Supplementary Information

Contents

NMR spectrum of ligands and catalysts	2
Supplementary Figures	16
Supplementary Tables	19
Crystallography Information	20

NMR spectrum of ligands and catalysts

4.01 ±

3.5

3.0

2.5 2.0 1.5

1.0 0.5 0.0

4.0

4.5

5.0

6.5

5.5

8.5

Figure S6. ³¹P NMR of L2, CDCl₃

Figure S10. ¹H NMR of L4, CDCl₃

Figure S12. ³¹P NMR of L4, CDCl₃

Figure S13. ¹H NMR of 1, CDCl₃

Figure S14. ¹³C NMR of 1, CDCl₃

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -8 Figure S15. ³¹P NMR of 1, CDCl₃

Figure S16. ¹H NMR of 2, CDCl₃

Figure S17. ¹³C NMR of 2, CDCl₃

Figure S19. ¹H NMR of 3, CDCl₃

9

-1.0

88 81 00

0.0

ġ

1.0

2.0

3.0

9.0 8.0 7.0 6.0 5.0 4.0

(b) 1H-1H 2D-nosy partial enlarged view.

Figure S21. ¹H-¹H 2D-nosy spectrum of 3.

Figure S22. ¹H NMR of 4, CDCl₃

Figure S23. ¹³C NMR of 4, CDCl₃

Figure S24. ³¹P NMR of 4, CDCl₃.

Supplementary Figures

Report

Analysis Data:	D:\Data\Method\Test-20181030-1.50 - CH4-6.42.met
Data File:	D:\Data\Result\czj\czj-1-8bi1-yea-11.rslt\czj-1-8bi1-yea-11.dat zhijian
User:	chen
Acquisition:	2021/1/8 17:20:27 (GMT +08:00)
Print time:	2021/1/8 17:32:45 (GMT +08:00)

Figure S25. GC data for APRM reaction uisng 8 ml MeOH, 2 ml H₂O, and 4 μ mol **2**. T_{set} = 120 °C, 5 hours.

Figure S26. ¹H NMR (*d*⁶-DMSO) of the reaction mixture. Reaction condition: CH₃OH/H₂O (8:2 ν/ν , 3mL), KOH (8 M), triglyme (1 mL), **2** (10 µmol) for 1 hour. Inset: Magnified chemical-shift window between -15 ppm and -13 ppm.

Figure S27. ¹H NMR (*d*⁶-DMSO) of the reaction mixture. Reaction condition: CH₃OH/H₂O (8:2 v/v, 3mL), KOH (8 M), triglyme (1 mL), **3** (10 µmol) for 1 hour.

Figure S29. ¹H NMR (d^6 -DMSO) of the reaction mixture for 2 hours with 4 (10 µmol) and 2 equivalent NaBEt₃H in 1 mL of triglymeat 80 °C. Inset: Magnified chemical-shift window between -19 ppm and -18 ppm.

Figure S30. The found intermediates in HRESI-MS of the reaction solution using 2, together with the simulated plots.

Figure S31. The found intermediates in HRESI-MS of the reaction solution using 3,

together with the simulated plots.

xyh-czj-H2-500-pz.11.fid

173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 [1]

Figure S32 The quantitative ¹H NMR and quantitative ¹³C NMR of reaction mixture. CH₃OH/H₂O (8:2 v/v, 10mL), 8 M KOH, 500 mL H₂ generated, entry 1 in Table S3.

Figure S33. The quantitative ¹H NMR and quantitative ¹³C NMR of reaction mixture. CH_3OH/H_2O (8:2 *v/v*, 10mL), 8 M KOH, 630 mL H₂ generated, entry 2 in Table S3.

Figure S34. HRESI-MS of the reaction solution (1 h) using **2** in the range of 1350-1600 for m/z.

Figure S35. HRESI-MS of the reaction solution using **3** in the m/z range of 250-1900 (10 min). Insert: the partial magnified view in the indicated m/z range.

Figure S36. HRESI-MS of the reaction solution using **4** in the m/z range of 400-2000 (10 min). Insert: the partial magnified view in the indicated m/z range.

Supplementary Tables

Table 51							
entry	Base	Inner $T / {}^{\mathrm{o}}\mathrm{C}$			TON		
			1h	2h	3h	4h	5h
1	0.12 mol EtONa	103	21	-	-	-	-
2	0.05 mol ^t BuOK	88	10	41	72	93	109
3	8 M HCOOK	84	59	78	98	105	121
4	8 M HCOONa	103	8	27	-	-	-
5	8 M NaOH	100	129	191	227	253	279
6	8 M KOH	112	1066	1558	1884	2138	2319
7	0.05 mol Et ₃ N	76	50	-	-	-	-

Table S1. Selection of different bases for APRM reaction catalysed by 2.

