Supporting Information

Cerium-organic framework as alkaline phosphatase mimics: Ce-OH₂ sites in catalytic dephosphorylation

Sudip Bhattacharjee,^{a, \ddagger} Tonmoy Chakraborty,^{a, \ddagger} and Asim Bhaumik^{a,*}

^aSchool of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India. Email: msab@iacs.res.in

+SB and TC contributed equally to this paper.

Sl		Page
No.	Contents	No.
1.	Various coordination mode of PDA ligand with Ce metal (Figure S1)	S4
2.	Topological representation of Ce-MOF underlying net 4,4,6,6T3 (Figure S2)	S4
3.	Coordination bond length and angles of Ce-MOF crystal (Table S1- S2)	S5-S9
4.	PXRD pattern of Ce-MOF at different solvent medium (Figure S3)	S9
5.	FT-IR of Ce-MOF at different solvent medium (Figure S4)	S9
6.	XPS analysis of Ce-MOF (Figure S5)	S10
7.	TGA plot of Ce-MOF (Figure S6)	S10
8.	Energy dispersive X-ray (EDX) spectrum of Ce-MOF (Figure S7)	S11
9.	Color change of 4-NPP hydrolysis reaction over time (Figure S8)	S11
10.	Wavelength scan for the hydrolysis of 4-NPP in the presence of Ce- MOF in different buffer (Figure S9)	S12
11.	PXRD pattern of Ce-MOF at different pH (Figure S10)	S13
12.	FT-IR spectra of Ce-MOF in different pH medium (Figure S11)	S13
13.	Comparison of hydrolysis rate of 4-NPP with various catalysts (Table S3)	S14
14.	SEM images of Ce-MOF (a) before and (b) after catalysis (Figure S12)	S14
15.	PXRD of Ce-MOF after and before catalysis (Figure S13)	S14
16.	FT-IR of Ce-MOF after and before catalysis (Figure S14)	S15
17.	A pictorial diagram of the 4-NPP catalytic hydrolytic reaction with	S15

	the surface H ₂ O molecules of the Ce-MOF catalyst (Figure S15)	
	Previously reported K_{cat} values for the hydrolysis of 4-NPP by	S16
18.	different catalysts (Table S4)	

Figure S1. Various coordination mode of PDA ligand with Ce metal.

Figure S2. Topological representation of Ce-MOF underlying net 4,4,6,6T3. Ce (yellow) PDA ligand (sky blue).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cel	05	2.391(3)	013	Ce2 ⁶	2.514(3)
Cel	07	2.426(3)	011	Ce1 ⁵	2.477(3)
Ce1	04	2.434(3)	013	Ce1 ²	2.682(3)
Ce1	O11 ¹	2.477(3)	03	Ce2 ¹	2.583(4)
Cel	O12 ²	2.517(3)	02	Ce2 ³	2.524(3)
Cel	O1 ³	2.522(3)	02	Ce1 ³	2.704(3)
Cel	O10 ¹	2.655(3)	C25	Ce1 ²	2.982(4)
Ce1	O13 ²	2.683(3)	012	Ce1 ²	2.517(3)
Ce1	O2 ³	2.704(3)	C8	Ce1 ³	3.002(5)
Cel	C26 ¹	2.944(5)	C26	C27	1.504(6)
Cel	C25 ²	2.982(4)	C26	Ce1 ⁵	2.944(5)
Ce1	C8 ³	3.002(5)	O10	Ce1 ⁵	2.655(3)
Ce2	09	2.457(4)	04	Ce2 ¹	2.625(3)
Ce2	O10	2.477(3)	01	Ce1 ³	2.522(3)
Ce2	O6	2.478(3)	Ce2	C10 ⁵	3.003(5)
Ce2	O13 ⁴	2.514(3)	Ce2	Ce1 ⁵	3.9626(4)
Ce2	O2 ³	2.524(3)	C10	Ce2 ¹	3.003(5)
Ce2	O7	2.547(3)	Ce2	O4 ⁵	2.625(3)
Ce2	O3 ⁵	2.583(4)	Ce2	C16	2.972(5)
Ce2	08	2.593(4)			

Table S1. Bond Lengths (\AA) for Ce-MOF.

