622         0.63758         0.34776           C         0.5421         0.62404         0.29797           C         0.63575         0.55913         0.22651           C         0.64967         0.58707         0.20367           C         0.6693         0.58774         0.21917           CI         0.5783         0.67168         0.3855           CI         0.68534         0.60414         0.17867           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.5674         0.2599         0.2967           H         0.45601         0.55385         0.29117       | Ν  | 0.2095  | 0.57696 | 0.16546 |
| C         0.73995         0.33386         0.30772           C         0.98305         0.43923         0.24931           C         0.57036         0.59638         0.34079           C         0.58031         0.62371         0.36963           C         0.56622         0.63758         0.34776           C         0.5421         0.62404         0.29797           C         0.63575         0.55913         0.22651           C         0.63533         0.60146         0.20153           C         0.63693         0.58774         0.21917           C1         0.5783         0.67168         0.3385           C1         0.68854         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.35636         0.59103         0.14942           O         0.51986         0.49099         0.30026           C         0.35636         0.59103         0.14921           O         0.5152         0.63056         0.14942           O         0.55764         0.2599         0.2967     | Ν  | 0.72303 | 0.36182 | 0.3118  |
| C         0.98305         0.43923         0.24931           C         0.57036         0.59638         0.34079           C         0.56622         0.63758         0.3476           C         0.5421         0.622404         0.29797           C         0.63575         0.55913         0.22651           C         0.63575         0.55913         0.22651           C         0.64967         0.58707         0.20367           C         0.60693         0.58774         0.21917           Cl         0.5783         0.67168         0.3885           Cl         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.35636         0.45959         0.2267   | С  | 0.73995 | 0.33386 | 0.30772 |
| C         0.57036         0.59638         0.34079           C         0.58031         0.62371         0.36963           C         0.5622         0.63758         0.34776           C         0.5421         0.62404         0.29797           C         0.63575         0.55913         0.22651           C         0.64967         0.58707         0.20367           C         0.64967         0.58774         0.21917           C1         0.5783         0.67168         0.385           C1         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.56704         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.47301         0.64244         0.13897           H         0.45601         0.55385         0.29117      | С  | 0.98305 | 0.43923 | 0.24931 |
| C         0.58031         0.62371         0.36963           C         0.56622         0.63758         0.34776           C         0.63575         0.55913         0.22651           C         0.64967         0.58707         0.20367           C         0.64967         0.58707         0.20367           C         0.66093         0.58774         0.21917           CI         0.5783         0.67168         0.385           CI         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921  | С  | 0.57036 | 0.59638 | 0.34079 |
| C         0.56622         0.63758         0.34776           C         0.5421         0.62404         0.29797           C         0.63575         0.55913         0.22651           C         0.64967         0.58707         0.20367           C         0.60693         0.58774         0.21917           C1         0.5783         0.67168         0.3855           C1         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.35636         0.59103         0.14921           C         0.36764         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.47301         0.64244         0.13897           H         0.4558         0.29117           H         0.45601         0.55385         0.29117           H         0.4505         0.4989         0.36649           H         0 | С  | 0.58031 | 0.62371 | 0.36963 |
| C         0.5421         0.62404         0.29797           C         0.63575         0.55913         0.22651           C         0.63533         0.60146         0.20153           C         0.60693         0.58774         0.21917           C1         0.5783         0.67168         0.385           C1         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.36636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.56704         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.51152         0.63056         0.14596           H         0.45691         0.55385         0.22178     | С  | 0.56622 | 0.63758 | 0.34776 |
| C         0.63575         0.55913         0.22651           C         0.64967         0.58707         0.20367           C         0.605333         0.60146         0.20153           C         0.60693         0.58774         0.21917           C1         0.5783         0.67168         0.385           C1         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.76588         0.40909         0.30026           C         0.35636         0.59103         0.14921           C         0.35636         0.5913         0.28171  | С  | 0.5421  | 0.62404 | 0.29797 |
| C         0.64967         0.58707         0.20367           C         0.605333         0.60146         0.20153           C         0.60693         0.58774         0.21917           C1         0.5783         0.67168         0.385           C1         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.33636         0.59103         0.14942           O         0.51986         0.49648         0.27264           C         0.35636         0.69318         0.15229           C         0.35636         0.59103         0.14921           C         0.56704         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.51152         0.63056         0.14596           H         0.45601         0.55385         0.29117           H         0.441768         0.56584         0.28511           H         0.45558         0.48168         0.3208   | С  | 0.63575 | 0.55913 | 0.22651 |
| C         0.63533         0.60146         0.20153           C         0.60693         0.58774         0.21917           CI         0.5783         0.67168         0.385           CI         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.75588         0.40909         0.30026           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.56704         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.51152         0.63056         0.14596           H         0.41768         0.55385         0.29117           H         0.44768         0.56584         0.3208           H         0.57621         0.46598         0.19711           H         0.66355         0.43474         0.21911     | С  | 0.64967 | 0.58707 | 0.20367 |
| C         0.60693         0.58774         0.21917           CI         0.5783         0.67168         0.385           CI         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.43312         0.69318         0.15229           C         0.35636         0.59103         0.14921           C         0.36704         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.51152         0.63056         0.14596           H         0.47301         0.64244         0.13897           H         0.45601         0.55385         0.29117           H         0.445601         0.5588         0.28511           H         0.45158         0.2864         0.13651           H         0.57621         0.46598         0.19711           H         0.66305         0.43847         0.21911           H         0.5658         0.43474         0.21911      | С  | 0.63533 | 0.60146 | 0.20153 |
| Cl         0.5783         0.67168         0.385           Cl         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.43312         0.69318         0.15229           C         0.35636         0.59103         0.14921           C         0.56704         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.51152         0.63056         0.14596           H         0.47601         0.55385         0.29117           H         0.41768         0.56584         0.28511           H         0.41768         0.56584         0.28511           H         0.57621         0.46598         0.19711           H         0.57621         0.46598         0.19711           H         0.59058         0.43474         0.21911           H         0.58026         0.58396         0.36397           H         0.58026         0.58396         0.36597    | С  | 0.60693 | 0.58774 | 0.21917 |
| Cl         0.68534         0.60414         0.17867           O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.43312         0.69318         0.15229           C         0.35636         0.59103         0.14921           C         0.56704         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.51152         0.63056         0.14596           H         0.47301         0.64244         0.13897           H         0.45601         0.55385         0.29117           H         0.41768         0.56584         0.28511           H         0.41768         0.56584         0.28511           H         0.57621         0.46598         0.19711           H         0.66305         0.4989         0.38317           H         0.59658         0.43474         0.21911           H         0.66305         0.63455         0.41118           H         0.58026         0.58396         0.36597   | Cl | 0.5783  | 0.67168 | 0.385   |
| O         0.50672         0.51805         0.14942           O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.43312         0.69318         0.15229           C         0.35636         0.59103         0.14921           C         0.35636         0.59103         0.14921           C         0.356704         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.51152         0.63056         0.14596           H         0.45601         0.55385         0.29117           H         0.41768         0.56584         0.28511           H         0.41768         0.56584         0.28511           H         0.41768         0.54694         0.13651           H         0.5558         0.48168         0.3208           H         0.66305         0.4989         0.38317           H         0.66305         0.4989         0.38317           H         0.59658         0.43474         0.21911           H         0.66305         0.63455         0.434174     | Cl | 0.68534 | 0.60414 | 0.17867 |
| O         0.51986         0.49648         0.27264           C         0.76588         0.40909         0.30026           C         0.43312         0.69318         0.15229           C         0.35636         0.59103         0.14921           C         0.56704         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.51152         0.63056         0.14596           H         0.45601         0.55385         0.29117           H         0.41768         0.56584         0.28511           H         0.41768         0.56584         0.28117           H         0.41768         0.56584         0.28511           H         0.41768         0.56584         0.3208           H         0.57621         0.46598         0.19711           H         0.66305         0.4989         0.33817           H         0.66305         0.4989         0.33817           H         0.59658         0.43474         0.21911           H         0.66305         0.4989         0.33649           H         0.58026         0.58396         0.36597       | 0  | 0.50672 | 0.51805 | 0.14942 |
| C         0.76588         0.40909         0.30026           C         0.43312         0.69318         0.15229           C         0.35636         0.59103         0.14921           C         0.56704         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.51152         0.63056         0.14596           H         0.45601         0.55385         0.29117           H         0.41768         0.56584         0.28511           H         0.41768         0.56584         0.28111           H         0.441768         0.56584         0.28111           H         0.4416         0.54694         0.13651           H         0.457621         0.46598         0.19711           H         0.66305         0.4989         0.33817           H         0.66305         0.4989         0.33817           H         0.59658         0.43474         0.21911           H         0.66305         0.43936         0.35418           H         0.39903         0.59575         0.23758           H         0.58026         0.58396         0.36597    | 0  | 0.51986 | 0.49648 | 0.27264 |
| C         0.43312         0.69318         0.15229           C         0.35636         0.59103         0.14921           C         0.56704         0.2599         0.2967           H         0.47301         0.64244         0.13897           H         0.51152         0.63056         0.14596           H         0.45601         0.55385         0.29117           H         0.41768         0.56584         0.28511           H         0.41768         0.56584         0.28511           H         0.41768         0.56584         0.28511           H         0.441768         0.56584         0.28511           H         0.44176         0.54694         0.13651           H         0.4558         0.48168         0.3208           H         0.57621         0.46598         0.19711           H         0.66305         0.49899         0.38317           H         0.59658         0.43474         0.21911           H         0.59658         0.43474         0.21911           H         0.58026         0.58396         0.36597           H         0.58026         0.58396         0.36597    | С  | 0.76588 | 0.40909 | 0.30026 |
| C0.356360.591030.14921C0.567040.25990.2967H0.473010.642440.13897H0.511520.630560.14596H0.456010.553850.29117H0.417680.565840.28511H0.417680.565840.28511H0.481160.546940.13651H0.576210.465980.19711H0.663050.49890.38317H0.596580.434740.21911H0.663550.455140.35418H0.590550.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.7595180.599750.21851H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С  | 0.43312 | 0.69318 | 0.15229 |
| C0.567040.25990.2967H0.473010.642440.13897H0.511520.630560.14596H0.456010.553850.29117H0.417680.565840.28511H0.481160.546940.13651H0.55580.481680.3208H0.576210.465980.19711H0.641580.529490.36649H0.663050.49890.38317H0.596580.434740.21911H0.66350.455140.35418H0.399030.595750.23758H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.7595180.599750.21851H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С  | 0.35636 | 0.59103 | 0.14921 |
| H0.473010.642440.13897H0.511520.630560.14596H0.456010.553850.29117H0.417680.565840.28511H0.481160.546940.13651H0.55580.481680.3208H0.576210.465980.19711H0.663050.49890.38317H0.596580.434740.21911H0.66350.455140.35418H0.399030.595750.23758H0.580260.583960.36597H0.647520.547170.22979H0.646780.624650.18527H0.595180.599750.21851H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С  | 0.56704 | 0.2599  | 0.2967  |
| H0.511520.630560.14596H0.456010.553850.29117H0.417680.565840.28511H0.481160.546940.13651H0.55580.481680.3208H0.576210.465980.19711H0.641580.529490.36649H0.663050.49890.38317H0.596580.434740.21911H0.66350.455140.35418H0.580260.583960.36597H0.529650.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н  | 0.47301 | 0.64244 | 0.13897 |
| H0.456010.553850.29117H0.417680.565840.28511H0.481160.546940.13651H0.55580.481680.3208H0.576210.465980.19711H0.641580.529490.36649H0.663050.49890.38317H0.596580.434740.21911H0.66350.455140.35418H0.399030.595750.23758H0.529650.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.786580.418090.33668H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н  | 0.51152 | 0.63056 | 0.14596 |
| H0.417680.565840.28511H0.481160.546940.13651H0.55580.481680.3208H0.576210.465980.19711H0.641580.529490.36649H0.663050.49890.38317H0.596580.434740.21911H0.66350.455140.35418H0.399030.595750.23758H0.580260.583960.36597H0.600050.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.7595180.599750.21851H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Н  | 0.45601 | 0.55385 | 0.29117 |
| H0.481160.546940.13651H0.55580.481680.3208H0.576210.465980.19711H0.641580.529490.36649H0.663050.49890.38317H0.596580.434740.21911H0.66350.455140.35418H0.399030.595750.23758H0.580260.583960.36597H0.600050.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н  | 0.41768 | 0.56584 | 0.28511 |
| H0.55580.481680.3208H0.576210.465980.19711H0.641580.529490.36649H0.663050.49890.38317H0.596580.434740.21911H0.66350.455140.35418H0.399030.595750.23758H0.580260.583960.36597H0.600050.634550.41118H0.529650.634830.28275H0.646780.624650.18527H0.595180.599750.21851H0.786580.418090.33668H0.786580.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н  | 0.48116 | 0.54694 | 0.13651 |
| H0.576210.465980.19711H0.641580.529490.36649H0.663050.49890.38317H0.596580.434740.21911H0.66350.455140.35418H0.399030.595750.23758H0.580260.583960.36597H0.600050.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н  | 0.5558  | 0.48168 | 0.3208  |
| H0.641580.529490.36649H0.663050.49890.38317H0.596580.434740.21911H0.66350.455140.35418H0.399030.595750.23758H0.580260.583960.36597H0.600050.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н  | 0.57621 | 0.46598 | 0.19711 |
| H0.663050.49890.38317H0.596580.434740.21911H0.66350.455140.35418H0.399030.595750.23758H0.580260.583960.36597H0.600050.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Н  | 0.64158 | 0.52949 | 0.36649 |
| H0.596580.434740.21911H0.66350.455140.35418H0.399030.595750.23758H0.580260.583960.36597H0.600050.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н  | 0.66305 | 0.4989  | 0.38317 |
| H0.66350.455140.35418H0.399030.595750.23758H0.580260.583960.36597H0.600050.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.7595180.599750.21851H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н  | 0.59658 | 0.43474 | 0.21911 |
| H0.399030.595750.23758H0.580260.583960.36597H0.600050.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.595180.599750.21851H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н  | 0.6635  | 0.45514 | 0.35418 |
| H0.580260.583960.36597H0.600050.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.595180.599750.21851H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Н  | 0.39903 | 0.59575 | 0.23758 |
| H0.600050.634550.41118H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.595180.599750.21851H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н  | 0.58026 | 0.58396 | 0.36597 |
| H0.529650.634830.28275H0.647520.547170.22979H0.646780.624650.18527H0.595180.599750.21851H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Н  | 0.60005 | 0.63455 | 0.41118 |
| H0.647520.547170.22979H0.646780.624650.18527H0.595180.599750.21851H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н  | 0.52965 | 0.63483 | 0.28275 |
| H0.646780.624650.18527H0.595180.599750.21851H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н  | 0.64752 | 0.54717 | 0.22979 |
| H0.595180.599750.21851H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н  | 0.64678 | 0.62465 | 0.18527 |
| H0.769920.415530.22822H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н  | 0.59518 | 0.59975 | 0.21851 |
| H0.786580.418090.33668H0.752650.417330.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н  | 0.76992 | 0.41553 | 0.22822 |
| Н 0.75265 0.41733 0.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Н  | 0.78658 | 0.41809 | 0.33668 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н  | 0.75265 | 0.41733 | 0.33095 |