[a] Reaction conditions: MeOH/H₂O = 8:2 (10 mL), triglyme (5 mL), catalyst (4 μ mol), 5 hours, $T_{Set} = 120 \text{ °C}$.

Table S2. Dehydrogenation of ethanol, glycol and formic catalyzed by 2.

Entry		TON	
1	5072 (1 h)	9196 (3 h)	12907 (5 h)
2	2686 (20 min)	5134 (40 min)	6706 (1 h)
3	401 (1 h)	746 (3 h)	1136 (5 h)
4	878 (1 h)	4070 (3 h)	4473 (5 h)

[a] Reaction condition: (1) 8 ml EtOH, 2 ml H₂O, 5 ml triglyme, 8M KOH, 1 μmol catalyst, 100 °C;
(2) 8 ml EtOH, 2 ml H₂O, 5 ml triglyme, 8M KOH, 4 μmol catalyst, 120 °C; (3) 8 ml glycol, 2 ml H₂O, 5 ml triglyme, 8M KOH, 4 μmol catalyst, 120 °C; (4) 8 ml HCOOH, 20 ml triethylamine, 2 ml triglyme, 1 μmol catalyst, 120 °C.

Table S3. Comparison of hydrogen generation calculated from HCOOK and K_2CO_3 production with it from quantitative ¹H NMR and quantitative ¹³C NMR through two independent experiments.

		H ₂ generation	H ₂ generation	
Entry	$V(H_2)/mL$	calculated from	calculated from	Deviation ^c
		HCOOK/mL	K ₂ CO ₃ /mL	
1	500	491 ^a	8.29 ^b	0.142%
		493 ^b	8.29 ^b	0.258%
2	630	618 ^a	16.3 ^b	0.682%
		621 ^b	16.3 ^b	1.16%

Reaction conditions: CH_3OH/H_2O (8:2 v/v, 10mL), KOH (8 M). a. quantitative ¹H NMR; b. quantitative ¹³C NMR; c. the deviation was calculated by the differences between the amount of H_2 measured by using a gas burette and the combined volume calculated based on the amount of HCOOK and K_2CO_3 .

Scheme S1. Aqueous-phase methanol reforming (APRM) process in the presence of KOH.

Crystallography Information

Figure S30. ORTEP diagrams of the molecular structures of **1**. Ellipsoids are set at 50% probability.

Identification code	1
Empirical formula	$C_{45}H_{42}Cl_4N_2P_2Ru$
Formula weight	915.62
Temperature/K	101.84
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	10.7329(4)
b/Å	12.9445(5)
$c/{ m \AA}$	14.7579(5)
$lpha/^{\circ}$	93.7350(10)
$eta /^{\circ}$	98.0700(10)
γ/°	91.9380(10)
Volume/Å ³	2023.81(13)
Ζ	2
$ ho_{ m calc} g/ m cm^3$	1.503
μ/mm^{-1}	0.766
<i>F</i> (000)	936.0
Crystal size/mm ³	$0.17 \times 0.13 \times 0.08$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.86 to 50.02

 Table S3. Crystal data and structure refinement for 1.

Index ranges	$-12 \le h \le 12, -15 \le k \le 15, -17 \le l \le 17$
Reflections collected	24441
Independent reflections	7126 [$R_{\text{int}} = 0.0449, R_{\text{sigma}} = 0.0421$]
Data/restraints/parameters	7126/65/514
Goodness-of-fit on F^2	1.048
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0477, wR_2 = 0.1194$
Final R indexes [all data]	$R_1 = 0.0535, wR_2 = 0.1238$
Largest diff. peak/hole / e Å ⁻³	2.07/-1.70

Table S4. Bond Lengths for 1.

