## Supporting Information

Hexameric poly-fluoroberyllophosphate  $Na_4Be_2PO_4F_5$  with moderate birefringence and deep-ultraviolet transmission as potential zero-order-waveplate crystal

Yuanyu Yang,<sup>a</sup> Yao Guo,<sup>b</sup> Yi-Gang Chen,<sup>\*a</sup> Xiwei Hu,<sup>a</sup> Xia Zhang,<sup>a</sup> Xian-Ming Zhang,<sup>\*a,c</sup>

 <sup>a</sup> Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030006, China.
<sup>b</sup> Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, China.
<sup>c</sup> College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, Taiyuan University of Technology, Yingze West, Taiyuan 030024, China.

## **Table of Contents**

**Table S1.** Selected bond lengths (Å) and angles (deg) for (a)  $Na_4Be_2PO_4F_5$  and (b)  $KBe[PO_3(OH)]F$ .

**Table S2.** Atomic coordinates, equivalent isotropic displacement parameters (Å<sup>2</sup>), and the bond valence sum for each atom in the asymmetric unit of (a)  $Na_4Be_2PO_4F_5$  and (b)  $KBe[PO_3(OH)]F$ .

**Table S3.** Energy-Dispersive Spectrometry (EDS) for (a) Na<sub>4</sub>Be<sub>2</sub>PO<sub>4</sub>F<sub>5</sub> and (b) KBe[PO<sub>3</sub>(OH)]F.

Figure S1. Photos of the crystals (a) Na<sub>4</sub>Be<sub>2</sub>PO<sub>4</sub>F<sub>5</sub> and (b) KBe[PO<sub>3</sub>(OH)]F.

Figure S2. Powder XRD patterns for (a) Na<sub>4</sub>Be<sub>2</sub>PO<sub>4</sub>F<sub>5</sub> and (b) KBe[PO<sub>3</sub>(OH)]F.

Figure S3.<sup>19</sup>F MAS NMR spectra of (a)  $Na_4Be_2PO_4F_5$  and (b)  $KBe[PO_3(OH)]F$ .

**Figure S4.** Energy-Dispersive Spectrometry (EDS) for (a) Na<sub>4</sub>Be<sub>2</sub>PO<sub>4</sub>F<sub>5</sub> and (b) KBe[PO<sub>3</sub>(OH)]F.

Figure S5. TGA and DSC curves for (a) Na<sub>4</sub>Be<sub>2</sub>PO<sub>4</sub>F<sub>5</sub> and (b) KBe[PO<sub>3</sub>(OH)]F.

Figure S6. XRD patterns for (a) Na<sub>4</sub>Be<sub>2</sub>PO<sub>4</sub>F<sub>5</sub> after 570 °C and (a) KBe[PO<sub>3</sub>(OH)]F after 900 °C.

Figure S7. IR spectra of (a)  $Na_4Be_2PO_4F_5$  and (b)  $KBe[PO_3(OH)]F$ .

Figure S8. Birefringence measurements of  $Na_4Be_2PO_4F_5$  (a) and  $KBe[PO_3(OH)]F$  (b) crystal under a cross-polarizing microscope.

