Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022 ## **Supporting Information** Multiscale Modulation of Vanadium Oxides via One-Step Facile Reduction to Synergistically Boost Zinc-Ion Batteries Performance Fangfang Wu,‡ Dong Zheng,‡ Youwei Wang,‡ Dongshu Liu, Yuxi Wang, Shibo Meng, Xilian Xu, Wenxian Liu, Wenhui Shi, Xiehong Cao* ## Results and discussion Figure S1. SEM image of the $V_{10}O_{24} \cdot 12H_2O$. Figure S2. SEM images of the bulk V_2O_5 . **Figure S3.** STEM-EDX elemental mapping images of the $V_{10}O_{24} \cdot 12H_2O$. Figure S4. Raman spectrum of the bulk V_2O_5 . The Raman spectrum of V_2O_5 shows the characteristic peaks at 145, 198 cm⁻¹ (relative motions of the chain translation), 285, 405 cm⁻¹ (bending vibration of V=O), 529 cm⁻¹ (stretching vibration of the V_3 -O), 305, 483 cm⁻¹ (bending vibration of the V-O-V), and 703, 996 cm⁻¹ (edge stretching vibration of the V=O and V_2 -O), which is consistent with the reported V_2O_5 (*Adv. Mater.* **2009**, 21, 2436-2440; *Ionics* **2022**, DOI: 10.1007/s11581-022-04684-3). Figure S5. XPS survey spectrum of the bulk V_2O_5 . Figure S6. SEM images showing the morphological evolution from V_2O_5 to $V_{10}O_{24}\cdot 12H_2O$. Figure S7. XRD analysis of the transformation process of phase structure from V_2O_5 to $V_{10}O_{24}\cdot 12H_2O$. **Figure S8.** (a) CV curves at a scan rate of 0.1 mV s⁻¹ and (b) galvanostatic discharge-charge curves of the bulk V_2O_5 . **Figure S9.** Cycling stability of $V_{10}O_{24} \cdot 12H_2O$ at a current density of 10 A g⁻¹. **Figure S10.** Cycling stability of $V_{10}O_{24} \cdot 12H_2O-8$ h at the current densities of 2 A g^{-1} and 5 A g^{-1} . **Figure S11.** Discharge/charge curves of V_2O_5 and $V_{10}O_{24} \cdot 12H_2O$ by GITT. **Figure S12.** HRTEM images and TEM-EDX element mappings in different states. (a, b) fully discharged in the first cycle; (c, d) fully charged in the first cycle; (e, f) cycled for 100 times.