			u Lengen		
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ru1	C11	2.4019(9)	C17	C18	1.377(6)
Ru1	Cl2	2.4532(10)	C18	C19	1.404(6)
Ru1	P1	2.3130(10)	C19	C20	1.464(6)
Ru1	P2	2.2880(11)	C21	C22	1.526(6)
Ru1	N1	2.096(3)	C21	C26	1.544(6)
Ru1	N2	2.103(3)	C22	C23	1.524(6)
P1	C1	1.848(4)	C23	C24	1.519(6)
P1	C7	1.838(4)	C24	C25	1.525(6)
P1	C14	1.846(4)	C25	C26	1.528(5)
P2	C33	1.839(4)	C27	C28	1.467(6)
P2	C34	1.844(4)	C28	C29	1.403(6)
P2	C40	1.840(4)	C28	C33	1.413(6)
N1	C20	1.282(5)	C29	C30	1.387(6)
N1	C21	1.490(5)	C30	C31	1.380(7)
N2	C26	1.488(5)	C31	C32	1.395(6)
N2	C27	1.281(5)	C32	C33	1.388(6)
C1	C2	1.397(6)	C34	C35	1.395(6)
C1	C6	1.403(6)	C34	C39	1.401(6)
C2	C3	1.392(6)	C35	C36	1.389(6)
C3	C4	1.382(6)	C36	C37	1.384(7)
C4	C5	1.390(6)	C37	C38	1.391(7)
C5	C6	1.387(6)	C38	C39	1.386(6)
C7	C8	1.395(6)	C40	C41	1.398(6)
C7	C13	1.399(6)	C40	C45	1.395(6)
C8	C9	1.392(6)	C41	C42	1.393(6)
C9	C10	1.381(7)	C42	C43	1.384(6)
C10	C11	1.384(7)	C43	C44	1.389(7)
C11	C13	1.396(6)	C44	C45	1.392(6)

C14	C15	1.400(6)	Cl1S	C1S	1.56(3)
C14	C19	1.407(6)	Cl2S	C1S	2.12(3)
C15	C16	1.383(6)	Cl3S	C2S	1.54(3)
C16	C17	1.386(7)	Cl4S	C2S	1.94(3)

Table S5. Bond Angles for 1.

				8			
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C11	Ru1	Cl2	168.14(3)	C15	C14	C19	117.7(4)
P1	Ru1	Cl1	86.64(3)	C19	C14	P1	122.5(3)
P1	Ru1	Cl2	102.81(4)	C16	C15	C14	122.2(4)
P2	Ru1	Cl1	95.61(4)	C15	C16	C17	120.2(4)
P2	Ru1	Cl2	90.14(4)	C18	C17	C16	118.6(4)
P2	Ru1	P1	98.43(4)	C17	C18	C19	122.4(4)
N1	Ru1	Cl1	84.71(9)	C14	C19	C20	128.0(4)
N1	Ru1	C12	87.79(9)	C18	C19	C14	119.0(4)
N1	Ru1	P1	91.87(9)	C18	C19	C20	113.0(4)
N1	Ru1	P2	169.69(10)	N1	C20	C19	130.1(4)
N1	Ru1	N2	80.61(13)	N1	C21	C22	115.6(3)
N2	Ru1	Cl1	88.17(9)	N1	C21	C26	106.4(3)
N2	Ru1	Cl2	81.54(9)	C22	C21	C26	111.5(3)
N2	Ru1	P1	171.23(9)	C23	C22	C21	111.9(3)
N2	Ru1	P2	89.10(10)	C24	C23	C22	110.3(3)
C1	P1	Ru1	124.19(14)	C23	C24	C25	110.1(4)
C7	P1	Ru1	116.26(13)	C24	C25	C26	112.0(3)
C7	P1	C1	101.89(19)	N2	C26	C21	105.5(3)
C7	P1	C14	100.25(18)	N2	C26	C25	116.0(3)
C14	P1	Ru1	112.10(13)	C25	C26	C21	111.9(3)
C14	P1	C1	98.33(18)	N2	C27	C28	128.7(4)
C33	P2	Ru1	109.72(14)	C29	C28	C27	114.1(4)
C33	P2	C34	101.10(18)	C29	C28	C33	118.7(4)
C33	P2	C40	102.34(18)	C33	C28	C27	127.2(4)
C34	P2	Ru1	120.09(13)	C30	C29	C28	121.2(4)
C40	P2	Ru1	120.17(14)	C31	C30	C29	119.9(4)
C40	P2	C34	100.53(18)	C30	C31	C32	119.6(4)
C20	N1	Ru1	131.6(3)	C33	C32	C31	121.4(4)
C20	N1	C21	117.2(3)	C28	C33	P2	120.5(3)
C21	N1	Ru1	111.0(2)	C32	C33	P2	120.3(3)
C26	N2	Ru1	109.8(2)	C32	C33	C28	119.1(4)
C27	N2	Ru1	130.4(3)	C35	C34	P2	123.2(3)
C27	N2	C26	119.1(3)	C35	C34	C39	118.8(4)