|             | (a)         | )           |             |
|-------------|-------------|-------------|-------------|
| Be(1)-O(3)  | 1.6120 (15) | Na(2)–F(5)  | 2.2622 (8)  |
| Be(1)-F(11) | 1.5519 (15) | Na(3)–O(3b) | 2.4561 (9)  |
| Be(1)-F(2)  | 1.5339 (15) | Na(3)-O(4j) | 2.2726 (9)  |
| Be(1)-F(5c) | 1.5719 (15) | Na(3)-F(1h) | 2.4350 (8)  |
| Be(2)-O(1)  | 1.6096 (15) | Na(3)-F(1)  | 2.2682 (8)  |
| Be(2)-O(2)  | 1.6506 (15) | Na(3)-F(3)  | 2.3838 (10) |
| Be(2)-F(3c) | 1.5464 (15) | Na(3)-F(4i) | 2.4604 (11) |
| Be(2)-F(4)  | 1.5596 (15) | Na(4)-O(2k) | 2.3886 (10) |
| P(1)-O(1c)  | 1.5361 (9)  | Na(4)-O(3)  | 2.4698 (12) |
| P(1)-O(2)   | 1.5500 (8)  | Na(4)-F(1c) | 2.5749 (9)  |
| P(1)-O(3)   | 1.5452 (8)  | Na(4)-F(3c) | 2.2281 (8)  |
| P(1)-O(4)   | 1.5079 (8)  | Na(4)-F(4k) | 2.6931 (8)  |
| Na(1)-O(4b) | 2.3578 (9)  | Na(4)-F(51) | 2.2706 (8)  |
| Na(1)-O(4d) | 2.3578 (9)  | Na(4)-F(5c) | 2.6444 (9)  |
| Na(1)-F(2e) | 2.3101 (7)  | Na(5)-O(2f) | 2.5881 (10) |
| Na(1)-F(2)  | 2.3101 (7)  | Na(5)-O(2d) | 2.5881 (10) |
| Na(1)-F(4f) | 2.3048 (7)  | Na(5)-F(2)  | 2.3606 (8)  |
| Na(1)-F(4g) | 2.3048 (7)  | Na(5)-F(2c) | 2.3606 (8)  |
| Na(2)-O(1c) | 2.3789 (9)  | Na(5)-F(4d) | 2.6557 (10) |
| Na(2)-O(4b) | 2.3418 (10) | Na(5)-F(4f) | 2.6557 (10) |

Table S1. Selected bond distances (Å) and angles (deg) for (a)Na<sub>4</sub>Be<sub>2</sub>PO<sub>4</sub>F<sub>5</sub> and (b)  $KBe[PO_3(OH)]F$ .

| Na(2)-F(1)        | 2.7835 (11) | Na(5)-F(5c)       | 2.4787 (9) |
|-------------------|-------------|-------------------|------------|
| Na(2)-F(2)        | 2.2564 (10) | Na(5)-F(5)        | 2.4787 (9) |
| Na(2)-F(3)        | 2.3517 (8)  |                   |            |
| O(3)-Be(1)-F(11)  | 104.80 (8)  | O(4b)-Na(2)-F(1)  | 76.18 (3)  |
| O(1)-Be(2)-O(2)   | 113.10 (9)  | O(4j)-Na(3)-O(3b) | 144.39 (3) |
| O(1)-Be(2)-F(3c)  | 104.57 (9)  | O(3b)-Na(3)-F(4i) | 92.18 (3)  |
| O(1)-Be(2)-F(4)   | 115.89 (9)  | O(2k)-Na(4)-O(3)  | 125.38 (4) |
| O(1c)-P(1)-O(3)   | 108.69 (4)  | O(2k)-Na(4)-F(1c) | 102.76 (3) |
| O(3)-P(1)-O(2)    | 108.65 (5)  | O(2f)-Na(5)-O(2d) | 81.11 (4)  |
| O(4d)-Na(1)-O(4b) | 180.0       | O(2d)-Na(5)-F(4f) | 91.31 (3)  |
|                   |             |                   |            |

Symmetry transformations used to generate equivalent atoms:

(a) x, y-1, z; (b) -x+1, -y+2, -z+1; (c) -x+1, y, -z+1/2; (d) x, y+1, z; (e) -x+1, -y+3, -z+1; (f) -x+1, y+1, -z+1/2; (g) x, -y+2, z+1/2; (h) -x+3/2, y-1/2, -z+3/2; (i) x+1/2, y+1/2, z+1; (j) x+1/2, -y+3/2, z+1/2; (k) -x+1/2, -y+3/2, -z; (l) x-1/2, -y+5/2, z-1/2; (m) -x+1/2, -y+5/2, -z; (n) -x+3/2, y+1/2, -z+3/2; (o) x+1/2, -y+5/2, z+1/2; (p) -x+1, y-1, -z+1/2; (q) x-1/2, y-1/2, z-1; (r) x-1/2, -y+3/2, z-1/2.