 $^{1}+X,1/2-Y,1/2+Z;\ ^{2}-X,1-Y,1-Z;\ ^{3}1-X,-Y,1-Z;\ ^{4}-X,-1/2+Y,1/2-Z;\ ^{5}+X,1/2-Y,-1/2+Z;\ ^{6}-X,1/2+Y,1/2-Z;\ ^{7}-X,1-Y,-Z;\ ^{8}1-X,1-Y,1-Z;\ ^{8}1-X,1-Y,1-X;\ ^{8}1-X,1-Y,1-X;\ ^{8}1-X,1-Y,1-X;\ ^{8}1-X,1-Y,1-X;\ ^{8}1-X,1-X;\ ^{8}1-X,1-X;\ ^{8}1-X,1-X;\ ^{8}1-X,1-X;$

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
05	Ce1	O7	86.49(12)	O10	Ce2	C10 ⁵	77.72(12)
05	Ce1	04	81.48(12)	06	Ce2	C10 ⁵	97.74(13)
07	Ce1	O4	166.56(11)	O13 ⁴	Ce2	C10 ⁵	92.74(13)
05	Ce1	O11 ¹	158.26(13)	O2 ³	Ce2	C10 ⁵	82.94(13)
07	Ce1	O11 ¹	76.77(11)	07	Ce2	C10 ⁵	151.10(12)
04	Ce1	O11 ¹	116.33(11)	O3 ⁵	Ce2	C10 ⁵	24.23(12)
05	Ce1	O12 ²	77.43(12)	08	Ce2	C10 ⁵	154.42(13)
07	Ce1	O12 ²	72.78(11)	O4 ⁵	Ce2	C10 ⁵	25.32(12)
04	Ce1	O12 ²	110.07(11)	C16	Ce2	C10 ⁵	169.33(15)
O11 ¹	Ce1	O12 ²	84.35(13)	09	Ce2	Ce1 ⁵	112.19(10)
05	Ce1	O1 ³	114.04(12)	O10	Ce2	Ce1 ⁵	41.12(7)
07	Ce1	O1 ³	95.52(11)	06	Ce2	Ce1 ⁵	157.45(8)
04	Ce1	O1 ³	84.03(11)	O13 ⁴	Ce2	Ce1 ⁵	41.91(7)
O11 ¹	Ce1	O1 ³	81.72(13)	O2 ³	Ce2	Ce1 ⁵	94.81(7)
O12 ²	Cel	O1 ³	163.59(12)	07	Ce2	Ce1 ⁵	119.03(8)
05	Ce1	O10 ¹	146.08(11)	O3 ⁵	Ce2	Ce1 ⁵	83.86(8)
07	Ce1	O10 ¹	126.86(10)	08	Ce2	Ce1 ⁵	98.78(10)
04	Ce1	O10 ¹	65.90(10)	O4 ⁵	Ce2	Ce1 ⁵	36.76(6)
O11 ¹	Ce1	O10 ¹	50.55(10)	C16	Ce2	Ce1 ⁵	110.88(10)
O12 ²	Ce1	O10 ¹	104.37(10)	C10 ⁵	Ce2	Ce1 ⁵	60.22(10)
O1 ³	Cel	O10 ¹	73.07(10)	C8	02	Ce2 ³	134.7(3)
05	Cel	O13 ²	96.07(11)	C8	02	Ce1 ³	90.8(3)
07	Ce1	O13 ²	119.65(10)	Ce2 ³	02	Ce1 ³	105.73(11)
04	Ce1	O13 ²	67.94(10)	C25	013	Ce2 ⁶	167.1(3)
O11 ¹	Cel	O13 ²	80.70(12)	C25	013	Ce1 ²	90.5(3)
O12 ²	Ce1	O13 ²	49.67(10)	Ce2 ⁶	013	Ce1 ²	99.34(11)
O1 ³	Cel	O13 ²	135.26(10)	C25	012	Ce1 ²	99.0(3)

Table S2. Bond Angles (°) for Ce-MOF.