C2	C1	P1	119.0(3)	C39	C34	P2	117.9(3)
C2	C1	C6	118.2(4)	C36	C35	C34	120.5(4)
C6	C1	P1	122.7(3)	C37	C36	C35	120.5(4)
C3	C2	C1	120.7(4)	C36	C37	C38	119.3(4)
C4	C3	C2	120.6(4)	C39	C38	C37	120.6(4)
C3	C4	C5	119.4(4)	C38	C39	C34	120.3(4)
C6	C5	C4	120.4(4)	C41	C40	P2	123.1(3)
C5	C6	C1	120.8(4)	C45	C40	P2	117.8(3)
C8	C7	P1	120.6(3)	C45	C40	C41	119.1(4)
C8	C7	C13	118.8(4)	C42	C41	C40	120.2(4)
C13	C7	P1	120.5(3)	C43	C42	C41	120.2(4)
C9	C8	C7	120.3(4)	C42	C43	C44	120.1(4)
C10	C9	C8	120.5(4)	C43	C44	C45	120.0(4)
C9	C10	C11	119.7(4)	C44	C45	C40	120.4(4)
C10	C11	C13	120.4(4)	Cl1S	C1S	Cl2S	94.6(14)
C11	C13	C7	120.2(4)	Cl3S	C2S	Cl4S	109.1(16)
C15	C14	P1	119.6(3)				

Figure S31. ORTEP diagrams of the molecular structures of **2**. Ellipsoids are set at 50% probability.

Table S6. Crystal data	and structure refinement for 2.
Identification code	2
Empirical formula	$C_{45}H_{48}Cl_2N_2O_2P_2Ru$
Formula weight	882.76
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	13.2836(6)
b/Å	10.3229(5)

c/Å	29.8771(14)
$\alpha / ^{\circ}$	90
$eta/^{\circ}$	91.870(2)
γ/°	90
Volume/Å ³	4094.7(3)
Ζ	4
$ ho_{ m calc} { m g/cm^3}$	1.432
μ/mm^{-1}	0.632
<i>F</i> (000)	1824.0
Crystal size/mm ³	0.15 imes 0.14 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.174 to 51.996
Index ranges	$-16 \le h \le 16, -12 \le k \le 12, -35 \le l \le 36$
Reflections collected	42943
Independent reflections	8043 [$R_{\text{int}} = 0.0876, R_{\text{sigma}} = 0.0566$]
Data/restraints/parameters	8043/0/491
Goodness-of-fit on F^2	1.060
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0397, wR_2 = 0.1009$
Final R indexes [all data]	$R_1 = 0.0467, wR_2 = 0.1056$
Largest diff. peak/hole / e Å-3	1.26/-0.95

Table	S7 .	Bond	Lengths	for	2.
1	~	D 0 11 0	Longuis	101	

Table S7. Bond Lengths for 2.								
Atom	Atom	Length/Å	Atom	Atom	Length/Å			
Ru1	C11	2.4179(7)	C14	C15	1.379(4)			
Ru1	C12	2.4076(7)	C15	C16	1.390(5)			
Ru1	P1	2.2885(7)	C16	C17	1.381(4)			
Ru1	P2	2.2882(7)	C17	C18	1.404(4)			
Ru1	N1	2.093(2)	C18	C19	1.462(4)			
Ru1	N2	2.096(2)	C20	C21	1.512(4)			
P1	C6	1.843(3)	C22	C23	1.466(4)			
P1	C12	1.839(3)	C23	C24	1.404(4)			
P1	C13	1.845(3)	C23	C28	1.409(4)			
P2	C28	1.838(3)	C24	C25	1.383(4)			
P2	C29	1.845(3)	C25	C26	1.382(4)			
P2	C35	1.840(3)	C26	C27	1.390(4)			
N1	C21	1.475(3)	C27	C28	1.395(4)			
N1	C22	1.278(4)	C29	C30	1.398(4)			
N2	C19	1.275(4)	C29	C34	1.397(4)			
N2	C20	1.479(3)	C30	C31	1.392(4)			
C1	C2	1.387(4)	C31	C32	1.386(5)			