|            |             | (b)        |             |
|------------|-------------|------------|-------------|
| Be(1)-O(7) | 1.634 (2)   | K(1)-O(1c) | 2.7364 (13) |
| Be(1)-O(6) | 1.626 (2)   | K(1)-O(2)  | 2.7642 (13) |
| Be(1)-O(3) | 1.626 (2)   | K(1)-O(3e) | 2.9253 (12) |
| Be(1)-F(2) | 1.541 (2)   | K(1)=O(5b) | 2.7591 (12) |
| P(1)=O(1)  | 1.5745 (13) | K(1)=O(6d) | 2.9663 (13) |
| P(1)-O(3h) | 1.5280 (13) | K(1)=O(8b) | 2.8648 (12) |
| P(1)-O(6g) | 1.5177 (11) | K(1)-F(1c) | 2.6268 (10) |

| P(1)-O(8)        | 1.5174 (12) | K(1)-F(2)        | 2.7921 (11) |
|------------------|-------------|------------------|-------------|
| Be(2h)-O(4)      | 1.633 (2)   | K(2)-O(1a)       | 2.9518 (14) |
| Be(2)–O(5)       | 1.632 (2)   | K(2)–O(2e)       | 2.8552 (13) |
| Be(2)–O(8)       | 1.638 (2)   | K(2)-O(3e)       | 3.0155 (12) |
| Be(2)-F(1)       | 1.529 (2)   | K(2)-O(5)        | 3.1588 (13) |
| P(2)-O(2)        | 1.5734 (13) | K(2)-O(6c)       | 3.2165 (12) |
| P(2)-O(4)        | 1.5314 (13) | K(2)-O(7c)       | 2.7851 (12) |
| P(2)-O(5)        | 1.5138 (11) | K(2)-O(8)        | 3.3385 (12) |
| P(2)-O(7)        | 1.5098 (11) | K(2)-F(1c)       | 2.7633 (11) |
| O(1)-H(1)        | 0.68 (2)    | K(2)-F(1)        | 2.7476 (11) |
| O(2)-H(2)        | 0.82 (3)    | K(2)-F(2c)       | 3.4069 (11) |
| O(3)-Be(1)-O(7)  | 111.38 (14) | O(4h)-Be(2)-O(8) | 111.27 (14) |
| O(3)-Be(1)-F(2)  | 109.56 (14) | O(8)-Be(2)-F(1)  | 111.15 (14) |
| O(3h)-P(1)-O(1)  | 105.93 (7)  | O(4)-P(2)-O(2)   | 106.22 (7)  |
| O(6g)-P(1)-O(1)  | 107.73 (7)  | O(1a)-K(2)-O(3e) | 49.03 (3)   |
| O(1c)-K(1)-O(2)  | 150.53 (4)  | O(1a)-K(2)-O(5)  | 129.50 (3)  |
| O(1c)-K(1)-O(5b) | 84.37 (4)   | O(1a)-K(2)-F(2c) | 115.31 (3)  |
| O(2)-K(1)-F(2)   | 71.93 (3)   | O(2e)-K(2)-F(2c) | 99.99 (3)   |
| O(5b)-K(1)-F(2)  | 70.04 (3)   | O(3e)-K(2)-F(2c) | 157.41 (3)  |

Symmetry codes: (a) x+1/2, -y+1/2, z-1/2; (b) -x+1/2, y+1/2, -z+1/2; (c) -x+1, -y+1, -z+1; (d) x+1/2, -y+3/2, z-1/2; (e) -x+1/2, y-1/2, -z+1/2; (f) x-1/2, -y+1/2, z+1/2; (g) x, y-1, z; (h) -x, -y+1, -z+1; (i) x-1/2, -y+3/2, z+1/2; (j) x, y+1, z.