O10 ¹	Ce1	O13 ²	63.99(10)	C26	O10	Ce2	136.5(3)
05	Ce1	O2 ³	72.46(11)	C26	O10	Ce1 ⁵	90.0(3)
07	Ce1	O2 ³	67.05(10)	Ce2	O10	Ce1 ⁵	101.04(11)
04	Ce1	O2 ³	103.32(10)	C10	04	Ce1	148.0(3)
O11 ¹	Ce1	O2 ³	112.32(11)	C10	04	Ce21	94.0(3)
O12 ²	Ce1	O2 ³	130.47(10)	Ce1	04	Ce2 ¹	103.04(11)
O1 ³	Ce1	O2 ³	49.46(10)	C16	07	Ce1	150.1(3)
O10 ¹	Ce1	O2 ³	122.53(9)	C16	07	Ce2	96.0(3)
O13 ²	Ce1	O2 ³	166.89(11)	Cel	07	Ce2	113.90(12)
05	Cel	C26 ¹	166.62(12)	C8	01	Ce1 ³	99.6(3)
07	Ce1	C26 ¹	101.48(12)	C11	05	Ce1	139.0(3)
04	Ce1	C26 ¹	91.48(12)	C11	06	Ce2	139.4(3)
O11 ¹	Ce1	C26 ¹	24.90(12)	C26	011	Ce1 ⁵	98.9(3)
O12 ²	Ce1	C26 ¹	94.52(12)	C10	03	Ce21	97.2(3)
O1 ³	Ce1	C26 ¹	76.21(12)	C16	08	Ce2	95.2(3)
O10 ¹	Ce1	C26 ¹	25.65(11)	012	C25	013	119.5(4)
O13 ²	Ce1	C26 ¹	70.68(11)	012	C25	C24	119.9(4)
O2 ³	Ce1	C26 ¹	120.47(11)	013	C25	C24	120.6(4)
05	Ce1	C25 ²	88.90(13)	012	C25	Ce1 ²	56.5(2)
07	Ce1	C25 ²	94.96(11)	013	C25	Ce1 ²	64.1(2)
04	Ce1	C25 ²	90.80(11)	C24	C25	Ce1 ²	170.3(3)
O11 ¹	Ce1	C25 ²	78.98(13)	01	C8	O2	120.2(4)
O12 ²	Ce1	C25 ²	24.56(12)	01	C8	C7	119.0(4)
O1 ³	Ce1	C25 ²	155.27(12)	02	C8	C7	120.7(4)
O10 ¹	Ce1	C25 ²	82.73(12)	01	C8	Ce1 ³	55.9(2)
O13 ²	Ce1	C25 ²	25.41(11)	02	C8	Ce1 ³	64.2(2)
O2 ³	Cel	C25 ²	154.32(11)	C7	C8	Ce1 ³	174.1(3)
C26 ¹	Cel	C25 ²	79.78(13)	O2 ³	Ce2	O4 ⁵	79.89(10)
05	Ce1	C8 ³	93.53(13)	07	Ce2	O4 ⁵	138.59(11)
07	Cel	C8 ³	80.87(12)	O3 ⁵	Ce2	O4 ⁵	49.51(10)

04	Ce1	C8 ³	93.85(11)	011	C26	Ce1 ⁵	56.2(2)
O11 ¹	Ce1	C8 ³	97.33(13)	O10	C26	Ce1 ⁵	64.4(2)
O12 ²	Ce1	C8 ³	152.51(12)	C27	C26	Ce1 ⁵	176.3(3)
O1 ³	Ce1	C8 ³	24.48(12)	08	Ce2	O4 ⁵	135.49(12)
O10 ¹	Ce1	C8 ³	97.55(12)	09	Ce2	C16	92.13(15)
O13 ²	Ce1	C8 ³	157.77(12)	O10	Ce2	C16	99.36(12)
O2 ³	Ce1	C8 ³	24.98(11)	08	C16	Ce2	60.3(3)
C26 ¹	Ce1	C8 ³	98.31(13)	07	C16	Ce2	58.5(2)
C25 ²	Cel	C8 ³	175.02(12)	C17	C16	Ce2	176.3(3)
09	Ce2	O10	73.59(12)	06	Ce2	C16	90.46(13)
09	Ce2	06	72.69(13)	O13 ⁴	Ce2	C16	76.68(13)
O10	Ce2	06	145.15(11)	O2 ³	Ce2	C16	92.43(12)
09	Ce2	O13 ⁴	138.33(13)	07	Ce2	C16	25.53(12)
O10	Ce2	O13 ⁴	69.04(11)	O3 ⁵	Ce2	C16	165.23(13)
06	Ce2	O13 ⁴	145.70(11)	03	C10	Ce2 ¹	58.6(3)
09	Ce2	O2 ³	148.84(12)	04	C10	Ce2 ¹	60.7(2)
O10	Ce2	O2 ³	135.68(10)	C9	C10	Ce2 ¹	174.5(4)
06	Ce2	O2 ³	76.46(11)	08	Ce2	C16	24.51(12)
O13 ⁴	Ce2	O2 ³	72.55(11)	O4 ⁵	Ce2	C16	144.33(12)
09	Ce2	07	108.52(14)	09	Ce2	C10 ⁵	96.81(16)
O10	Ce2	07	122.15(10)	07	Ce2	08	50.03(10)
06	Ce2	07	77.45(11)	O3 ⁵	Ce2	08	158.80(15)
O13 ⁴	Ce2	07	77.71(11)	09	Ce2	O4 ⁵	112.38(13)
O2 ³	Ce2	07	68.19(10)	O10	Ce2	O4 ⁵	65.81(10)
09	Ce2	O3 ⁵	82.63(15)	06	Ce2	O4 ⁵	120.69(11)
O10	Ce2	O3 ⁵	92.42(12)	O13 ⁴	Ce2	O4 ⁵	67.76(10)
06	Ce2	O3 ⁵	74.80(11)	06	Ce2	08	103.76(13)
O13 ⁴	Ce2	O3 ⁵	116.20(11)	O13 ⁴	Ce2	08	77.22(14)
O2 ³	Ce2	O3 ⁵	85.22(13)	O2 ³	Ce2	08	115.31(12)
07	Ce2	O3 ⁵	145.27(12)	010	Ce2	08	76.72(11)

Figure S3. PXRD pattern of Ce-MOF at different solvent medium (soaked for 24 h).