C1	C6	1.412(4)	C32	C33	1.383(5)
C2	C3	1.380(5)	C33	C34	1.392(4)
C3	C4	1.376(5)	C35	C36	1.394(4)
C4	C5	1.404(5)	C35	C40	1.394(4)
C5	C6	1.384(4)	C36	C37	1.397(4)
C7	C8	1.390(5)	C37	C38	1.376(5)
C7	C12	1.398(4)	C38	C39	1.393(5)
C8	C9	1.372(5)	C39	C40	1.387(4)
C9	C10	1.393(5)	O1S	C3S	1.477(5)
C10	C11	1.388(4)	O1S	C4S	1.434(6)
C11	C12	1.401(4)	C2S	C3S	1.468(8)
C13	C14	1.399(4)	C4S	C5S	1.390(8)
C13	C18	1.411(4)	O2S	C1S	1.391(6)

 Table S8. Bond Angles for 2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl2	Ru1	Cl1	170.67(2)	C7	C12	P1	123.1(2)
P1	Ru1	C11	98.17(2)	C7	C12	C11	118.6(3)
P1	Ru1	Cl2	89.05(2)	C11	C12	P1	117.9(2)
P2	Ru1	Cl1	89.40(2)	C14	C13	P1	118.4(2)
P2	Ru1	Cl2	95.09(3)	C14	C13	C18	117.9(3)
P2	Ru1	P1	100.68(3)	C18	C13	P1	123.5(2)
N1	Ru1	Cl1	84.08(7)	C15	C14	C13	122.4(3)
N1	Ru1	Cl2	87.87(7)	C14	C15	C16	119.4(3)
N1	Ru1	P1	170.68(7)	C17	C16	C15	119.8(3)
N1	Ru1	P2	88.36(7)	C16	C17	C18	121.2(3)
N1	Ru1	N2	81.17(9)	C13	C18	C19	126.4(3)
N2	Ru1	C11	89.25(6)	C17	C18	C13	119.3(3)
N2	Ru1	Cl2	84.84(6)	C17	C18	C19	114.3(3)
N2	Ru1	P1	89.80(6)	N2	C19	C18	128.7(3)
N2	Ru1	P2	169.52(6)	N2	C20	C21	107.0(2)
C6	P1	Ru1	118.69(9)	N1	C21	C20	107.0(2)
C6	P1	C13	96.17(13)	N1	C22	C23	128.0(3)
C12	P1	Ru1	117.03(9)	C24	C23	C22	114.3(2)
C12	P1	C6	108.99(13)	C24	C23	C28	119.1(3)
C12	P1	C13	99.84(13)	C28	C23	C22	126.5(2)
C13	P1	Ru1	112.57(9)	C25	C24	C23	121.5(3)
C28	P2	Ru1	111.14(9)	C26	C25	C24	119.4(3)
C28	P2	C29	102.05(12)	C25	C26	C27	120.0(3)

C28	P2	C35	101.08(12)	C26	C27	C28	121.6(3)
C29	P2	Ru1	119.51(10)	C23	C28	P2	121.2(2)
C35	P2	Ru1	118.88(9)	C27	C28	P2	120.2(2)
C35	P2	C29	101.44(13)	C27	C28	C23	118.4(2)
C21	N1	Ru1	109.34(16)	C30	C29	P2	117.7(2)
C22	N1	Ru1	133.25(19)	C34	C29	P2	123.1(2)
C22	N1	C21	116.8(2)	C34	C29	C30	119.2(3)
C19	N2	Ru1	133.2(2)	C31	C30	C29	120.0(3)
C19	N2	C20	116.5(2)	C32	C31	C30	120.4(3)
C20	N2	Ru1	109.27(17)	C33	C32	C31	119.9(3)
C2	C1	C6	121.5(3)	C32	C33	C34	120.3(3)
C3	C2	C1	119.3(3)	C33	C34	C29	120.1(3)
C4	C3	C2	120.4(3)	C36	C35	P2	123.4(2)
C3	C4	C5	120.5(3)	C40	C35	P2	118.1(2)
C6	C5	C4	120.2(3)	C40	C35	C36	118.3(3)
C1	C6	P1	113.2(2)	C35	C36	C37	120.8(3)
C5	C6	P1	128.7(2)	C38	C37	C36	120.1(3)
C5	C6	C1	118.0(3)	C37	C38	C39	119.7(3)
C8	C7	C12	120.1(3)	C40	C39	C38	120.1(3)
C9	C8	C7	120.8(3)	C39	C40	C35	120.9(3)
C8	С9	C10	120.0(3)	C4S	O1S	C3S	109.4(4)
C11	C10	С9	119.7(3)	C2S	C3S	01S	109.5(4)
C10	C11	C12	120.8(3)	C5S	C4S	01S	113.0(5)

Figure S32. ORTEP diagrams of the molecular structures of **3**. Ellipsoids are set at 50% probability.

