SUPPORTING INFORMATION

Molecular and Supported Ruthenium Complexes as Photoredox Oxidation Catalysts in Water

Enric Clerich, ^a Syrine Affès, ^a Enriqueta Anticó, ^a Xavier Fontrodona, ^a Francesc Teixidor^b and Isabel Romero^{*a}

^{*a*} Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/ M. Aurèlia Campmany, 69, E-17003 Girona, Spain.

^b Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain.

Table S1. Crystallographic data for the X-ray diffraction of the trans-2 and cis-2 complexes.

Table S2. Selected bond lengths (Å) and angles (°) for of the *trans*-2 and *cis*-2 complexes.

Figure S1. Packing arrangement for isomer a) *trans*-2 and b) *cis*-2.

Figure S2. IR spectra of a) *pypz-pyr*; b) *trans-*2 and *cis-*2; c) *trans-*3.

Figure S3. NMR spectra of *pypz-pyr* (400 MHz, CD_2Cl_2): a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC.

Figure S4. NMR spectra of *trans*-2, 400 MHz, CD₆CO: a) DEPT b) COSY; c) NOESY; d) EXSY; e) HMBC H,N; f) HMBC; g) HSQC.

Figure S5. NMR spectra of *cis*,-**2**, 400 MHz CD₆CO: a) ¹³C-NMR; b) DEPT; c) COSY; d) NOESY; e) TOCSY; f) HMBC; g) HSQC.

Figure S6. NMR spectra of *trans*-3, 400 MHz, MeOD: a) ¹H-NMR.

Figure S7. UV/Vis spectra of *trans*-2 (solid line), *cis*-2 (dotted line) in CH₂Cl₂ and *trans*-3 (dashed line in phosphate buffer (pH=6.8)

Figure S8. CV of a) ligand *pyrz-pyr* in CH_2Cl_2 containing 0.1 M *n*-Bu₄NPF₆ (TBAH) vs SCE.and b) *trans*-**3** in phosphate buffer (pH=6.8); c) DPV of *trans*-**3**.

Figure S9. IR spectra of a) rGO (orange) and b) rGO@trans-3 (blue).

Figure S10. SEM images of a) rGO support and b) rGO@trans-3.

Figure S11. DPV of rGO@trans-2 in in CH₂Cl₂ containing 0.1 M n-Bu₄NPF₆ (TBAH) vs SCE.

Figure S12. Plot of yield as a function of time for the photoredox catalysis of 1-benzylalcohol using rGO*trans*-**3** as photocatalyst. The blue curve shows the substract yield after 3h and 6 h of reaction time in presence of catalyst. The red curve shows the dependence of substract yield with the reaction time after the catalyst was removed at 3h. Conditions: rGO-*trans*-**3** (0,25 mM), substrate (25 mM), Na₂S₂O₈ (75 mM), 3ml water (phosphate buffer pH 6.8), 6h h of catalysis at RT. light irradiation using a lamp with λ = 400-700 nm.

	trans-2	<i>cis-</i> 2	
Empirical formula	$C_{40}H_{28}ClF_6N_6PRu.7/4CH_2Cl_2$	C40H28ClF6N6PRu	
Formula weight	1026.42 g/mol	874.17 g/mol	
Crystal system	monoclinic	tetragonal	
Space group	P 1 21/n 1	P 4/n n c	
a[Å]	15.550(9)	17.9714(15)	
b[Å]	16.801(7)	17.9714(15)	
c[Á]	16.104(8)	49.745(9)	
α[°]	90	90	
β[°]	103.032(19)	90	
γ[°]	90	90	
V [Á³]	4099.(3)	16066.(4)	
Formula Units/ cell	1	16	
Temp. [K]	100(2)	100(2)	
ρ_{calc} , [g/cm ⁻³]	1.657	1.446	
$\mu[mm^{-1}]$	0.783	0.561	
Final R indices,	$R_1 = 0.0542$	$R_1 = 0.1125$	
[I>2σ(I)]	$wR_2 = 0.1274$	$wR_2 = 0.2311$	
R indices [all data]	$R_1 = 0.0632$	$R_1 = 0.1334$	
marces [un autu]	$wR_2 = 0.1369$	$wR_2 = 0.2469$	

 Table S1. Crystallographic data for the X-ray diffraction of the *trans-2* and *cis-2* complexes.

