## Modified Reverse ADOR assembles Al-rich UTL zeolite from IPC-1P layers

## Ondřej Veselý, Michal Mazur, Jan Přech, Jiří Čejka

Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic



## Supplementary information

Fig. S1: <sup>1</sup>H NMR spectrum of the dimethyl-5-anizospiro[4.5]decane (DMASD) bromide in D<sub>2</sub>O



Fig. S2: <sup>1</sup>H NMR spectrum of the 7-ethyl-6-azoniaspiro[5.5]undecane (EASuD) bromide in D<sub>2</sub>O

| Sample         | C <sub>HCI/EtOH</sub> | Me <sub>2</sub> (EtO) <sub>2</sub> Si | (MeO) <sub>4</sub> Ge (mg) | NH <sub>4</sub> F (mg) | Al(NO <sub>3</sub> ) <sub>3</sub> .9H <sub>2</sub> O |
|----------------|-----------------------|---------------------------------------|----------------------------|------------------------|------------------------------------------------------|
|                | (mol/l)               | (mg)                                  |                            |                        | (mg)                                                 |
| 3Si:1Al        | 1.25                  | 49.4                                  | 0                          | 2.1                    | 41.6                                                 |
| 1Si:1Al        | 1.25                  | 32.9                                  | 0                          | 2.1                    | 83.3                                                 |
| 1Si:3Al        | 1.25                  | 16.5                                  | 0                          | 2.1                    | 124.9                                                |
| Pure Al ≡ pHCl | 1.25                  | 0                                     | 0                          | 2.1                    | 166.5                                                |
| = -0.1 (F)     |                       |                                       |                            |                        |                                                      |
| pHCl = 1 (Ge)  | 10-1                  | 24.7                                  | 32.8                       | 0                      | 37.7                                                 |
| pHCl = 3 (Ge)  | 10 <sup>-3</sup>      | 24.7                                  | 32.8                       | 0                      | 37.7                                                 |
| pHCl = 5 (Ge)  | 10-5                  | 24.7                                  | 32.8                       | 0                      | 37.7                                                 |
| pHCl = 1 (F)   | 10-1                  | 50.9                                  | 0                          | 2.1                    | 37.7                                                 |
| pHCl = 3 (F)   | 10-3                  | 50.9                                  | 0                          | 2.1                    | 37.7                                                 |
| pHCl = 5 (F)   | 10-5                  | 50.9                                  | 0                          | 2.1                    | 37.7                                                 |
| Re-UTL (Al)    | 10-3                  | 50.9                                  | 0                          | 2.1                    | 37.7                                                 |
| Re-UTL         | 10-3                  | 24.7                                  | 32.8                       | 0                      | 37.7                                                 |
| (Al+Ge)        |                       |                                       |                            |                        |                                                      |

Table S1: Composition of synthesis mixtures for samples of reconstructed UTL samples



Fig. S3: <sup>27</sup>AI MAS MNR spectra of "pure AI" reconstructed **UTL** before and after calcination



Fig. S4: Argon adsorption-desorption isotherms of **UTL** zeolites reconstructed with varying aluminium content



Fig. S5: Powder XRD patterns of **UTL** zeolites reconstructed by fluoride-assisted Reverse ADOR under varying acidity



Fig. S6: Powder XRD patterns of **UTL** zeolites reconstructed by germanium-assisted Reverse ADOR under varying acidity



Fig. S7: Powder XRD patterns of BEA, Al-UTL and reconstructed UTL zeolites



Fig. S8: Argon adsorption-desorption isotherms of BEA, Al-UTL and reconstructed UTL zeolites

|                | BET<br>(m²/g) | S <sub>ext</sub><br>(m²/g) | V <sub>tot</sub><br>(cm³/g) | V <sub>mic</sub><br>(cm <sup>3</sup> /g) | c <sub>Brønsted</sub><br>(μmol/g) | c <sub>Lewis</sub><br>(µmol/g) |
|----------------|---------------|----------------------------|-----------------------------|------------------------------------------|-----------------------------------|--------------------------------|
| BEA            | 560           | 170                        | 0.30                        | 0.16                                     | 300                               | 100                            |
| AI-UTL         | 454           | 64                         | 0.25                        | 0.15                                     | 46                                | 74                             |
| Re-UTL (Al+Ge) | 409           | 180                        | 0.31                        | 0.08                                     | 25                                | 75                             |
| Re-UTL (Al)    | 450           | 138                        | 0.33                        | 0.09                                     | 21                                | 54                             |

| Гаbl | le S2: Textural | and ac | cidic properties of | BEA, AI-UTL and | l reconstructed | l <b>UTL</b> zeolites |
|------|-----------------|--------|---------------------|-----------------|-----------------|-----------------------|
|------|-----------------|--------|---------------------|-----------------|-----------------|-----------------------|