Identification code	3
Empirical formula	$C_{42.96}H_{43.23}Cl_{2.69}N_2O_{0.65}P_2Ru$
Formula weight	856.48
Temperature/K	100.02
Crystal system	monoclinic
Space group	<i>C</i> 2/c
a/Å	39.124(3)
$b/{ m \AA}$	10.1523(8)
$c/{ m \AA}$	24.618(2)
$lpha/^{\circ}$	90
$eta /^{\circ}$	123.769(2)
$\gamma/^{\circ}$	90
Volume/Å ³	8128.5(11)
Ζ	8
$ ho_{ m calc} { m g/cm^3}$	1.400
μ/mm^{-1}	0.676
<i>F</i> (000)	3520.0
Crystal size/mm ³	0.38 imes 0.26 imes 0.2
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.202 to 55.132
Index ranges	$-45 \le h \le 50, -12 \le k \le 13, -32 \le l \le 32$
Reflections collected	35457
Independent reflections	9176 [$R_{\text{int}} = 0.0582, R_{\text{sigma}} = 0.0507$]
Data/restraints/parameters	9176/28/499
Goodness-of-fit on F^2	1.067
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0427, wR_2 = 0.1103$
Final R indexes [all data]	$R_1 = 0.0431, wR_2 = 0.1107$
Largest diff. peak/hole / e Å ⁻³	1.54/-0.89

 Table S9. Crystal data and structure refinement for 3.

Table S10. Bond Lengths for 3	3.
-------------------------------	----

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ru1	C11	2.4210(6)	C15	C16	1.380(4)
Ru1	C12	2.4078(6)	C16	C17	1.390(4)
Ru1	P1	2.3117(6)	C17	C18	1.396(3)
Ru1	P2	2.2657(6)	C18	C19	1.508(3)
Ru1	N1	2.178(2)	C20	C21	1.512(4)
Ru1	N2	2.087(2)	C22	C23	1.459(4)
P1	C1	1.833(2)	C23	C24	1.404(4)

P1	C7	1.835(2)	C23	C28	1.411(4)
P1	C13	1.838(2)	C24	C25	1.380(4)
P2	C28	1.841(2)	C25	C26	1.383(4)
P2	C29	1.836(2)	C26	C27	1.389(4)
P2	C35	1.839(3)	C27	C28	1.401(3)
N1	C19	1.479(3)	C29	C30	1.399(3)
N1	C20	1.482(3)	C29	C34	1.403(3)
N2	C21	1.476(3)	C30	C31	1.396(4)
N2	C22	1.276(3)	C31	C32	1.383(4)
C1	C2	1.400(3)	C32	C33	1.383(4)
C1	C6	1.400(3)	C33	C34	1.398(4)
C2	C3	1.390(4)	C35	C36	1.380(4)
C3	C4	1.389(5)	C35	C40	1.411(4)
C4	C5	1.388(5)	C36	C37	1.419(5)
C5	C6	1.389(4)	C37	C38	1.395(8)
C7	C8	1.395(3)	C38	C39	1.386(7)
C7	C12	1.400(3)	C39	C40	1.388(5)
C8	C9	1.391(3)	Cl1S	C5S	1.750(15)
С9	C10	1.377(4)	Cl2S	C5S	1.959(17)
C10	C11	1.384(4)	O1S	C2S	1.442(9)
C11	C12	1.390(3)	O1S	C3S	1.305(7)
C13	C14	1.395(3)	C1S	C2S	1.422(9)
C13	C18	1.405(3)	C3S	C4S	1.589(9)
C14	C15	1.396(3)			

Table S11. Bond Angles for 3.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C12	Ru1	C11	168.30(2)	C10	C11	C12	121.2(2)
P1	Ru1	Cl1	90.44(2)	C11	C12	C7	119.7(2)
P1	Ru1	Cl2	94.38(2)	C14	C13	P1	121.79(18)
P2	Ru1	Cl1	98.14(2)	C14	C13	C18	119.2(2)
P2	Ru1	Cl2	91.56(2)	C18	C13	P1	118.96(18)
P2	Ru1	P1	99.72(2)	C13	C14	C15	120.9(2)
N1	Ru1	Cl1	81.39(6)	C16	C15	C14	120.0(2)
N1	Ru1	Cl2	88.09(6)	C15	C16	C17	119.6(2)
N1	Ru1	P1	88.34(6)	C16	C17	C18	121.4(2)
N1	Ru1	P2	171.93(6)	C13	C18	C19	121.8(2)
N2	Ru1	Cl1	89.63(6)	C17	C18	C13	119.1(2)
N2	Ru1	C12	83.60(6)	C17	C18	C19	119.1(2)
N2	Ru1	P1	168.99(6)	N1	C19	C18	109.2(2)