| Н  | 0.43913 | 0.70311 | 0.08433 |
|----|---------|---------|---------|
| Н  | 0.44998 | 0.68888 | 0.17744 |
| Н  | 0.43091 | 0.70797 | 0.19934 |
| Н  | 0.36835 | 0.58257 | 0.18676 |
| Н  | 0.35268 | 0.58288 | 0.07886 |
| Н  | 0.33546 | 0.58391 | 0.18272 |
| Н  | 0.54896 | 0.23846 | 0.31466 |
| Н  | 0.5648  | 0.26483 | 0.22546 |
| Н  | 0.56687 | 0.27628 | 0.34158 |
| Н  | 0.48371 | 0.50549 | 0.15574 |
| Н  | 0.51035 | 0.504   | 0.32184 |
| Cu | 0.6555  | 0.2941  | 0.63672 |
| С  | 0.70619 | 0.28881 | 0.64828 |
| Cu | 0.02796 | 0.0393  | 0.81191 |
| С  | 0.77634 | 0.27126 | 0.71093 |
| С  | 0.80245 | 0.28916 | 0.67308 |
| С  | 0.82374 | 0.28265 | 0.67698 |
| С  | 0.81941 | 0.25825 | 0.71887 |
| С  | 0.79331 | 0.24048 | 0.75695 |
| С  | 0.77203 | 0.24698 | 0.75338 |
| С  | 0.83391 | 0.22454 | 0.67942 |
| С  | 0.84093 | 0.24963 | 0.71887 |
| С  | 0.86592 | 0.26356 | 0.76548 |
| С  | 0.88173 | 0.25003 | 0.78136 |
| С  | 0.87506 | 0.22393 | 0.73981 |
| С  | 0.84969 | 0.21103 | 0.68893 |
| С  | 0.88203 | 0.18144 | 0.76978 |
| С  | 0.92449 | 0.22561 | 0.73849 |
| С  | 0.94025 | 0.21148 | 0.74616 |
| С  | 0.927   | 0.18343 | 0.77285 |
| С  | 0.89874 | 0.16989 | 0.78951 |
| С  | 0.92885 | 0.14007 | 0.74002 |
| С  | 0.94097 | 0.16641 | 0.78044 |
| С  | 0.96486 | 0.17504 | 0.83228 |
| С  | 0.97658 | 0.15801 | 0.84267 |
| С  | 0.96414 | 0.13159 | 0.80354 |
| С  | 0.94019 | 0.12278 | 0.75178 |
| С  | 0.97598 | 0.11334 | 0.81902 |
| С  | 0.75328 | 0.27722 | 0.70581 |
| Ν  | 0.69497 | 0.3897  | 0.63775 |
| Ν  | 0.66855 | 0.38307 | 0.6371  |
| Ν  | 0.95224 | 0.95013 | 0.81207 |
| С  | 0.96059 | 0.91585 | 0.80671 |
| C  | 0.93193 | 0.90423 | 0.80536 |
|    |         |         |         |