| (a)  |       |      |            |             |             |      |  |  |
|------|-------|------|------------|-------------|-------------|------|--|--|
| Atom | Wyck. | Site | x/a        | y/b         | z/c         | BVS  |  |  |
| P1   | 8f    | 1    | 0.40923(2) | 0.82091(3)  | 0.27680(2)  | 5.00 |  |  |
| Be1  | 8f    | 1    | 0.36665(9) | 1.20614(18) | 0.22229(13) | 1.98 |  |  |
| Be2  | 8f    | 1    | 0.39721(9) | 0.76191(18) | 0.05890(13) | 1.98 |  |  |
| Nal  | 4a    | -1   | 1/2        | 1.50000     | 1/2         | 1.16 |  |  |
| Na2  | 8f    | 1    | 0.59347(3) | 1.14243(6)  | 0.49146(4)  | 1.06 |  |  |
| Na3  | 8f    | 1    | 0.77023(3) | 0.96832(6)  | 0.77727(4)  | 1.05 |  |  |
| Na4  | 8f    | 1    | 0.23233(3) | 1.00435(6)  | -0.02314(4) | 1.02 |  |  |
| Na5  | 4e    | 2    | 1/2        | 1.44808(9)  | 1/4         | 0.94 |  |  |
| 01   | 8f    | 1    | 0.48885(5) | 0.87466(10) | 0.12516(7)  | 1.97 |  |  |
| O2   | 8f    | 1    | 0.38671(5) | 0.71226(11) | 0.16311(7)  | 1.98 |  |  |
| 03   | 8f    | 1    | 0.35017(5) | 0.99343(10) | 0.21939(8)  | 2.04 |  |  |
| 04   | 8f    | 1    | 0.38760(5) | 0.71072(11) | 0.34321(7)  | 1.98 |  |  |
| F1   | 8f    | 1    | 0.78190(4) | 1.20409(9)  | 0.68668(7)  | 0.98 |  |  |
| F2   | 8f    | 1    | 0.45753(4) | 1.28672(9)  | 0.34678(6)  | 1.04 |  |  |
| F3   | 8f    | 1    | 0.68233(4) | 0.88235(9)  | 0.55471(6)  | 1.02 |  |  |
| F4   | 8f    | 1    | 0.39072(4) | 0.57208(9)  | 0.00581(6)  | 0.96 |  |  |
| F5   | 8f    | 1    | 0.63796(5) | 1.25309(9)  | 0.39172(6)  | 1.04 |  |  |

**Table S2.** Atomic coordinates, equivalent isotropic displacement parameters ( $Å^2$ ) for (a) Na<sub>4</sub>Be<sub>2</sub>PO<sub>4</sub>F<sub>5</sub> and (b) KBe[PO<sub>3</sub>(OH)]F. U(eq) is defined as one-third of the trace of the orthogonalized U<sub>ij</sub> tensor.

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>12</sub> | U <sub>13</sub> | U <sub>23</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| P1   | 0.00859(13)     | 0.00772(13)     | 0.00897(13)     | 0.00029(8)      | 0.00626(11)     | 0.00011(8)      |
| Be1  | 0.0132(6)       | 0.0105(6)       | 0.0130(6)       | 0.0002(4)       | 0.0092(5)       | -0.0003(4)      |
| Be2  | 0.0107(5)       | 0.0113(6)       | 0.0124(6)       | 0.0002(4)       | 0.0082(5)       | -0.0001(4)      |
| Na1  | 0.0152(3)       | 0.0147(3)       | 0.0149(3)       | 0.0024(2)       | 0.0108(2)       | 0.0016(2)       |
| Na2  | 0.0219(2)       | 0.0173(2)       | 0.0177(2)       | 0.00361(17)     | 0.0144(2)       | 0.00074(17)     |
| Na3  | 0.0168(2)       | 0.0183(2)       | 0.0192(2)       | 0.00239(16)     | 0.01320(19)     | 0.00354(17)     |
| Na4  | 0.0161(2)       | 0.0191(2)       | 0.0192(2)       | 0.00063(17)     | 0.0102(2)       | -0.00178(17)    |
| Na5  | 0.0208(3)       | 0.0166(3)       | 0.0265(3)       | 0.00000         | 0.0174(3)       | 0.00000         |
| 01   | 0.0102(3)       | 0.0141(4)       | 0.0147(4)       | 0.0001(3)       | 0.0078(3)       | 0.0024(3)       |
| O2   | 0.0170(4)       | 0.0162(4)       | 0.0144(3)       | -0.0049(3)      | 0.0125(3)       | -0.0047(3)      |
| O3   | 0.0114(3)       | 0.0094(4)       | 0.0199(4)       | 0.0015(3)       | 0.0086(3)       | 0.0018(3)       |
| O4   | 0.0163(4)       | 0.0156(4)       | 0.0142(4)       | -0.0010(3)      | 0.0118(3)       | 0.0017(3)       |
| F1   | 0.0186(3)       | 0.0151(3)       | 0.0236(3)       | -0.0048(2)      | 0.0158(3)       | -0.0022(2)      |
| F2   | 0.0158(3)       | 0.0159(3)       | 0.0154(3)       | -0.0028(2)      | 0.0077(3)       | -0.0037(2)      |
| F3   | 0.0118(3)       | 0.0181(3)       | 0.0146(3)       | -0.0034(2)      | 0.0066(3)       | -0.0035(2)      |
| F4   | 0.0232(3)       | 0.0138(3)       | 0.0216(3)       | -0.0011(2)      | 0.0175(3)       | -0.0039(2)      |
| F5   | 0.0234(3)       | 0.0205(3)       | 0.0186(3)       | -0.0034(3)      | 0.0169(3)       | -0.0033(3)      |