N2	Ru1	P2	91.16(6)	N1	C20	C21	106.8(2)
N2	Ru1	N1	80.79(8)	N2	C21	C20	109.29(19)
C1	P1	Ru1	120.54(8)	N2	C22	C23	128.6(2)
C1	P1	C7	100.70(11)	C24	C23	C22	114.1(2)
C1	P1	C13	102.72(11)	C24	C23	C28	119.1(2)
C7	P1	Ru1	119.45(8)	C28	C23	C22	126.7(2)
C7	P1	C13	100.18(10)	C25	C24	C23	121.9(3)
C13	P1	Ru1	110.27(8)	C24	C25	C26	119.2(3)
C28	P2	Ru1	113.33(8)	C25	C26	C27	119.9(3)
C29	P2	Ru1	117.87(8)	C26	C27	C28	122.0(3)
C29	P2	C28	100.22(11)	C23	C28	P2	123.78(19)
C29	P2	C35	106.83(12)	C27	C28	P2	118.29(19)
C35	P2	Ru1	118.94(9)	C27	C28	C23	117.9(2)
C35	P2	C28	96.03(11)	C30	C29	P2	118.86(18)
C19	N1	Ru1	118.57(15)	C30	C29	C34	118.4(2)
C19	N1	C20	113.91(19)	C34	C29	P2	122.34(19)
C20	N1	Ru1	106.93(15)	C31	C30	C29	121.0(2)
C21	N2	Ru1	110.61(15)	C32	C31	C30	119.8(3)
C22	N2	Ru1	133.20(18)	C31	C32	C33	120.2(2)
C22	N2	C21	115.6(2)	C32	C33	C34	120.4(3)
C2	C1	P1	118.55(19)	C33	C34	C29	120.2(3)
C6	C1	P1	122.47(19)	C36	C35	P2	126.6(2)
C6	C1	C2	118.9(2)	C36	C35	C40	119.4(3)
C3	C2	C1	120.4(3)	C40	C35	P2	114.0(2)
C4	C3	C2	120.2(3)	C35	C36	C37	119.4(4)
C5	C4	C3	119.9(3)	C38	C37	C36	120.2(4)
C4	C5	C6	120.2(3)	C39	C38	C37	120.3(3)
C5	C6	C1	120.4(3)	C38	C39	C40	119.4(4)
C8	C7	P1	122.34(18)	C39	C40	C35	121.2(4)
C8	C7	C12	118.6(2)	Cl1S	C5S	Cl2S	95.4(7)
C12	C7	P1	118.81(17)	C3S	01S	C2S	106.5(6)
C9	C8	C7	121.0(2)	C1S	C2S	01S	101.2(6)
C10	C9	C8	120.1(2)	O1S	C3S	C4S	103.3(5)
C9	C10	C11	119.5(2)				

Figure S33. ORTEP diagrams of the molecular structures of **4**. Ellipsoids are set at 50% probability.

Identification code	4
Empirical formula	C41H40Cl4N2P2R1
Formula weight	865 56
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	10.7044(4)
h/λ	15 6123(6)
c/Å	23 0008(10)
c/A a/°	90
<i>R</i> /°	95 634(2)
p'	00
$V_{\rm olumo}/\lambda^3$	2825 2(2)
v olume/A	3823.3(3)
z	4
$\rho_{\rm calc} g/{\rm cm}^2$	0.806
μ/mm^2	0.800
F(000)	1768.0
Crystal size/mm ³	0.18 × 0.09 × 0.08
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	4.372 to 55.058
Index ranges	$-13 \le h \le 13, -20 \le k \le 19, -29 \le l \le 29$
Reflections collected	37085
Independent reflections	8795 [$R_{\text{int}} = 0.0404, R_{\text{sigma}} = 0.0342$]
Data/restraints/parameters	8795/0/451
Goodness-of-fit on F ²	1.025

Table S12. Crystal data and structure refinement for 4.

Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0236, wR_2 = 0.0613$
Final R indexes [all data]	$R_1 = 0.0249, wR_2 = 0.0623$
Largest diff. peak/hole / e Å ⁻³	1.37/-0.53

Tah	le	S13	Rond	Lengths	for 4
1 a u	ле	SIJ .	DUIIU	Lenguis	101 4.

