Supporting Information

BaSc₂(HPO₃)₄(H₂O)₂: A New Nonlinear Optical Phosphite Exhibiting 3D [Sc₂(HPO₃)₄]²⁻ Anionic Framework and Phase Matchable SHG Effect

Ru-Ling Tang*, Gang-Xiang Liu, Wen-Dong Yao, Li-Nan Zhang, Wenlong Liu, and Sheng-Ping Guo*

[†]School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Corresponding author: spguo@yzu.edu.cn, rltang@yzu.edu.cn

Supplementary Information Index

Figures and Tables

- (1) **Table S1.** Selected bond lengths for $BaSc_2(HPO_3)_4(H_2O)_2$.
- (2) **Table S2.** Selected bond angles for $BaSc_2(HPO_3)_4(H_2O)_2$.
- (3) **Table S3.** Fractional atomic coordinates $(Å \times 10^4)$ and equivalent isotropic displacement Parameters $(Å^2 \times 10^3)$ for BaSc₂(HPO₃)₄(H₂O)₂.
- (4) **Table S4.** Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for BaSc₂(HPO₃)₄(H₂O)₂.
- (5) **Table S5.** The quantitative analysis table of EDS.
- (6) Figure S1. The coordination geometries of Ba, Sc and P atoms in the structure of BaSc₂(HPO₃)₄(H₂O)₂.
- (7) Figure S2. The EDS image for single-crystals of $BaSc_2(HPO_3)_4(H_2O)_2$.
- (8) Figure S3. The PXRD of $BaSc_2(HPO_3)_4(H_2O)_2$ heated to 1000 °C.

$BaSc_2(HPO_3)_4(H_2O)_2$			
Atom–Atom	Length/Å	Atom–Atom	Length/Å
Ba1–O5	2.850(4)	Sc1-O10 ⁷	2.101(4)
Ba1–O9 ¹	2.994(4)	P3–O9	1.534(4)
Ba1–O9 ²	3.039(4)	P3–O7	1.503(4)
Ba1–O7 ²	2.985(4)	P3–O8	1.498(4)
$Ba1-O8^1$	2.850(5)	P1012	1.516(5)
Ba1–O6	3.111(5)	P1011	1.509(5)
Ba1–O14	2.807(5)	P1O10	1.516(4)
Ba19–O10	3.173(5)	P2–O1	1.530(5)
Ba1–O14 ³	3.103(6)	P2–O2	1.520(5)
Ba1–O13	2.716(6)	P2–O3	1.500(5)
Sc2–O12 ⁴	2.077(4)	P405	1.511(4)
Sc2–O4	2.049(4)	P404	1.507(4)
Sc2–O7	2.086(4)	P406	1.519(5)
Sc2–O8 ⁵	2.090(4)		
$Sc2-O6^{6}$	2.080(4)		
Sc2–O3	2.054(4)		
Sc1–O5	2.084(4)		
Sc109 ²	2.143(4)		
Sc1–O1 ⁷	2.087(4)		
Sc1011	2.040(4)		
Sc1–O2	2.051(4)		

Table S1. Selected Bond lengths for $BaSc_2(HPO_3)_4(H_2O)_2$.

Table S2. Selected bond angles for $BaSc_2(HPO_3)_4(H_2O)_2$.BaSc_2(HPO_3)_4(H_2O)_2Atom-Atom-AtomAngle/°Atom-Atom-AtomP4-O5-Sc1144.8(3)O5-Sc1-O9^2