|      |                 |       |                 | (               | b)              |                 |                 |
|------|-----------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Atom | Wyck.           | Site  |                 | x/a             | y/b             | z/c             | BVS             |
| P1   | 4e              | 1     | 0.16            | 5300(5)         | 0.08053(4)      | 0.60944(4)      | 5.01            |
| P2   | 4e              | 1     | 0.10            | 578(5)          | 0.57972(4)      | 0.37624(4)      | 5.04            |
| Be1  | 4e              | 1     | 0.1             | 815(3)          | 0.8614(2)       | 0.43811(19)     | 2.03            |
| Be2  | 4e              | 1     | 0.2             | 115(3)          | 0.3638(2)       | 0.54256(19)     | 2.02            |
| К1   | 4e              | 1     | 0.47            | (035(5)         | 0.70855(4)      | 0.21330(3)      | 1.03            |
| к2   | 10              | 1     | 0.52            | 610(5)          | 0.31339(5)      | 0.30404(4)      | 0.80            |
| K2   | 4-              | 1     | 0.52            | 402(12)         | 0.31339(3)      | 0.50228(0)      | 0.09            |
| F1   | 46              | 1     | 0.384           | 493(12)         | 0.40709(10)     | 0.39238(9)      | 0.96            |
| F2   | 4e              | 1     | 0.332           | 227(13)         | 0.89187(11)     | 0.36955(9)      | 0.74            |
| 01   | 4e              | 1     | 0.272           | 211(16)         | 0.11254(13)     | 0.72939(11)     | 2.13            |
| 02   | 4e              | 1     | 0.15            | 963(16)         | 0.61113(13)     | 0.24831(11)     | 2.16            |
| 03   | 4e              | 1     | 0.01            | 535(14)         | 0.91488(12)     | 0.35996(10)     | 2.01            |
| O4   | 4e              | 1     | -0.08           | 263(14)         | 0.58385(12)     | 0.36413(10)     | 1.78            |
| 05   | 4e              | 1     | 0.16            | 891(15)         | 0.43485(11)     | 0.41129(10)     | 2.06            |
| O6   | 4e              | 1     | 0.20            | 649(15)         | 0.93443(11)     | 0.56919(10)     | 2.02            |
| 07   | 4e              | 1     | 0.17            | 771(14)         | 0 69220(11)     | 0.46006(10)     | 2 01            |
| 08   | 10              | 1     | 0.10            | 0.44(15)        | 0.10400(12)     | 0.52125(10)     | 1.09            |
| 08   | 46              | 1     | 0.19            | 944(13)         | 0.19409(12)     | 0.52125(10)     | 1.98            |
| HI   | 4e              | 1     | 0.2             | .98(3)          | 0.052(2)        | 0.757(2)        | 0.89            |
| H2   | 4e              | 1     | 0.150(4)        |                 | 0.539(3)        | 0.208(3)        | 0.78            |
|      |                 |       |                 |                 |                 |                 |                 |
| Atom | U <sub>11</sub> | τ     | J <sub>22</sub> | U <sub>33</sub> | U <sub>12</sub> | U <sub>13</sub> | U <sub>23</sub> |
| K1   | 0.0172(2)       | 0.015 | 11(19)          | 0.0189(2)       | 0.00067(15)     | -0.00182(15)    | 0.00036(15)     |
| P1   | 0.0125(2)       | 0.007 | 20(19)          | 0.0095(2)       | 0.00022(16)     | -0.00092(16)    | 0.00033(16)     |
| K2   | 0.0232(2)       | 0.031 | 4(2)            | 0.0229(2)       | -0.00468(19)    | 0.00110(17)     | -0.00498(18)    |
| P2   | 0.0119(2)       | 0.007 | '11(19)         | 0.0088(2)       | -0.00006(16)    | 0.00080(16)     | 0.00007(16)     |
| F1   | 0.0133(5)       | 0.020 | 00(5)           | 0.0199(5)       | -0.0014(4)      | -0.0024(4)      | 0.0006(4)       |
| F2   | 0.0185(5)       | 0.019 | 9(5)            | 0.0235(5)       | 0.0011(4)       | 0.0086(4)       | 0.0040(4)       |
| 08   | 0.0204(7)       | 0.009 | 5(6)            | 0.0124(6)       | 0.0012(5)       | 0.0013(5)       | 0.0012(5)       |
| 07   | 0.0168(6)       | 0.009 | 0(5)            | 0.0143(6)       | -0.0004(5)      | -0.0026(5)      | -0.0008(5)      |
| 06   | 0.0227(7)       | 0.008 | 37(5)           | 0.0119(6)       | 0.0021(5)       | -0.0019(5)      | -0.0004(5)      |
| 05   | 0.0245(7)       | 0.007 | 7(5)            | 0.0117(6)       | 0.0016(5)       | -0.0002(5)      | 0.0008(5)       |
| 04   | 0.0117(6)       | 0.016 | 5(6)            | 0.0158(6)       | -0.0008(5)      | 0.0008(5)       | -0.0054(5)      |
| 02   | 0.0215(7)       | 0.012 | 24(6)           | 0.0126(6)       | 0.0006(5)       | 0.0057(5)       | 0.0017(5)       |
| 01   | 0.0192(7)       | 0.010 | 07(6)           | 0.0136(6)       | -0.0003(5)      | -0.0059(5)      | 0.0017(5)       |
| O3   | 0.0136(6)       | 0.015 | 9(6)            | 0.0162(6)       | 0.0012(5)       | 0.0003(5)       | 0.0035(5)       |
| Be1  | 0.0158(11)      | 0.009 | 7(10)           | 0.0099(10)      | -0.0006(8)      | -0.0001(8)      | -0.0001(8)      |

