## **Supporting Information**

## Triplet-triplet energy transfer from Bi<sup>3+</sup> to Sb<sup>3+</sup> in zero-dimensional indium hybrids via B-site co-doping strategy toward white-light emission

Qiqiong Ren,<sup>a</sup> Jian Zhang,<sup>a</sup> Maxim S. Molokeev,<sup>b,c,d</sup> Guojun Zhou<sup>\*a</sup> and Xian-Ming Zhang<sup>\*a,e</sup>

a Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.

b Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia.

c Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russia.

d Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia.

e College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China.

\*Corresponding author. Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China E-mail addresses: <u>zhougj@sxnu.edu.cn</u> (G. J. Zhou), <u>zhangxm@dns.sxnu.edu.cn</u> (X.M. Zhang).



**Fig. S1** PL spectra of  $(C_{20}H_{20}P)_2In_{1-x}Bi_xCl_5$  (x = 0.05, 0.10, 0.15) excited at 365 nm. Insets show corresponding optical photographs of above compounds excited by 365 nm UV lamp.



Fig. S2 (a) PXRD patterns of  $(C_{20}H_{20}P)_2In_{1-x}Bi_xCl_5$  (x = 0, 0.05, 0.10, 0.15) and standard diffraction pattern of  $(C_{20}H_{20}P)_2InCl_5$ . (b) Selected diffraction peaks in the range of  $11^{\circ}-12.5^{\circ}$  of  $(C_{20}H_{20}P)_2In_{1-x}Bi_xCl_5$  (x = 0, 0.05, 0.10).



Fig. S3 PLE and PL spectra of single crystal (top) and powder (bottom) samples of  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0, y = 0.10). Insets show the pictures of single crystal (top) and powder (bottom) under daylight and UV excitation.



**Fig. S4** PXRD patterns of  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0, y = 0) (x = 0.10, y = 0-0.10) and standard diffraction pattern of  $(C_{20}H_{20}P)_2InCl_5$ .



**Fig. S5** Variation of unit cell volume with x and y of  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$ .



Fig. S6 XPS spectra corresponding to In 3d, Cl 2p, Bi 4f and Sb 3d, respectively, of (a)  $(C_{20}H_{20}P)_2InCl_5$ , (b)  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0.10, y = 0) and (c)  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0.10, y = 0.10).



**Fig. S7** SEM images and EDS elemental mapping images showing the homogeneous distribution of P, Cl, In, Bi and Sb in different compounds of (a)  $(C_{20}H_{20}P)_2InCl_5$  and (b)  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0.10, y = 0.10).



**Fig. S8** Absorption spectra of compounds  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0, y = 0) (x = 0.10, y = 0) (x = 0.10, y = 0.10).



**Fig. S9** (a) Normalized temperature-dependent emission spectra of  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0.10, y = 0). (b) Temperature dependence of PL intensity and FWHM.



Fig. S10 Emission spectra of  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0.10, y = 0) monitored at different excitation wavelengths.



**Fig. S11** Excitation-dependent PL spectra of  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0, y = 0.10) with the excitation wavelength ranging from 298 to 380 nm.



**Fig. S12** (a) Photographs of  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0.10, y = 0.02-0.10) under daylight (top) and UV lamp (bottom). (b) The corresponding CIE chromaticity diagrams.



**Fig. S13** Normalized PLE and PL spectra of compound  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0.10, y = 0.04). The blue shading represents the intersection.



**Fig. S14** Temperature-dependent PL spectra of (a)  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0.10, y = 0) and (b)  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0.10, y = 0.06) under 365 nm excitation ranging from 298 K to 423K.

| Compound                  | x=0, y=0    | x = 0.1, y = 0 | x = 0.1, y = 0.1 |
|---------------------------|-------------|----------------|------------------|
| Sp.Gr.                    | I2/a        | I2/a           | I2/a             |
| <i>a</i> , Å              | 17.6594 (5) | 17.6602 (9)    | 17.6770 (8)      |
| b, Å                      | 14.7450 (4) | 14.7590 (7)    | 14.7568 (6)      |
| <i>c</i> , Å              | 16.7561 (5) | 16.777 (1)     | 16.7904 (8)      |
| $\beta$ , °               | 112.414 (2) | 112.405 (3)    | 112.370 (2)      |
| <i>V</i> , Å <sup>3</sup> | 4033.6 (2)  | 4042.8 (4)     | 4050.3 (3)       |
| 2θ-interval, °            | 5-120       | 5-120          | 5-120            |
| $R_{wp}$ , %              | 8.07        | 9.72           | 8.17             |
| $R_{p}, \%$               | 5.99        | 7.20           | 5.73             |
| $R_{exp}$ , %             | 3.56        | 3.51           | 3.60             |
| $\chi^2$                  | 2.26        | 2.77           | 2.27             |
| $R_B, \%$                 | 3.35        | 3.67           | 2.31             |

**Table S1.** Main parameters of processing and refinement of  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0, y = 0) (x = 0.10, y = 0) (x = 0.10, y = 0.10).

**Table S2.** ICP-AES results of  $(C_{20}H_{20}P)_2In_{1-x-y}Bi_xSb_yCl_5$  (x = 0, y = 0) (x = 0.10, y = 0) (x = 0.10, y = 0.10).

Compound  $(C_{20}H_{20}P)_2InCl_5$   $(C_{20}H_{20}P)_2In_{0.9}Bi_{0.1}Cl_5$   $(C_{20}H_{20}P)_2In_{0.8}Bi_{0.1}Sb_{0.1}Cl_5$ 

|    | Mass% | Atom%  | Mass% | Atom%  | Mass% | Atom%  |
|----|-------|--------|-------|--------|-------|--------|
| In | 12.28 | 0.1070 | 11.12 | 0.0968 | 9.20  | 0.0801 |
| Bi |       |        | 1.19  | 0.0057 | 1.24  | 0.0059 |
| Sb |       |        |       |        | 1.01  | 0.0083 |

| [SbCl <sub>5</sub> ] <sup>2-</sup> | excitation<br>energies | oscillator<br>strengths | [BiCl <sub>5</sub> ] <sup>2-</sup> | excitation<br>energies | oscillator<br>strengths |
|------------------------------------|------------------------|-------------------------|------------------------------------|------------------------|-------------------------|
| $S_0 \rightarrow S_1$              | 4.2170 eV              | 0.1259                  | $S_0 \rightarrow S_1$              | 4.5432 eV              | 0.0737                  |
| $S_0 \rightarrow S_2$              | 4.9471 eV              | 0.3132                  | $S_0 \rightarrow S_2$              | 4.5472 eV              | 0.0739                  |
| $S_0 \rightarrow S_3$              | 5.4933 eV              | 0.3826                  |                                    |                        |                         |
| $S_0 \rightarrow T_1$              | 0.6639 eV              | 0.0003                  |                                    |                        |                         |
| $S_0 \rightarrow T_3$              | 2.0150 eV              | 0.1525                  | $S_0 \rightarrow T_3$              | 1.1200 eV              | 0.0006                  |
| $S_0 \rightarrow T_4$              | 2.2446 eV              | 0.0063                  |                                    |                        |                         |
| $S_0 \rightarrow T_5$              | 2.3158 eV              | 0.0047                  |                                    |                        |                         |

Table S3. Calculated excitation energies and oscillator strengths of  $[SbCl_5]^{2-}$  and  $[BiCl_5]^{2-}$ .