Atom-Atom-Atom	Angle/°	Atom–Atom–Atom	Angle/°
P405Sc1	144.8(3)	O5–Sc1–O9 ²	84.94(17)
P3O9Sc1 ⁴	129.5(2)	O5–Sc1–O1 ⁷	90.99(17)
P1-O12-Sc29	139.2(3)	O5–Sc1–O10 ⁷	82.70(17)
P2-O1-Sc1 ¹⁰	134.7(3)	O1 ⁷ –Sc1–O9 ²	174.20(17)
P4O4Sc2	155.6(3)	O1 ⁷ –Sc1–O10 ⁷	91.71(17)
P3-O7-Sc2	150.8(3)	O11–Sc1–O5	175.11(17)
P1O11-Sc1	150.8(3)	O11-Sc1-O9 ²	93.17(18)
P2-O2-Sc1	149.7(3)	O11–Sc1–O1 ⁷	90.56(19)
P1-O10-Sc1 ¹⁰	153.6(3)	O11-Sc1-O2	91.86(18)
P3-O8-Sc2 ⁶	147.4(3)	O11-Sc1-O10 ⁷	92.62(17)
P4O6Sc2 ⁵	138.1(3)	O2–Sc1–O5	92.46(17)
P2-O3-Sc2	143.0(3)	O2–Sc1–O9 ²	84.80(19)
P4-O5-Ba1	106.1(2)	O2–Sc1–O1 ⁷	99.52(19)
P3–O9–Ba18	98.62(18)	O2–Sc1–O10 ⁷	167.86(19)
P3–O9–Ba1 ⁴	97.45(19)	O10 ⁷ -Sc1-O9 ²	83.69(16)
P3–O7–Ba1 ⁴	100.45(19)	O124–Sc2–O7	88.90(17)
P1-O10-Ba110	111.6(2)	O124–Sc2–O86	86.0(2)
P3–O8–Ba1 ⁸	103.5(2)	O12 ⁴ –Sc2–O6 ³	178.3(2)
P4O6Ba1	94.9(2)	O4–Sc2–O12 ⁴	92.36(18)
O7–P3–O9	110.2(2)	O4–Sc2–O7	169.11(18)
O8–P3–O9	107.8(3)	O4–Sc2–O8 ⁶	88.73(18)
O8–P3–O7	113.6(3)	O4–Sc2–O6 ³	86.45(18)
O11–P1–O12	109.0(3)	O4–Sc2–O3	97.42(18)
O11–P1–O10	113.4(3)	O7–Sc2–O8 ⁶	80.57(17)
O10–P1–O12	111.5(3)	O6 ³ –Sc2–O7	92.03(17)
O2–P2–O1	111.0(3)	O6 ³ –Sc2–O8 ⁶	92.7(2)
O3–P2–O1	111.0(3)	O3–Sc2–O12 ⁴	92.1(2)
O3–P2–O2	111.8(3)	O3–Sc2–O7	93.34(18)
O5–P4–O6	107.1(2)	O3–Sc2–O8 ⁶	173.64(19)
O4–P4–O5	112.6(2)	O3–Sc2–O6 ³	89.3(2)
	1		

|--|

$BaSc_2(HPO_3)_4(H_2O)_2$				
Atom	Х	У	Z	U(eq)
Ba1	3731.2(5)	5160.3(4)	-335.4(5)	22.41(12)
Sc2	5566.0(12)	6255.8(11)	6855.0(12)	8.6(2)
Sc1	5673.9(12)	8762.1(11)	2057.4(12)	8.9(2)
P3	7721.5(18)	6477.2(18)	10981.3(18)	12.2(3)
P1	8981.1(18)	10898.1(17)	2903.8(18)	12.9(3)
P2	7550.6(18)	8991.4(18)	6148.3(18)	13.8(3)
P4	3113.8(18)	6630.1(17)	2766.4(17)	12.1(3)
05	3868(5)	7338(4)	1872(5)	15.4(9)
09	6825(5)	6772(5)	11906(5)	13.7(9)
012	8978(6)	12191(6)	1895(5)	31.5(12)
01	9339(5)	9385(5)	7014(5)	18.4(10)
O4	4341(5)	6151(5)	4420(5)	21.6(10)
07	6559(5)	6005(5)	9309(5)	16.4(9)
O11	7385(6)	10108(5)	2044(5)	19.9(10)
02	7012(5)	8453(5)	4468(5)	26.0(11)
O10	9409(5)	11399(5)	4565(5)	23.1(11)
08	9005(5)	5351(5)	11893(5)	27.8(12)
O6	2099(6)	5337(5)	1766(5)	28.2(11)
014	573(6)	6248(6)	-1972(7)	32.9(13)
03	7176(6)	7879(5)	7078(5)	32.0(12)
013	5526(8)	2708(7)	-9(8)	41.5(15)

Table S3. Fractional atomic coordinates ($Å \times 10^4$) and equivalent isotropic displacement Parameters ($Å^2 \times 10^3$) for BaSc₂(HPO₃)₄(H₂O)₂.

 ${}^{\mathrm{a}}U_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

$BaSc_2(HPO_3)_4(H_2O)_2$				
Atom	х	У	Z	U(eq)
H1	10080(70)	9980(60)	2840(70)	4(15)
H2	6770(80)	10170(60)	5910(80)	7
H4	2280(70)	7720(60)	3000(70)	10(15)
Н3	8290(70)	7650(70)	10890(70)	18(17)
H14A	-50(100)	6080(90)	-1640(100)	30(30)
H14B	490(100)	7140(40)	-1890(100)	32
H13A	6470(40)	2710(140)	350(130)	100(50)
H13B	5560(130)	2160(120)	690(130)	70(40)

Table S4. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for BaSc₂(HPO₃)₄(H₂O)₂.

Element	AN	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]
0	8	30.69	41.28	67.05
Р	15	17.35	23.33	19.58
Ba	56	13.56	18.23	3.45
Sc	21	12.75	17.15	9.92

Table S5. The quantitative analysis table of EDS.

Figure S1. The coordination geometries of Ba, Sc and P atoms in the structure of $BaSc_2(HPO_3)_4(H_2O)_2$.

Figure S2. The EDS image and the quantitative analysis table of EDS for single-crystals of $BaSc_2(HPO_3)_4(H_2O)_2$.

Figure S3. The PXRD of $BaSc_2(HPO_3)_4(H_2O)_2$ heated to 1000 °C.