| N  | 0.91238 | 0.87523 | 0.79292 |
|----|---------|---------|---------|
| С  | 0.59373 | 0.2606  | 0.6467  |
| С  | 0.57134 | 0.26504 | 0.6551  |
| Ν  | 0.54284 | 0.24363 | 0.66546 |
| Ν  | 0.05636 | 0.02848 | 0.8118  |
| С  | 0.07328 | 0.00052 | 0.80772 |
| С  | 0.31639 | 0.1059  | 0.74931 |
| С  | 0.90369 | 0.26305 | 0.84079 |
| С  | 0.91365 | 0.29038 | 0.86963 |
| С  | 0.89956 | 0.30424 | 0.84776 |
| С  | 0.87544 | 0.29071 | 0.79797 |
| С  | 0.96908 | 0.2258  | 0.72651 |
| С  | 0.98301 | 0.25374 | 0.70367 |
| С  | 0.96867 | 0.26813 | 0.70153 |
| С  | 0.94026 | 0.25441 | 0.71917 |
| Cl | 0.91164 | 0.33835 | 0.885   |
| Cl | 0.01867 | 0.27081 | 0.67867 |
| Ο  | 0.84005 | 0.18472 | 0.64942 |
| Ο  | 0.8532  | 0.16315 | 0.77264 |
| С  | 0.09921 | 0.07575 | 0.80026 |
| С  | 0.76645 | 0.35985 | 0.65229 |
| С  | 0.68969 | 0.2577  | 0.64921 |
| С  | 0.90037 | 0.92656 | 0.7967  |
| Н  | 0.80635 | 0.30911 | 0.63897 |
| Н  | 0.84486 | 0.29723 | 0.64596 |
| Н  | 0.78934 | 0.22052 | 0.79117 |
| Н  | 0.75101 | 0.23251 | 0.78511 |
| Н  | 0.81449 | 0.21361 | 0.63651 |
| Н  | 0.88913 | 0.14835 | 0.8208  |
| Н  | 0.90955 | 0.13265 | 0.69711 |
| Н  | 0.97492 | 0.19616 | 0.86649 |
| Н  | 0.99638 | 0.16557 | 0.88317 |
| Н  | 0.92991 | 0.10141 | 0.71911 |
| Н  | 0.99683 | 0.12181 | 0.85418 |
| Н  | 0.73236 | 0.26242 | 0.73758 |
| Н  | 0.91359 | 0.25063 | 0.86597 |
| Н  | 0.93338 | 0.30122 | 0.91118 |
| Н  | 0.86299 | 0.30149 | 0.78275 |
| Н  | 0.98085 | 0.21384 | 0.72979 |
| Н  | 0.98012 | 0.29132 | 0.68527 |
| Н  | 0.92851 | 0.26641 | 0.71851 |
| Н  | 0.10325 | 0.0822  | 0.72822 |
| Н  | 0.11991 | 0.08476 | 0.83668 |
| Н  | 0.08599 | 0.084   | 0.83095 |
|    |         |         |         |

| Н | 0.77246 | 0.36978 | 0.58433 |
|---|---------|---------|---------|
| Н | 0.78331 | 0.35555 | 0.67744 |
| Н | 0.76424 | 0.37464 | 0.69934 |
| Н | 0.70168 | 0.24924 | 0.68676 |
| Н | 0.68601 | 0.24955 | 0.57886 |
| Н | 0.6688  | 0.25058 | 0.68272 |
| Н | 0.88229 | 0.90513 | 0.81466 |
| Н | 0.89813 | 0.9315  | 0.72546 |
| Н | 0.9002  | 0.94295 | 0.84158 |
| Н | 0.81705 | 0.17216 | 0.65574 |
| Н | 0.84368 | 0.17067 | 0.82184 |

| Table S3. ABC stacking model for ( <i>K</i> )-JINM-1 | M-10 | -JNI | ( <i>R</i> ) | for | model | stacking | ABC | <b>S3.</b> A | able | Τ |
|------------------------------------------------------|------|------|--------------|-----|-------|----------|-----|--------------|------|---|
|------------------------------------------------------|------|------|--------------|-----|-------|----------|-----|--------------|------|---|

| Space group: R3 |                                        |                              |         |  |  |  |
|-----------------|----------------------------------------|------------------------------|---------|--|--|--|
|                 | a = b = 53.4210 Å, and $c = 14.0391$ Å |                              |         |  |  |  |
|                 | $\alpha = \beta = 90^{\circ}$          | , and $\gamma = 120^{\circ}$ |         |  |  |  |
|                 | Х                                      | Y                            | Ζ       |  |  |  |
| Cu              | -0.32244                               | -0.62748                     | 0.09725 |  |  |  |
| С               | -0.37346                               | -0.62261                     | 0.10299 |  |  |  |
| Cu              | -0.69426                               | -0.37276                     | 0.11351 |  |  |  |
| С               | -0.44487                               | -0.60553                     | 0.13538 |  |  |  |
| С               | -0.47071                               | -0.62434                     | 0.1093  |  |  |  |
| С               | -0.4925                                | -0.61853                     | 0.10955 |  |  |  |
| С               | -0.48895                               | -0.59391                     | 0.13589 |  |  |  |
| С               | -0.46306                               | -0.5751                      | 0.16165 |  |  |  |
| С               | -0.44129                               | -0.58093                     | 0.16175 |  |  |  |
| С               | -0.50555                               | -0.56232                     | 0.10362 |  |  |  |
| С               | -0.51129                               | -0.58648                     | 0.13401 |  |  |  |
| С               | -0.53678                               | -0.60127                     | 0.16514 |  |  |  |
| С               | -0.55428                               | -0.58922                     | 0.17193 |  |  |  |
| С               | -0.54829                               | -0.56397                     | 0.14066 |  |  |  |
| С               | -0.52406                               | -0.55208                     | 0.10407 |  |  |  |
| С               | -0.55174                               | -0.51922                     | 0.15668 |  |  |  |
| С               | -0.59554                               | -0.56236                     | 0.13481 |  |  |  |
| С               | -0.60943                               | -0.54631                     | 0.133   |  |  |  |
| С               | -0.59464                               | -0.5176                      | 0.14644 |  |  |  |
| С               | -0.5665                                | -0.50512                     | 0.15942 |  |  |  |
| С               | -0.59395                               | -0.47391                     | 0.11365 |  |  |  |
| С               | -0.60719                               | -0.49921                     | 0.14581 |  |  |  |
| С               | -0.6312                                | -0.50578                     | 0.17961 |  |  |  |
| С               | -0.64228                               | -0.48801                     | 0.17956 |  |  |  |
| С               | -0.62904                               | -0.46283                     | 0.14736 |  |  |  |
| С               | -0.60465                               | -0.45584                     | 0.11464 |  |  |  |
| С               | -0.64088                               | -0.44421                     | 0.14854 |  |  |  |