0.0001(8)

-0.0005(8)

0.0004(8)

0.0114(10)

0.0143(11)

Be2

0.0094(10)

|         |         |         | (a)     | )           |              |                |         |  |
|---------|---------|---------|---------|-------------|--------------|----------------|---------|--|
|         | Poi     | int 1   |         |             | Poi          | nt 2           |         |  |
| Element | Weight% | Atomic% | Formula | Element     | Weight%      | Atomic%        | Formula |  |
| O K     | 23.10   | 28.95   |         | ОК          | 24.02        | 30.08          |         |  |
| F K     | 36.90   | 34.96   | 5.27    | F K         | 33.87        | 35.72          | 4.95    |  |
| Na M    | 31.15   | 27.17   | 4.45    | Na M        | 30.96        | 26.98          | 3.74    |  |
| ΡM      | 6.98    | 10.78   | 1       | P M         | 11.15        | 7.21           | 1       |  |
| Totals  | 100.00  |         |         | Totals      | 100.00       |                |         |  |
|         | Poi     | int 3   |         |             |              |                |         |  |
| Element | Weight% | Atomic% | Formula |             |              |                |         |  |
| O K     | 28.95   | 35.72   |         | Th          | e average Na | :P:F molar rat | tio:    |  |
| F K     | 30.13   | 31.30   | 5.02    | 4.16:1:5.08 |              |                |         |  |
| Na M    | 31.15   | 26.75   | 4.29    |             |              |                |         |  |
| P M     | 9.77    | 6.23    | 1       |             |              |                |         |  |
| Totals  | 100.00  |         |         |             |              |                |         |  |