Figure S4. FT-IR of Ce-MOF (without N-Methylmorpholine), N-Methylmorpholine and Ce-MOF (with N-Methylmorpholine) at different solvent medium (soaked for 24 h).

Figure S5. XPS analysis of Ce-MOF.

Figure S6. TGA plot of Ce-MOF.

Calculation for weight loss of Ce-MOF:

Formula of asymmetric unit = $C_{30}H_{26}Ce_2O_{13}.2(H_2O)$

Therefore, FW of asymmetric unit = 910 g/mol.

Weight loss for the loss of coordinated and lattice H_2O molecules = $(54/910) \times 100\% = 5.93\%$ (experimental 5.77 %). The further weight loss may be ascribed to the collapse of some additional portion of the polymeric unit of Ce-MOF.

Figure S7. Energy dispersive X-ray (EDX) spectrum of Ce-MOF, inset shows the elemental percentage.

Figure S8. Color change of 4-NPP hydrolysis reaction over time (a) without catalyst, (b) with catalyst of Ce-MOF.

Figure S9. Wavelength scan for the hydrolysis of 4-NPP in the presence of Ce-MOF in (a)
H₂O, (b) HEPES buffer (pH 9.0), (c) Tris-HCl buffer (pH 9.0), (d) carbonate buffer (pH 9.0),
(e) N-Methylmorpholine buffer (pH 9.0), recorded at 25 °C at intervals of 10 min.

Figure S10. PXRD pattern of Ce-MOF at different pH.

Figure S11. FT-IR spectra of Ce-MOF in different pH medium (N-Methylmorpholine buffered 7.0-11.0).

Catalyst	Rate (mM/min ⁻¹)
Ce-MOF	7.42
$Ce(NO_3)_2.6H_2O$	1.55
PDA	0

Table S3. Comparison of hydrolysis rate of p-NPP with various catalysts.

Figure S12. SEM images of Ce-MOF (a) before and (b) after catalysis.

Figure S13. PXRD of Ce-MOF after and before catalysis.

Catalyst	Substrate	Solvent	$k_{\rm cat}({\rm min}^{-1})$	Ref.
Hf-Ni	4-NPP	HEPES buffer (pH 7.4)	8.34 × 10 ⁻³	1
CeNPs	4-NPP	HEPES buffer (pH 7.0)	2.20×10^{-6}	2
Protein Tyrosine	4-NPP	HEPES buffer (pH 7.0)	2.05×10^{3}	3
Phosphatase				
CeCDs	BNPP	Tris-HCl buffer (pH 8.5)	1.84×10^{-3}	4
Ce-MOF	4-NPP	N-Methylmorpholine	7.42 × 10 ⁻³	This
		buffer (pH 9.0)		work

Table S4. Previously reported K_{cat} values for the hydrolysis of 4-NPP by different catalysts.

REFERENCES

- Dong, J.; An, H. D.; Yue, Z. K.; Hou, S. L.; Chen, Y.; Zhang, Z. J.; & Zhao, B. Dual-Selective Catalysis in Dephosphorylation Tuned by Hf6-Containing Metal–Organic Frameworks Mimicking Phosphatase. *ACS Cent. Sci.*, 2021, 7, 831-840.
- Dhall, A.; Burns, A.; Dowding, J.; Das, S.; Seal, S.; and Self, W. Characterizing the phosphatase mimetic activity of cerium oxide nanoparticles and distinguishing its active site from that for catalase mimetic activity using anionic inhibitors. *Environ. Sci. Nano* 2017, 4, 1742-1749.
- Wang, S.; Tabernero, L.; Zhang, M.; Harms, E.; Van Etten, R. L.; and Stauffacher, C. V. Crystal structures of a low-molecular weight protein tyrosine phosphatase from Saccharomyces cerevisiae and its complex with the substrate p-nitrophenyl phosphate. *Biochem.*, 2000, **39**, 1903-1914.
- Du, J.; Qi, S.; Chen, J.; Yang, Y.; Fan, T.; Zhang, P.; and Zhu, C. Fabrication of highly active phosphatase-like fluorescent cerium-doped carbon dots for in situ monitoring the hydrolysis of phosphate diesters. *RSC Adv.*, 2020, 10, 41551-41559.