| - | С  | -0.4214  | -0.61096 | 0.13508 |
|---|----|----------|----------|---------|
|   | Ν  | -0.3613  | -0.72306 | 0.09779 |
|   | Ν  | -0.33483 | -0.71622 | 0.09751 |
|   | Ν  | -0.6193  | -0.28312 | 0.11415 |
|   | С  | -0.62822 | -0.2492  | 0.11699 |
|   | С  | -0.59958 | -0.23732 | 0.12102 |
|   | Ν  | -0.58012 | -0.208   | 0.12301 |
|   | С  | -0.2606  | -0.59358 | 0.10227 |
|   | С  | -0.23799 | -0.59774 | 0.10662 |
|   | Ν  | -0.20942 | -0.57605 | 0.11041 |
|   | Ν  | -0.72304 | -0.36246 | 0.11356 |
|   | С  | -0.74046 | -0.33496 | 0.11844 |
|   | С  | -0.98331 | -0.43443 | 0.14543 |
|   | С  | -0.57704 | -0.60279 | 0.21073 |
|   | С  | -0.58549 | -0.62924 | 0.23425 |
|   | С  | -0.56955 | -0.64169 | 0.22404 |
|   | С  | -0.54502 | -0.62757 | 0.19098 |
|   | С  | -0.63782 | -0.55927 | 0.11585 |
|   | С  | -0.65314 | -0.58761 | 0.10398 |
|   | С  | -0.64059 | -0.60365 | 0.1091  |
|   | С  | -0.61252 | -0.59129 | 0.12411 |
|   | Cl | -0.57995 | -0.67481 | 0.25393 |
|   | Cl | -0.68822 | -0.60299 | 0.0823  |
|   | 0  | -0.51748 | -0.52892 | 0.06897 |
|   | 0  | -0.52309 | -0.50134 | 0.16486 |
|   | С  | -0.7656  | -0.41009 | 0.11812 |
|   | С  | -0.43343 | -0.69385 | 0.10469 |
|   | С  | -0.35719 | -0.59149 | 0.10175 |
|   | С  | -0.56719 | -0.25879 | 0.1169  |
|   | Н  | -0.47408 | -0.64349 | 0.08852 |
|   | Н  | -0.51215 | -0.63343 | 0.08968 |
|   | Н  | -0.45967 | -0.55579 | 0.18155 |
|   | Н  | -0.42157 | -0.56612 | 0.18213 |
|   | Н  | -0.48637 | -0.55134 | 0.07798 |
|   | Н  | -0.55508 | -0.48305 | 0.17015 |
|   | Н  | -0.57538 | -0.46823 | 0.08723 |
|   | Н  | -0.64141 | -0.5247  | 0.20596 |
|   | Н  | -0.66094 | -0.49371 | 0.20564 |
|   | Н  | -0.59401 | -0.4366  | 0.08912 |
|   | Н  | -0.66004 | -0.45075 | 0.17312 |
|   | Н  | -0.40226 | -0.59623 | 0.15731 |
|   | H  | -0.58915 | -0.59324 | 0.21945 |
|   | H  | -0.60449 | -0.64018 | 0.26037 |
| - | Н  | -0.53301 | -0.63779 | 0.18489 |
|   |    |          |          |         |

| Н | -0.64856 | -0.54771 | 0.11065 |
|---|----------|----------|---------|
| Н | -0.65243 | -0.62582 | 0.10016 |
| Н | -0.60457 | -0.60516 | 0.12487 |
| Н | -0.78117 | -0.41854 | 0.08106 |
| Н | -0.7766  | -0.41775 | 0.16192 |
| Н | -0.75053 | -0.41758 | 0.11243 |
| Н | -0.43681 | -0.70518 | 0.06134 |
| Н | -0.45105 | -0.69008 | 0.1126  |
| Н | -0.43275 | -0.70697 | 0.14181 |
| Н | -0.36702 | -0.58341 | 0.06999 |
| Н | -0.33556 | -0.58427 | 0.08635 |
| Н | -0.35621 | -0.5831  | 0.14786 |
| Н | -0.55285 | -0.24256 | 0.08464 |
| Н | -0.57029 | -0.27929 | 0.10201 |
| Н | -0.5578  | -0.25433 | 0.16281 |
| Н | -0.49703 | -0.51823 | 0.05731 |
| Н | -0.51005 | -0.50871 | 0.16013 |

#### 8. Structural Simulation of (R)-JNM-11

Theoretical simulations of (*R*)-JNM-11 were carried out in Accelrys Materials Studio 2019 software package. The relative total energies were calculated by molecular mechanics calculation using DMol<sup>3</sup> energy task, after which the simulated PXRD patterns were determined by the Reflex module. The Pawley refinement of the experimental PXRD was conducted with the Reflex module.<sup>[1]</sup>



Figure S19. PXRD patterns of (*R*)-JNM-11 with the experimental profiles in black, difference curve in light orange, and calculated profiles of AA (green), AB (blue) and ABC (magenta) packing modes. (refinement parameters of Rp = 7.24% and Rwp = 9.11%).



**Figure S20.** Space-filling mode of **(***R***)-JNM-11** in AA stacking model viewed from (left) c axis and (right) a axis.



**Figure S21.** Space-filling mode of **(***R***)-JNM-11** in AB stacking model viewed from (left) c axis and (right) a axis.



**Figure S22.** Space-filling mode of **(***R***)-JNM-11** in ABC stacking model viewed from (left) c axis and (right) a axis.

|                                       | Sj                                                         | pace group: P3 |         |  |  |
|---------------------------------------|------------------------------------------------------------|----------------|---------|--|--|
| a = b = 55.4210 Å, and $c = 4.0898$ Å |                                                            |                |         |  |  |
|                                       | $\alpha = \beta = 90^{\circ}$ , and $\gamma = 120^{\circ}$ |                |         |  |  |
|                                       | Х                                                          | Y              | Z       |  |  |
| Cu                                    | 0.32217                                                    | 0.62743        | 0.08994 |  |  |
| С                                     | 0.37285                                                    | 0.62215        | 0.13298 |  |  |
| Cu                                    | 0.69463                                                    | 0.37263        | 0.74183 |  |  |
| С                                     | 0.44301                                                    | 0.60459        | 0.36606 |  |  |
| С                                     | 0.46912                                                    | 0.62249        | 0.22523 |  |  |
| С                                     | 0.49041                                                    | 0.61599        | 0.23974 |  |  |
| С                                     | 0.48608                                                    | 0.59158        | 0.39562 |  |  |
| С                                     | 0.45997                                                    | 0.57381        | 0.5373  |  |  |
| С                                     | 0.4387                                                     | 0.58031        | 0.52402 |  |  |
| С                                     | 0.50058                                                    | 0.55787        | 0.24884 |  |  |
| С                                     | 0.50759                                                    | 0.58296        | 0.39562 |  |  |
| С                                     | 0.53258                                                    | 0.59689        | 0.56906 |  |  |
| С                                     | 0.54839                                                    | 0.58337        | 0.62813 |  |  |
| С                                     | 0.54173                                                    | 0.55726        | 0.47353 |  |  |
| С                                     | 0.51635                                                    | 0.54437        | 0.28422 |  |  |
| С                                     | 0.5487                                                     | 0.51478        | 0.58506 |  |  |
| С                                     | 0.59115                                                    | 0.55894        | 0.46861 |  |  |
| С                                     | 0.60692                                                    | 0.54481        | 0.49718 |  |  |
| С                                     | 0.59366                                                    | 0.51676        | 0.59648 |  |  |
| С                                     | 0.56541                                                    | 0.50322        | 0.65847 |  |  |
| С                                     | 0.59551                                                    | 0.4734         | 0.47431 |  |  |
| С                                     | 0.60764                                                    | 0.49975        | 0.6247  |  |  |
| С                                     | 0.63153                                                    | 0.50837        | 0.81761 |  |  |
| С                                     | 0.64325                                                    | 0.49134        | 0.85627 |  |  |
| С                                     | 0.6308                                                     | 0.46492        | 0.71067 |  |  |
| С                                     | 0.60685                                                    | 0.45611        | 0.51806 |  |  |
| С                                     | 0.64265                                                    | 0.44667        | 0.76827 |  |  |
| С                                     | 0.41994                                                    | 0.61056        | 0.34702 |  |  |
| Ν                                     | 0.36164                                                    | -0.27697       | 0.09378 |  |  |
| Ν                                     | 0.33522                                                    | -0.2836        | 0.09137 |  |  |
| Ν                                     | 0.6189                                                     | 0.28347        | 0.7424  |  |  |
| С                                     | 0.62725                                                    | 0.24918        | 0.72246 |  |  |
| С                                     | 0.59859                                                    | 0.23756        | 0.71744 |  |  |
| Ν                                     | 0.57905                                                    | 0.20856        | 0.67113 |  |  |
| С                                     | 0.2604                                                     | 0.59394        | 0.1271  |  |  |
| С                                     | 0.23801                                                    | 0.59837        | 0.15832 |  |  |
| Ν                                     | 0.2095                                                     | 0.57696        | 0.1969  |  |  |
| Ν                                     | -0.27697                                                   | 0.36182        | 0.74141 |  |  |
| С                                     | -0.26005                                                   | 0.33386        | 0.72623 |  |  |