 $\label{eq:constraint} \textbf{Table S3.} \ Energy-Dispersive \ Spectrometry \ (EDS) \ for \ Na_4Be_2PO_4F_5 \ and \ KBe[PO_3(OH)]F.$ 

(b)

|         |         |         | יי)     | J)      |               |               |         |
|---------|---------|---------|---------|---------|---------------|---------------|---------|
|         | Poi     | nt 1    |         |         | Poi           | nt 2          |         |
| Element | Weight% | Atomic% | Formula | Element | Weight%       | Atomic%       | Formula |
| ОК      | 3.41    | 54.37   |         | ОК      | 43.02         | 58.29         |         |
| F K     | 4.94    | 15.93   | 1.15    | F K     | 11.81         | 13.47         | 1.04    |
| KK      | 1.79    | 13.80   | 1       | КК      | 23.23         | 12.88         | 1       |
| P K     | 1.65    | 15.90   | 1.15    | РК      | 21.93         | 15.35         | 1.19    |
| Totals  | 100.00  |         |         | Totals  | 100.00        |               |         |
|         | Poi     | nt 3    |         |         |               |               |         |
| Element | Weight% | Atomic% | Formula |         |               |               |         |
| O K     | 57.13   | 69.78   |         | Tł      | ne average K: | P:F molar rat | io:     |
| F K     | 10.23   | 10.29   | 1.08    |         | 1:1.1         | 5:1.09        |         |
| KK      | 19.52   | 9.46    | 1       |         |               |               |         |
| РK      | 15.28   | 10.47   | 1.11    |         |               |               |         |
| Totals  | 100.00  |         |         |         |               |               |         |



(a)



**(b)** 

Figure S1. Photos of the crystals (a)  $Na_4Be_2PO_4F_5$  and (b)  $KBe[PO_3(OH)]F$ .



Figure S2. Powder XRD patterns for (a)  $Na_4Be_2PO_4F_5$  and (b)  $KBe[PO_3(OH)]F$ .



Figure S3. <sup>19</sup>F MAS NMR spectra of (a) Na<sub>4</sub>Be<sub>2</sub>PO<sub>4</sub>F<sub>5</sub> and (b) KBe[PO<sub>3</sub>(OH)]F.



Figure S4. Energy-Dispersive Spectrometry (EDS) for (a)  $Na_4Be_2PO_4F_5$  and (b)  $KBe[PO_3(OH)]F$ .



Figure S5. TG and DSC curves for (a) Na<sub>4</sub>Be<sub>2</sub>PO<sub>4</sub>F<sub>5</sub> and (b) KBe[PO<sub>3</sub>(OH)]F.



Figure S6. XRD patterns for (a)  $Na_4Be_2PO_4F_5$  after 570 °C and (b)  $KBe[PO_3(OH)]F$  after 900 °C.



Figure S7. IR spectra of (a) Na<sub>4</sub>Be<sub>2</sub>PO<sub>4</sub>F<sub>5</sub> and (b) KBe[PO<sub>3</sub>(OH)]F.



**(a)** 





**Figure S8.** Birefringence measurements of  $Na_4Be_2PO_4F_5$  (a) and  $KBe[PO_3(OH)]F(b)$  crystal under a cross-polarizing microscope.  $Na_4Be_2PO_4F_5$  and  $KBe[PO_3(OH)]F$  have the thicknesses of 82.16 and 19.14 µm, respectively. Optical path differences of two tested crystal are about 540 and 710 nm, with the first-order pink and second-order green, respectively, according to Michal–Levy diagram.