 $R_1 = \Sigma ||F_o|$ - $|F_c||/\Sigma |F_o|$

 $wR_2 = \left[\sum \{ w(F_o^2 - F_c^2)^2 \} / \sum \{ w(F_o^2)^2 \} \right]^{\frac{1}{2}}, \text{ where } w = 1 / \left[\sigma^2 (Fo^2) + (0.0042P)^2 \right] \text{ and } P = (F_o^2 + 2F_c^2)$

	trans-2	cis-2
Ru(1)-N(1)	2.099(3)	2.065(8)
Ru(1)-N(2)	2.056(3)	2.110(9)
Ru(1)-N(4)	2.069(3)	2.039(6)
Ru(1)-N(5)	1.954(3)	1.923(5)
Ru(1)-N(6)	2.063(3)	2.063(9)
Ru(1)-Cl(1)	2.3969(12)	2.417(3)
N(5)-Ru(1)-N(2)	103.02(11)	174.3(3)
N(2)-Ru(1)-N(6)	94.17(11)	100.5(4)
N(2)-Ru(1)-N(4)	90.31(11)	99.8(3)
N(5)-Ru(1)-N(1)	174.96(11)	96.9(3)
N(6)-Ru(1)-N(1)	94.61(11)	93.6(3)
N(5)-Ru(1)-Cl(1)	86.31(8)	85.4(2)
N(6)-Ru(1)-Cl(1)	89.78(8)	89.6(2)
N(1)-Ru(1)-Cl(1)	93.82(8)	176.3(2)
N(5)-Ru(1)-N(6)	80.35(12)	79.6(3)
N(5)-Ru(1)-N(4)	79.63(12)	79.9(3)
N(6)-Ru(1)-N(4)	159.99(11)	159.5(3)
N(2)-Ru(1)-N(1)	77.11(11)	77.5(3)
N(4)-Ru(1)-N(1)	105.40(12)	88.1(3)
N(2)-Ru(1)-Cl(1)	170.35(8)	100.3(2)
N(4)-Ru(1)-Cl(1)	88.95(8)	89.5(2)

 Table S2. Selected bond lengths (Å) and angles (°) for of the *trans-2* and *cis-2* complexes.

Figure S1. Packing arrangement for isomer a) *trans*-2 and b) *cis*-2.

Figure S2. IR spectra of a) *pypz-pyr*; b) *trans-*2 and *cis-*2; c) *trans-*3.

Figure S3. NMR spectra of *pypz-pyr* (400 MHz, CD_2Cl_2): a) ¹H-NMR; b) ¹³C-NMR; c) COSY; d) NOESY; e) ¹H-¹³C HSQC.

a)

d)

c)

Figure S4. NMR spectra of *trans*-2, 400 MHz, CD₆CO: a) DEPT b) COSY; c) NOESY; d) EXSY; e) HMBC H,N; f) HMBC H,C; g) HSQC H,C

f)

Figure S5. NMR spectra of *cis*,-**2**, 400 MHz, CD₆CO: a) ¹³C-NMR; b) DEPT; c) COSY; d) NOESY; e) TOCSY; f) HMBC H,C; g) HSQC H,C

a)

d)

f)

Figure S6. NMR spectra of *trans*-3, 400 MHz, MeOD: a) ¹H-NMR

9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 f1 (ppm)

Figure S7. UV/Vis spectra of *trans*-2 (solid line), *cis*-2 (dotted line) in CH₂Cl₂ and *trans*-3 (dashed line in phosphate buffer (pH=6.8)

Figure S8. CV of a) ligand **pyrz-pyr** in CH₂Cl₂ containing 0.1 M *n*-Bu₄NPF₆ (TBAH) vs SCE.and b) *trans*-**3** in phosphate buffer (pH=6.8); c) DPV of *trans*-**3**

Figure S9. IR spectra of a) rGO (orange), b) rGO@trans-3 (blue)

Figure S10. SEM images of a) rGO support and b) rGO@*trans-*3.

a)

Figure S11. DPV of rGO@trans-2 in in CH₂Cl₂ containing 0.1 M n-Bu₄NPF₆ (TBAH) vs SCE.

Figure S12. Plot of yield as a function of time for the photoredox catalysis of 1-benzylalcohol using rGO*trans*-**3** as photocatalyst. The blue curve shows the substract yield after 3h and 6 h of reaction time in presence of catalyst. The red curve shows the dependence of substract yield with the reaction time after the catalyst was removed at 3h. Conditions: rGO-*trans*-**3** (0,25 mM), substrate (25 mM), Na₂S₂O₈ (75 mM), 3ml water (phosphate buffer pH 6.8), 6h h of catalysis at RT. light irradiation using a lamp with λ = 400-700 nm.