 Table S4. AA stacking model for (R)-JNM-11.

| С  | -0.01695 | 0.43923 | 0.50887  |
|----|----------|---------|----------|
| С  | 0.57036  | 0.59638 | 0.84925  |
| С  | 0.58031  | 0.62371 | 0.95658  |
| С  | 0.56622  | 0.63758 | 0.87519  |
| С  | 0.5421   | 0.62404 | 0.68995  |
| С  | 0.63575  | 0.55913 | 0.42404  |
| С  | 0.64967  | 0.58707 | 0.33906  |
| С  | 0.63533  | 0.60146 | 0.33109  |
| С  | 0.60693  | 0.58774 | 0.39673  |
| Cl | 0.5783   | 0.67168 | 1.01377  |
| Cl | 0.68534  | 0.60414 | 0.24605  |
| 0  | 0.50672  | 0.51805 | 0.13722  |
| С  | 0.48018  | 0.50434 | -0.03089 |
| С  | 0.45462  | 0.49223 | 0.19243  |
| С  | 0.50985  | 0.4709  | 0.41264  |
| 0  | 0.51986  | 0.49648 | 0.5957   |
| С  | 0.4962   | 0.44506 | 0.62843  |
| С  | 0.76588  | 0.40909 | 0.69846  |
| С  | 0.43312  | 0.69318 | 0.14787  |
| С  | 0.35636  | 0.59103 | 0.13642  |
| С  | 0.56704  | 0.2599  | 0.68523  |
| Н  | 0.47306  | 0.6414  | 0.10153  |
| Н  | 0.51023  | 0.63013 | 0.13076  |
| Н  | 0.456    | 0.55471 | 0.65633  |
| Н  | 0.41877  | 0.56622 | 0.63494  |
| Н  | 0.48179  | 0.549   | 0.10596  |
| Н  | 0.55558  | 0.48203 | 0.74757  |
| Н  | 0.57712  | 0.46617 | 0.32299  |
| Н  | 0.64109  | 0.52825 | 0.9392   |
| Н  | 0.66162  | 0.49851 | 1.00762  |
| Н  | 0.5969   | 0.43591 | 0.40027  |
| Н  | 0.66162  | 0.45463 | 0.90902  |
| Н  | 0.40055  | 0.59653 | 0.46733  |
| Н  | 0.58098  | 0.58567 | 0.91529  |
| Н  | 0.59908  | 0.63436 | 1.10147  |
| Н  | 0.53142  | 0.63534 | 0.63784  |
| Н  | 0.648    | 0.549   | 0.4293   |
| Н  | 0.64612  | 0.62343 | 0.27062  |
| Н  | 0.59789  | 0.60057 | 0.38468  |
| Н  | 0.47819  | 0.48613 | -0.16193 |
| Н  | 0.47927  | 0.51805 | -0.21966 |
| Н  | 0.45464  | 0.47648 | 0.35875  |
| н  | 0 43559  | 0.48146 | 0.03901  |
| 11 | 0112222  |         | 0.000001 |

| Н 0.4037 0.46805  | 0.24159  |
|-------------------|----------|
| 11 0.4757 0.40895 |          |
| Н 0.48809 0.42624 | 0.47147  |
| Н 0.47834 0.44391 | 0.76386  |
| Н 0.5114 0.44463  | 0.79989  |
| Н 0.77716 0.41566 | 0.46282  |
| Н 0.78125 0.41827 | 0.89943  |
| Н 0.75096 0.41688 | 0.7137   |
| Н 0.43728 0.70455 | -0.08687 |
| Н 0.45051 0.68927 | 0.20095  |
| Н 0.43194 0.70634 | 0.34425  |
| Н 0.35468 0.58324 | 0.38962  |
| Н 0.36643 0.5824  | -0.02258 |
| Н 0.33497 0.58378 | 0.04392  |
| Н 0.5545 0.2524   | 0.91173  |
| Н 0.55509 0.24614 | 0.4787   |
| Н 0.57115 0.2813  | 0.63386  |

| Table S5. AB | stacking model | l for <b>(R</b> ) | )-JNM-11 |
|--------------|----------------|-------------------|----------|
|--------------|----------------|-------------------|----------|

|    | Space g                        | roup: <i>P3</i>            |         |
|----|--------------------------------|----------------------------|---------|
|    | a = b = 55.4210 Å,             | and c = 15.9888 Å          |         |
|    | $\alpha = \beta = 90^{\circ},$ | and $\gamma = 120^{\circ}$ |         |
|    | Х                              | Y                          | Ζ       |
| Cu | 0.32217                        | 0.62743                    | 0.15425 |
| С  | 0.37285                        | 0.62215                    | 0.16525 |
| Cu | 0.69463                        | 0.37263                    | 0.32099 |
| С  | 0.44301                        | 0.60459                    | 0.22487 |
| С  | 0.46912                        | 0.62249                    | 0.18885 |
| С  | 0.49041                        | 0.61599                    | 0.19256 |
| С  | 0.48608                        | 0.59158                    | 0.23243 |
| С  | 0.45997                        | 0.57381                    | 0.26867 |
| С  | 0.4387                         | 0.58031                    | 0.26528 |
| С  | 0.50058                        | 0.55787                    | 0.19489 |
| С  | 0.50759                        | 0.58296                    | 0.23243 |
| С  | 0.53258                        | 0.59689                    | 0.2768  |
| С  | 0.54839                        | 0.58337                    | 0.29191 |
| С  | 0.54173                        | 0.55726                    | 0.25236 |
| С  | 0.51635                        | 0.54437                    | 0.20394 |
| С  | 0.5487                         | 0.51478                    | 0.28089 |
| С  | 0.59115                        | 0.55894                    | 0.2511  |
| С  | 0.60692                        | 0.54481                    | 0.25841 |
| С  | 0.59366                        | 0.51676                    | 0.28381 |
| С  | 0.56541                        | 0.50322                    | 0.29967 |

| С  | 0.59551 | 0.4734  | 0.25256 |
|----|---------|---------|---------|
| С  | 0.60764 | 0.49975 | 0.29103 |
| С  | 0.63153 | 0.50837 | 0.34037 |
| С  | 0.64325 | 0.49134 | 0.35026 |
| С  | 0.6308  | 0.46492 | 0.31302 |
| С  | 0.60685 | 0.45611 | 0.26375 |
| С  | 0.64265 | 0.44667 | 0.32775 |
| С  | 0.41994 | 0.61056 | 0.22    |
| Ν  | 0.36164 | 0.72303 | 0.15523 |
| Ν  | 0.33522 | 0.7164  | 0.15461 |
| Ν  | 0.6189  | 0.28347 | 0.32114 |
| С  | 0.62725 | 0.24918 | 0.31604 |
| С  | 0.59859 | 0.23756 | 0.31475 |
| Ν  | 0.57905 | 0.20856 | 0.30291 |
| С  | 0.2604  | 0.59394 | 0.16375 |
| С  | 0.23801 | 0.59837 | 0.17174 |
| Ν  | 0.2095  | 0.57696 | 0.1816  |
| Ν  | 0.72303 | 0.36182 | 0.32088 |
| С  | 0.73995 | 0.33386 | 0.317   |
| С  | 0.98305 | 0.43923 | 0.2614  |
| С  | 0.57036 | 0.59638 | 0.34847 |
| С  | 0.58031 | 0.62371 | 0.37592 |
| С  | 0.56622 | 0.63758 | 0.3551  |
| С  | 0.5421  | 0.62404 | 0.30772 |
| С  | 0.63575 | 0.55913 | 0.2397  |
| С  | 0.64967 | 0.58707 | 0.21797 |
| С  | 0.63533 | 0.60146 | 0.21593 |
| С  | 0.60693 | 0.58774 | 0.23272 |
| Cl | 0.5783  | 0.67168 | 0.39055 |
| Cl | 0.68534 | 0.60414 | 0.19418 |
| О  | 0.50672 | 0.51805 | 0.16634 |
| С  | 0.48018 | 0.50434 | 0.12334 |
| С  | 0.45462 | 0.49223 | 0.18046 |
| С  | 0.50985 | 0.4709  | 0.23679 |
| Ο  | 0.51986 | 0.49648 | 0.28361 |
| С  | 0.4962  | 0.44506 | 0.29198 |
| С  | 0.76588 | 0.40909 | 0.3099  |
| С  | 0.43312 | 0.69318 | 0.16906 |
| С  | 0.35636 | 0.59103 | 0.16614 |
| С  | 0.56704 | 0.2599  | 0.30651 |
| Н  | 0.47306 | 0.6414  | 0.15721 |
| Н  | 0.51023 | 0.63013 | 0.16469 |
| Н  | 0.456   | 0.55471 | 0.29912 |
| Н  | 0.41877 | 0.56622 | 0.29365 |

