Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

First Polar Quaternary Sulphide CsLiGa₆S₁₀ with Mixed Ordered Alkali Cations

Displaying Excellent Infrared Nonlinear Optical Properties

Zi Wang,^{a,b} Bin-Wen Liu,^{a,c,*} and Guo-Cong Guo^{a,c,*}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,

Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China

^c University of Chinese Academy of Sciences, Beijing 100039, PR China

^b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China

* E-mail addresses: bwliu@fjirsm.ac.cn (B.-W. Liu), gcguo@fjirsm.ac.cn (G.-C. Guo)

Fig. S1 The EDS result of CsLiGa₆S₁₀.

Fig. S3 The indirect and direct models to determine the band gap of $CsLiGa_6S_{10}$.

Fig. S4 Band structure of CsLiGa₆S₁₀.

Fig. S5 The energy dependence birefringence of $CsLiGa_6S_{10}$.

Empirical formula	CsLiGa ₆ S ₁₀		
CCDC	2154078		
Fw	1757.54		
Temperature (K)	293(2)		
Space group	Cc		
α (Å)	16.763(1)		
<i>b</i> (Å)	6.436(1)		
<i>c</i> (Å)	16.192(1)		
β (°)	111.03(1)		
<i>V</i> (Å ³)	1630.5(1)		
Z	2		
D_{calcd} (g cm ⁻³)	3.580		
μ (mm ⁻¹)	13.224		
<i>GOF</i> on <i>F</i> ²	1.031		
$R_1^{a}(l > 2\sigma(l))$	0.0197		
$wR_2^b(l > 2\sigma(l))$	0.0402		
R ₁ ^a (all data)	0.0200		
wR_2^b (all data)	0.0403		
Flack	-0.001(7)		
$\Delta ho_{max}/\Delta ho_{min,}$ (e Å ⁻³)	0.766/-1.018		
${}^{a}R = \Sigma F_{o} - F_{c} / \Sigma F_{o} , {}^{b}wR = (\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2}) / \Sigma (w(F_{o}^{2})^{2}))^{1/2}.$			

Table S1 Crystal data and structure refinements for $CsLiGa_6S_{10}$.

Table S2. Atomic coordinates and equivalent isotropic displacement parameters ($Å^{-2}$) of CsLiGa₆S₁₀.

atoms	X	У	Z	U(eq)
Cs1	0.68507(3)	0.31061(5)	0.64054(3)	0.01925(11)
Li1	0.4181(6)	0.8321(12)	0.8142(7)	0.007(3)
Ga1	0.86362(5)	0.83381(9)	0.89388(6)	0.0090(2)
Ga2	0.63344(4)	0.68567(10)	0.84628(5)	0.0096(2)
Ga3	0.49755(5)	0.82308(11)	0.63012(5)	0.0092(2)
Ga4	0.81262(5)	0.68154(10)	0.48574(5)	0.0093(2)
Ga5	0.94721(6)	0.83936(10)	0.71687(5)	0.00959(19)
Ga6	0.59600(5)	0.83322(9)	0.44352(5)	0.00955(19)
S1	0.55671(9)	0.8299(2)	0.92012(11)	0.0107(4)
S2	0.95240(10)	0.66592(17)	0.59275(10)	0.0084(3)
S3	1.00000(10)	0.8291(2)	1.00000(9)	0.0091(3)
S4	0.40060(10)	0.6631(2)	0.67388(11)	0.0111(3)
S5	0.72420(12)	0.7948(2)	0.55057(12)	0.0127(4)
S6	0.77322(10)	0.6646(2)	0.95028(11)	0.0090(3)
S7	0.63471(12)	0.8186(2)	0.71976(13)	0.0131(4)
S8	0.81480(10)	0.8389(2)	0.36276(10)	0.0101(3)
S9	0.58842(11)	0.3391(2)	0.81538(11)	0.0094(3)
S10	0.85949(9)	0.6694(2)	0.77003(10)	0.0106(4)

bond	distances	bond	distances	bond	distances
Cs1-S1	3.5599(16)	Ga1-S10	2.2462(18)	Ga4–S5	2.224(2)
Cs1-S4	3.5840(16)	Ga1-S8	2.2507(15)	Ga4–S8	2.2457(18)
Cs1-S5	3.5984(16)	Ga1-S6	2.3041(18)	Ga4–S6	2.3362(16)
Cs1-S8	3.6035(16)	Ga1-S3	2.315(2)	Ga4–S2	2.3640(18)
Cs1-S7	3.6278(15)	Ga2–S7	2.227(2)	Ga5-S10	2.2378(15)
Cs1-S7	3.7184(15)	Ga2–S1	2.2469(16)	Ga5–S4	2.2465(15)
Cs1-S10	3.7253(15)	Ga2–S6	2.3478(19)	Ga5–S2	2.3277(16)
Cs1-S9	3.7369(15)	Ga2–S9	2.3504(16)	Ga5–S9	2.332(2)
Cs1-S5	3.7763(15)	Ga3–S7	2.236(2)	Ga6–S5	2.2384(19)
Cs1-S2	3.8094(17)	Ga3–S4	2.2427(16)	Ga6-S1	2.2584(16)
Cs1-S6	3.8687(16)	Ga3–S3	2.3370(15)	Ga6-S9	2.3156(18)
Cs1-S3	3.8875(15)	Ga3–S2	2.3407(14)	Ga6-S3	2.3608(17)
		Li1-S1	2.342(10)	Li1-S8	2.409(10)
		Li1-S10	2.384(8)	Li1-S4	2.440(11)

Table S3. The selected bonds and distances of $CsLiGa_6S_{10}$.

Table S4. Powder LIDTs of $CsLiGa_6S_{10}$ and $AgGaS_2$.

compounds	damage energy (mJ)	spot area (cm²)	τ _p (ns)	damage threshold [MW·cm ⁻²]
CsLiGa ₆ S ₁₀	15.3	0.03	10	51.0
AgGaS ₂	3.4	0.03	10	11.3