Supporting Information

Multiscale Modulation of Vanadium Oxides via One-Step Facile Reduction to
Synergistically Boost Zinc-Ion Batteries Performance
Fangfang Wu, ${ }^{\ddagger}$ Dong Zheng, ${ }^{\ddagger}$ Youwei Wang, ${ }^{\ddagger}$ Dongshu Liu, Yuxi Wang, Shibo
Meng, Xilian Xu, Wenxian Liu, Wenhui Shi, Xiehong Cao*

Results and discussion

Figure S1. SEM image of the $\mathrm{V}_{10} \mathrm{O}_{24} \cdot 12 \mathrm{H}_{2} \mathrm{O}$.

Figure S2. SEM images of the bulk $\mathrm{V}_{2} \mathrm{O}_{5}$.

Figure S3. STEM-EDX elemental mapping images of the $\mathrm{V}_{10} \mathrm{O}_{24} \cdot 12 \mathrm{H}_{2} \mathrm{O}$.

Figure S4. Raman spectrum of the bulk $\mathrm{V}_{2} \mathrm{O}_{5}$.

The Raman spectrum of $\mathrm{V}_{2} \mathrm{O}_{5}$ shows the characteristic peaks at $145,198 \mathrm{~cm}^{-1}$ (relative motions of the chain translation), 285, $405 \mathrm{~cm}^{-1}$ (bending vibration of $\mathrm{V}=\mathrm{O}$), $529 \mathrm{~cm}^{-1}$ (stretching vibration of the $\mathrm{V}_{3}-\mathrm{O}$), 305, $483 \mathrm{~cm}^{-1}$ (bending vibration of the $\mathrm{V}-\mathrm{O}-\mathrm{V}$), and 703, $996 \mathrm{~cm}^{-1}$ (edge stretching vibration of the $\mathrm{V}=\mathrm{O}$ and $\mathrm{V}_{2}-\mathrm{O}$), which is consistent with the reported $\mathrm{V}_{2} \mathrm{O}_{5}$ (Adv. Mater. 2009, 21, 2436-2440; Ionics 2022, DOI: 10.1007/s11581-022-04684-3).

Figure S5. XPS survey spectrum of the bulk $\mathrm{V}_{2} \mathrm{O}_{5}$.

Figure S6. SEM images showing the morphological evolution from $\mathrm{V}_{2} \mathrm{O}_{5}$ to $\mathrm{V}_{10} \mathrm{O}_{24} \cdot 12 \mathrm{H}_{2} \mathrm{O}$.

Figure S7. XRD analysis of the transformation process of phase structure from $\mathrm{V}_{2} \mathrm{O}_{5}$ to $\mathrm{V}_{10} \mathrm{O}_{24} \cdot 12 \mathrm{H}_{2} \mathrm{O}$.

Figure S8. (a) CV curves at a scan rate of $0.1 \mathrm{mV} \mathrm{s}^{-1}$ and (b) galvanostatic dischargecharge curves of the bulk $\mathrm{V}_{2} \mathrm{O}_{5}$.

Figure S9. Cycling stability of $\mathrm{V}_{10} \mathrm{O}_{24} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ at a current density of $10 \mathrm{~A} \mathrm{~g}^{-1}$.

Figure S10. Cycling stability of $\mathrm{V}_{10} \mathrm{O}_{24} \cdot 12 \mathrm{H}_{2} \mathrm{O}-8 \mathrm{~h}$ at the current densities of $2 \mathrm{~A} \mathrm{~g}^{-1}$ and $5 \mathrm{Ag} \mathrm{g}^{-1}$.

Figure S11. Discharge/charge curves of $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{V}_{10} \mathrm{O}_{24} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ by GITT.

Figure S12. HRTEM images and TEM-EDX element mappings in different states. (a,
b) fully discharged in the first cycle; (c, d) fully charged in the first cycle; (e, f) cycled for 100 times.