| Н  | 0.48179 | 0.549   | 0.15834 |
|----|---------|---------|---------|
| Н  | 0.55558 | 0.48203 | 0.32246 |
| Н  | 0.57712 | 0.46617 | 0.21386 |
| Н  | 0.64109 | 0.52825 | 0.37147 |
| Н  | 0.66162 | 0.49851 | 0.38898 |
| Н  | 0.5969  | 0.43591 | 0.23362 |
| Н  | 0.66162 | 0.45463 | 0.36376 |
| Н  | 0.40055 | 0.59653 | 0.25078 |
| Н  | 0.58098 | 0.58567 | 0.36536 |
| Н  | 0.59908 | 0.63436 | 0.41298 |
| Н  | 0.53142 | 0.63534 | 0.29439 |
| Н  | 0.648   | 0.549   | 0.24105 |
| Н  | 0.64612 | 0.62343 | 0.20046 |
| Н  | 0.59789 | 0.60057 | 0.22964 |
| Н  | 0.47819 | 0.48613 | 0.08982 |
| Н  | 0.47927 | 0.51805 | 0.07505 |
| Н  | 0.45464 | 0.47648 | 0.223   |
| Н  | 0.43559 | 0.48146 | 0.14122 |
| Н  | 0.45299 | 0.50831 | 0.2168  |
| Н  | 0.52643 | 0.47056 | 0.19864 |
| Н  | 0.4937  | 0.46895 | 0.19303 |
| Н  | 0.48809 | 0.42624 | 0.25183 |
| Н  | 0.47834 | 0.44391 | 0.32663 |
| Н  | 0.5114  | 0.44463 | 0.33584 |
| Н  | 0.77716 | 0.41566 | 0.24962 |
| Н  | 0.78125 | 0.41827 | 0.3613  |
| Н  | 0.75096 | 0.41688 | 0.31379 |
| Н  | 0.43728 | 0.70455 | 0.10902 |
| Н  | 0.45051 | 0.68927 | 0.18264 |
| Н  | 0.43194 | 0.70634 | 0.21929 |
| Н  | 0.35468 | 0.58324 | 0.2309  |
| Н  | 0.36643 | 0.5824  | 0.12546 |
| Н  | 0.33497 | 0.58378 | 0.14247 |
| Н  | 0.5545  | 0.2524  | 0.36445 |
| Н  | 0.55509 | 0.24614 | 0.25368 |
| Н  | 0.57115 | 0.2813  | 0.29337 |
| Cu | 0.6555  | 0.2941  | 0.65425 |
| С  | 0.70619 | 0.28881 | 0.66525 |
| Cu | 0.02796 | 0.0393  | 0.82099 |
| С  | 0.77634 | 0.27126 | 0.72487 |
| С  | 0.80245 | 0.28916 | 0.68885 |
| С  | 0.82374 | 0.28265 | 0.69256 |
| С  | 0.81941 | 0.25825 | 0.73243 |
| С  | 0.79331 | 0.24048 | 0.76867 |

| С  | 0.77203 | 0.24698 | 0.76528 |
|----|---------|---------|---------|
| С  | 0.83391 | 0.22454 | 0.69489 |
| С  | 0.84093 | 0.24963 | 0.73243 |
| С  | 0.86592 | 0.26356 | 0.7768  |
| С  | 0.88173 | 0.25003 | 0.79191 |
| С  | 0.87506 | 0.22393 | 0.75236 |
| С  | 0.84969 | 0.21103 | 0.70394 |
| С  | 0.88203 | 0.18144 | 0.78089 |
| С  | 0.92449 | 0.22561 | 0.7511  |
| С  | 0.94025 | 0.21148 | 0.75841 |
| С  | 0.927   | 0.18343 | 0.78381 |
| С  | 0.89874 | 0.16989 | 0.79967 |
| С  | 0.92885 | 0.14007 | 0.75256 |
| С  | 0.94097 | 0.16641 | 0.79103 |
| С  | 0.96486 | 0.17504 | 0.84037 |
| С  | 0.97658 | 0.15801 | 0.85026 |
| С  | 0.96414 | 0.13159 | 0.81302 |
| С  | 0.94019 | 0.12278 | 0.76375 |
| С  | 0.97598 | 0.11334 | 0.82775 |
| С  | 0.75328 | 0.27722 | 0.72    |
| Ν  | 0.69497 | 0.3897  | 0.65523 |
| Ν  | 0.66855 | 0.38307 | 0.65461 |
| Ν  | 0.95224 | 0.95013 | 0.82114 |
| С  | 0.96059 | 0.91585 | 0.81604 |
| С  | 0.93193 | 0.90423 | 0.81475 |
| Ν  | 0.91238 | 0.87523 | 0.80291 |
| С  | 0.59373 | 0.2606  | 0.66375 |
| С  | 0.57134 | 0.26504 | 0.67174 |
| Ν  | 0.54284 | 0.24363 | 0.6816  |
| Ν  | 0.05636 | 0.02848 | 0.82088 |
| С  | 0.07328 | 0.00052 | 0.817   |
| С  | 0.31639 | 0.1059  | 0.7614  |
| С  | 0.90369 | 0.26305 | 0.84847 |
| С  | 0.91365 | 0.29038 | 0.87592 |
| С  | 0.89956 | 0.30424 | 0.8551  |
| С  | 0.87544 | 0.29071 | 0.80772 |
| С  | 0.96908 | 0.2258  | 0.7397  |
| С  | 0.98301 | 0.25374 | 0.71797 |
| С  | 0.96867 | 0.26813 | 0.71593 |
| С  | 0.94026 | 0.25441 | 0.73272 |
| Cl | 0.91164 | 0.33835 | 0.89055 |
| Cl | 0.01867 | 0.27081 | 0.69418 |
| Ο  | 0.84005 | 0.18472 | 0.66634 |
| С  | 0.81352 | 0.171   | 0.62334 |

| С | 0.78796 | 0.15889 | 0.68046 |
|---|---------|---------|---------|
| С | 0.84318 | 0.13757 | 0.73679 |
| Ο | 0.8532  | 0.16315 | 0.78361 |
| С | 0.82953 | 0.11173 | 0.79198 |
| С | 0.09921 | 0.07575 | 0.8099  |
| С | 0.76645 | 0.35985 | 0.66906 |
| С | 0.68969 | 0.2577  | 0.66614 |
| С | 0.90037 | 0.92656 | 0.80651 |
| Н | 0.80639 | 0.30807 | 0.65721 |
| Н | 0.84356 | 0.2968  | 0.66469 |
| Н | 0.78933 | 0.22138 | 0.79912 |
| Н | 0.7521  | 0.23289 | 0.79365 |
| Н | 0.81513 | 0.21567 | 0.65834 |
| Н | 0.88891 | 0.1487  | 0.82246 |
| Н | 0.91046 | 0.13283 | 0.71386 |
| Н | 0.97443 | 0.19492 | 0.87147 |
| Н | 0.99496 | 0.16517 | 0.88898 |
| Н | 0.93023 | 0.10257 | 0.73362 |
| Н | 0.99495 | 0.12129 | 0.86376 |
| Н | 0.73388 | 0.26319 | 0.75078 |
| Н | 0.91432 | 0.25234 | 0.86536 |
| Н | 0.93242 | 0.30103 | 0.91298 |
| Н | 0.86475 | 0.30201 | 0.79439 |
| Н | 0.98134 | 0.21567 | 0.74105 |
| Н | 0.97946 | 0.2901  | 0.70046 |
| Н | 0.93122 | 0.26724 | 0.72964 |
| Н | 0.81152 | 0.15279 | 0.58982 |
| Н | 0.81261 | 0.18471 | 0.57505 |
| Н | 0.78797 | 0.14314 | 0.723   |
| Н | 0.76892 | 0.14813 | 0.64122 |
| Н | 0.78633 | 0.17497 | 0.7168  |
| Н | 0.85977 | 0.13723 | 0.69864 |
| Н | 0.82704 | 0.13561 | 0.69303 |
| Н | 0.82142 | 0.0929  | 0.75183 |
| Н | 0.81167 | 0.11058 | 0.82663 |
| Н | 0.84474 | 0.11129 | 0.83584 |
| Н | 0.1105  | 0.08233 | 0.74962 |
| Н | 0.11458 | 0.08494 | 0.8613  |
| Н | 0.08429 | 0.08355 | 0.81379 |
| Н | 0.77061 | 0.37122 | 0.60902 |
| Н | 0.78385 | 0.35594 | 0.68264 |
| Н | 0.76527 | 0.373   | 0.71929 |
| Н | 0.68801 | 0.24991 | 0.7309  |
| Н | 0.69977 | 0.24906 | 0.62546 |

| Н | 0.66831 | 0.25045 | 0.64247 |
|---|---------|---------|---------|
| Н | 0.88784 | 0.91907 | 0.86445 |
| Н | 0.88843 | 0.91281 | 0.75368 |
| Н | 0.90448 | 0.94796 | 0.79337 |

Space group: *R3* 

|                                                            | a = b = 55.4540 | Å, and c = 15.0000 Å |         |  |
|------------------------------------------------------------|-----------------|----------------------|---------|--|
| $\alpha = \beta = 90^{\circ}$ , and $\gamma = 120^{\circ}$ |                 |                      |         |  |
|                                                            | Х               | Y                    | Ζ       |  |
| Ν                                                          | 0.62815         | 0.3482               | 0.17371 |  |
| Ν                                                          | 0.62835         | 0.27935              | 0.17516 |  |
| С                                                          | 0.64647         | 0.25573              | 0.17272 |  |
| С                                                          | 0.62019         | 0.23822              | 0.17407 |  |
| С                                                          | 0.61011         | 0.25471              | 0.17578 |  |
| Cu                                                         | 0.62828         | 0.31395              | 0.17405 |  |
| Ν                                                          | 0.61046         | 0.21114              | 0.17234 |  |
| С                                                          | 0.46756         | 0.49699              | 0.13696 |  |
| С                                                          | 0.45307         | 0.51006              | 0.13544 |  |
| С                                                          | 0.46231         | 0.5347               | 0.17369 |  |
| С                                                          | 0.48611         | 0.54374              | 0.20854 |  |
| С                                                          | 0.50021         | 0.53082              | 0.21031 |  |
| С                                                          | 0.49209         | 0.50686              | 0.17607 |  |
| С                                                          | 0.44714         | 0.55009              | 0.17615 |  |
| С                                                          | 0.4573          | 0.57572              | 0.15505 |  |
| С                                                          | 0.44408         | 0.58898              | 0.15665 |  |
| С                                                          | 0.41857         | 0.57843              | 0.17927 |  |
| С                                                          | 0.40859         | 0.55296              | 0.20103 |  |
| С                                                          | 0.42177         | 0.53978              | 0.20022 |  |
| С                                                          | 0.39863         | 0.58904              | 0.18286 |  |
| Ν                                                          | 0.37223         | 0.65192              | 0.17774 |  |
| Ν                                                          | 0.37154         | 0.72097              | 0.18032 |  |
| С                                                          | 0.35331         | 0.74451              | 0.17627 |  |
| С                                                          | 0.37959         | 0.76209              | 0.17846 |  |
| С                                                          | 0.38974         | 0.74568              | 0.18156 |  |
| Cu                                                         | 0.37177         | 0.68644              | 0.17936 |  |
| Ν                                                          | 0.38925         | 0.78933              | 0.17568 |  |
| С                                                          | 0.50753         | 0.49172              | 0.17894 |  |
| С                                                          | 0.5303          | 0.49905              | 0.13548 |  |
| С                                                          | 0.54349         | 0.48523              | 0.13588 |  |
| С                                                          | 0.53603         | 0.46268              | 0.17946 |  |
| С                                                          | 0.51286         | 0.45448              | 0.22746 |  |
| С                                                          | 0.49935         | 0.46853              | 0.22654 |  |
| С                                                          | 0.55181         | 0.44798              | 0.17691 |  |

Table S6. ABC stacking model for (*R*)-JNM-11.

| С  | 0.57792 | 0.45975 | 0.18804 |
|----|---------|---------|---------|
| С  | 0.59191 | 0.44739 | 0.18699 |
| С  | 0.58219 | 0.42147 | 0.17482 |
| С  | 0.55607 | 0.40962 | 0.16282 |
| С  | 0.54204 | 0.42201 | 0.16319 |
| С  | 0.6023  | 0.41137 | 0.17686 |
| С  | 0.66646 | 0.24956 | 0.17086 |
| С  | 0.58374 | 0.24785 | 0.17726 |
| Н  | 0.49493 | 0.56175 | 0.23975 |
| 0  | 0.52344 | 0.54228 | 0.25037 |
| Н  | 0.47648 | 0.58621 | 0.13411 |
| Н  | 0.45449 | 0.6083  | 0.13778 |
| Н  | 0.3893  | 0.54235 | 0.22081 |
| Н  | 0.41144 | 0.5206  | 0.22098 |
| Н  | 0.38083 | 0.57216 | 0.1947  |
| 0  | 0.54009 | 0.52113 | 0.08809 |
| Н  | 0.56035 | 0.4932  | 0.09694 |
| Н  | 0.58821 | 0.47951 | 0.19992 |
| Н  | 0.6117  | 0.45904 | 0.19695 |
| Н  | 0.54576 | 0.38984 | 0.15183 |
| Н  | 0.5224  | 0.41043 | 0.15089 |
| Н  | 0.62032 | 0.42829 | 0.18442 |
| С  | 0.33293 | 0.75011 | 0.17412 |
| С  | 0.41617 | 0.75254 | 0.18481 |
| С  | 0.42973 | 0.49801 | 0.09307 |
| С  | 0.42045 | 0.47503 | 0.0557  |
| С  | 0.43347 | 0.46226 | 0.05716 |
| С  | 0.45649 | 0.47335 | 0.09654 |
| С  | 0.47738 | 0.45866 | 0.27778 |
| С  | 0.46821 | 0.43711 | 0.32642 |
| С  | 0.48134 | 0.42444 | 0.3266  |
| С  | 0.50291 | 0.43274 | 0.27987 |
| Cl | 0.46932 | 0.39616 | 0.39186 |
| Cl | 0.39049 | 0.46066 | 0.00075 |
| С  | 0.56488 | 0.53229 | 0.04927 |
| С  | 0.57128 | 0.55777 | 0.01786 |
| С  | 0.5349  | 0.56796 | 0.28065 |
| С  | 0.5611  | 0.57561 | 0.30697 |
| Н  | 0.57723 | 0.09007 | 0.28391 |
| Н  | 0.5312  | 0.99877 | 0.27873 |
| Н  | 0.56997 | 0.02123 | 0.36428 |
| Н  | 0.75129 | 0.35158 | 0.84055 |
| Н  | 0.76    | 0.33245 | 0.78122 |
| Н  | 0.76066 | 0.33294 | 0.89923 |
|    |         |         |         |

| Н | 0.74337 | 0.42161 | 0.23031 |
|---|---------|---------|---------|
| Н | 0.74265 | 0.42082 | 0.11157 |
| Н | 0.77048 | 0.42852 | 0.16938 |
| Н | 0.76296 | 0.3374  | 0.2371  |
| Н | 0.76329 | 0.33724 | 0.11858 |
| Н | 0.73564 | 0.31761 | 0.17706 |
| Н | 0.89819 | 0.18756 | 0.65995 |
| Н | 0.91122 | 0.19994 | 0.76732 |
| Н | 0.90407 | 0.23525 | 0.7411  |
| Н | 0.89149 | 0.22332 | 0.63391 |
| Н | 0.92315 | 0.23385 | 0.65563 |
| Н | 0.85785 | 0.23583 | 1.0045  |
| Н | 0.8679  | 0.24609 | 0.89226 |
| Н | 0.90391 | 0.26139 | 0.99702 |
| Н | 0.90442 | 0.24078 | 0.91611 |
| Н | 0.89459 | 0.2305  | 1.02747 |
| Н | 0.09403 | 0.1044  | 0.54581 |
| Н | 0.09002 | 0.08566 | 0.45124 |
| Н | 0.08528 | 0.073   | 0.56062 |
| Н | 0.75893 | 0.11086 | 0.69358 |
| Н | 0.80022 | 0.13047 | 0.76301 |
| Н | 0.75266 | 0.17417 | 0.75511 |



8. Gas adsorption isotherms and the pore size distribution

**Figure S23.** The N<sub>2</sub> adsorption and desorption isotherm profiles of (*R*)-JNM-10 at 77 K and the Brunauer–Emmett–Teller (BET) surface areas of (*R*)-JNM-10 are calculated to be 47.24 m<sup>2</sup> g<sup>-1</sup>. Inset, the pore size distribution profiles of (*R*)-JNM-10 calculated by nonlocal DFT modeling based on N<sub>2</sub> adsorption data, showing the pore size at 1.16 and 1.37 nm.



**Figure S24.** The N<sub>2</sub> adsorption and desorption isotherm profiles of (*R*)-JNM-11 at 77 K and the Brunauer–Emmett–Teller (BET) surface areas of (*R*)-JNM-11 are calculated to be 416.43 m<sup>2</sup> g<sup>-1</sup>. Inset, the pore size distribution profiles of (*R*)-JNM-11 calculated by nonlocal DFT modeling based on N<sub>2</sub> adsorption data, showing the pore size at 0.69, 0.79 and 1.29 nm.

9. Transmission electron microscopy (TEM)



Figure S25. TEM images of (*R*)-JNM-10.



Figure S26. TEM images of (*R*)-JNM-11.





Figure S27. TEM images of (S)-JNM-10.

b)





Figure S28. TEM images of (S)-JNM-11.

## 10. Thermogravimetric analysis (TGA)



Figure S29. TGA curve of (R)-JNM-10 and (S)-JNM-10 under N<sub>2</sub> atmosphere.



Figure S30. TGA curve of (R)-JNM-11 and (S)-JNM-11 under N<sub>2</sub> atmosphere.

## 11. Various-Temperature PXRD



Figure S31. *In-situ* variable-temperature PXRD patterns of (*R*)-JNM-10 under air atmosphere.



Figure S32. *In-situ* variable-temperature PXRD patterns of (*R*)-JNM-11 under air atmosphere.

## 12. X-ray photoelectron spectroscopy (XPS)



Figure S33. XPS spectrum of (R)-JNM-10 exposed to air for over one month.



Figure S34. XPS spectrum of (*R*)-JNM-11 exposed to air for over one month.

## 13. Stability in various solvents



Figure S35. PXRD patterns for samples of (*R*)-JNM-10 after treatment with different solvents for 3 d.



Figure S36. PXRD patterns for samples of (*R*)-JNM-11 after treatment with different solvents for 3 d.

## 14. Solid-state UV-vis absorption spectra



Figure S37. Solid-state UV-vis absorption spectra of JNM-10.



Figure S38. Solid-state UV-vis absorption spectra of JNM-11.

#### 15. CD spectra of ligands and JNMs

For chiral ligands, 1.0 mg of samples were dissolved in CH<sub>3</sub>CN (10 mL). For JNM-10 and JNM-11, 5.0 mg of samples were dispersed in CH<sub>3</sub>CN (10 mL).



Figure S40. CD spectra of L2 and JNM-11.

#### 16. Dye adsorption and degradation

The adsorption experiments were conducted at r.t. in a dark condition. Initial concentrations of Methylene Blue (MB), Chrome azurol S (CA) and Rhodamine B (RhB) were fixed to be 10  $\mu$ M. Typically 10 mg of (*R*)-JNM-10 or (*R*)-JNM-11 was added into aqueous solution of Methylene Blue (MB) or Rhodamine B (RB) (10 mL), then the mixture was stirred at rt. At appropriate time interval, the mixture was filtered and detected using an ultraviolet-visible spectrometer.

The removal efficiency of dye was calculated as following equation (1):

Removal efficiency (%) =  $(C_0 - C_t) / C_0 \times 100$  (1)

Where  $C_0$  and  $C_t$  are the concentration of dyes at initial condition and in the filtrate, respectively.



**Figure S41.** UV–vis absorption spectra of an aqueous solution of MB after treatment with **JNM-11** at different intervals.



**Figure S42.** UV–vis absorption spectra of an aqueous solution of CA after treatment with **JNM-11** at different intervals.



Figure S43. UV-vis absorption spectra of a pH = 12 aqueous solution of CA after treatment with JNM-10 at different intervals.



**Figure S44.** UV-vis absorption spectra of an aqueous solution of RhB after mixing with **JNM-10** or **JNM-11** for 30 min.

The dye degradation chose 300 W xenon lamp as light source. Initial concentrations of Rhodamine B (RhB) was fixed to be 100  $\mu$ M. Typically 10 mg of (*R*)-JNM-10 or (*R*)-JNM-11 was added into RhB aqueous solution (10 mL) and 250 uL H<sub>2</sub>O<sub>2</sub> then injected, the mixture was stirred at r.t. At appropriate time interval, the mixture was filtered and the solution was detected using an ultraviolet-visible spectrometer. The degradation efficiency of dye was calculated as equation (1).

#### 17. Chiral recognition.

The chiral recognition was conducted at r.t.. Initial concentrations of amino acids were fixed to be  $1 \times 10^{-4}$  moL/L. Typically 10 mg of (*R*)-JNM-10 or (*R*)-JNM-11 was added into 10 mL amino acids aqueous solutions and the mixture was stirred at r.t. At appropriate time interval, the mixture was filtered and the solution was detected using HPLC.



Figure S45. D/L-Tryptophan standard sample (Sig=220).



**Figure S46.** L-Tryptophan + (*R*)-JNM-10, 2 h. (Sig=220).







Figure S48. D-Tryptophan + (*R*)-JNM-10, 24 h. (Sig=220).



**Figure S49.** L-Tryptophan + (*R*)-JNM-11, 24 h. (Sig=220).

|                                                                                        | DAD1A, Si<br>DAD1E, Si | g=250, 4<br>g=300, 4 | Ref=of<br>Ref=of                        | f DAD1E<br>f DAD1F                         | 8, Sig=2<br>7, Sig=3 | <b>20, 4</b> Re<br>50, 4 Re | f <b>=off</b><br>f=off | DAD1C, Si      | g=200, 4          | Ref=off | DAD1D | ), Sig= | 280, 4  | Ref=o | ff |    |    |    |    |
|----------------------------------------------------------------------------------------|------------------------|----------------------|-----------------------------------------|--------------------------------------------|----------------------|-----------------------------|------------------------|----------------|-------------------|---------|-------|---------|---------|-------|----|----|----|----|----|
| 200-<br>175-<br>150-<br>125-<br>100-<br>25-<br>0-<br>25-<br>0-<br>-25-<br>-50-<br>-75- |                        |                      | 8, 466<br>8, 966<br>8, 966<br>1, 136199 | 079 01 01 000 01 000 01 000 01 000 000 000 | 14 16                | 3 18 :                      | 20 22                  | 2 24 :<br>B†fi | 26 28<br>31 [min] | 30 32   |       | 36      | 38 40   | 42    | 44 | 46 | 48 | 50 | 52 |
| name                                                                                   |                        |                      | Ret.                                    | Ret. Time                                  |                      |                             | Height                 |                |                   | Area    |       |         |         |       |    |    |    |    |    |
|                                                                                        | D-Tryptophan           |                      |                                         | 10.6                                       | 520                  |                             | 185                    | 185.51         |                   |         |       |         | 3533.54 |       |    |    |    |    |    |

**Figure S50.** D-Tryptophan + (*R*)-JNM-11, 24 h. (Sig=220).