		Table S13. Bo	nd Length	s for 4.	
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ru1	Cl1	2.4032(3)	C13	C18	1.407(2)
Ru1	Cl2	2.4422(3)	C14	C15	1.390(2)
Ru1	P1	2.2936(4)	C15	C16	1.389(2)
Ru1	P2	2.2937(4)	C16	C17	1.383(2)
Ru1	N1	2.1517(12)	C17	C18	1.405(2)
Ru1	N2	2.1610(12)	C18	C19	1.507(2)
P1	C1	1.8329(15)	C20	C21	1.516(2)
P1	C7	1.8520(15)	C22	C23	1.515(2)
P1	C13	1.8612(15)	C23	C24	1.397(2)
P2	C28	1.8458(15)	C23	C28	1.411(2)
P2	C29	1.8518(16)	C24	C25	1.396(2)
P2	C35	1.8401(15)	C25	C26	1.387(2)
N1	C19	1.4811(18)	C26	C27	1.392(2)
N1	C20	1.4918(18)	C27	C28	1.399(2)
N2	C21	1.4870(18)	C29	C30	1.402(2)
N2	C22	1.4824(19)	C29	C34	1.398(2)
C1	C2	1.400(2)	C30	C31	1.394(2)
C1	C6	1.403(2)	C31	C32	1.388(2)
C2	C3	1.388(2)	C32	C33	1.391(2)
C3	C4	1.392(3)	C33	C34	1.396(2)
C4	C5	1.389(3)	C35	C36	1.396(2)
C5	C6	1.391(2)	C35	C40	1.405(2)
C7	C8	1.405(2)	C36	C37	1.397(2)
C7	C12	1.390(2)	C37	C38	1.388(3)
C8	C9	1.389(2)	C38	C39	1.385(3)
C9	C10	1.390(3)	C39	C40	1.393(2)
C10	C11	1.384(3)	Cl1S	C1S	1.767(2)
C11	C12	1.401(2)	Cl2S	C1S	1.7667(18)
C13	C14	1.407(2)			

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl1	Ru1	Cl2	164.959(12)	C8	С9	C10	120.01(15)
P1	Ru1	C11	90.295(13)	C11	C10	C9	119.80(15)

P1	Ru1	Cl2	101.097(13)	C10	C11	C12	120.38(17)
А	Ru1	P2	99.544(13)	C7	C12	C11	120.30(16)
P2	Ru1	Cl1	95.069(13)	C14	C13	P1	120.60(11)
P2	Ru1	Cl2	92.706(13)	C18	C13	P1	121.09(11)
N1	Ru1	Cl1	83.72(3)	C18	C13	C14	118.06(13)
N1	Ru1	Cl2	86.47(3)	C15	C14	C13	121.91(14)
N1	Ru1	P1	89.98(3)	C16	C15	C14	119.66(14)
N1	Ru1	P2	170.42(3)	C17	C16	C15	119.36(14)
N1	Ru1	N2	80.54(5)	C16	C17	C18	121.75(14)
N2	Ru1	C11	86.66(3)	C13	C18	C19	123.96(13)
N2	Ru1	Cl2	80.49(3)	C17	C18	C13	119.25(13)
N2	Ru1	P1	170.30(3)	C17	C18	C19	116.79(13)
N2	Ru1	P2	89.91(3)	N1	C19	C18	111.54(12)
C1	P1	Ru1	116.20(5)	N1	C20	C21	107.64(12)
C1	P1	C7	100.54(7)	N2	C21	C20	106.86(11)
C1	P1	C13	102.01(7)	N2	C22	C23	109.48(11)
C7	P1	Ru1	125.55(5)	C24	C23	C22	118.04(13)
C7	P1	C13	96.06(6)	C24	C23	C28	119.18(14)
C13	P1	Ru1	112.52(5)	C28	C23	C22	122.77(13)
C28	P2	Ru1	110.36(5)	C25	C24	C23	121.26(14)
C28	P2	C29	98.50(7)	C26	C25	C24	119.61(14)
C29	P2	Ru1	121.70(5)	C25	C26	C27	119.66(14)
C35	P2	Ru1	118.68(5)	C26	C27	C28	121.51(14)
C35	P2	C28	102.46(7)	C23	C28	P2	119.49(11)
C35	P2	C29	101.83(7)	C27	C28	P2	121.54(11)
C19	N1	Ru1	117.52(9)	C27	C28	C23	118.76(13)
C19	N1	C20	111.68(11)	C30	C29	P2	121.42(12)
C20	N1	Ru1	108.31(8)	C34	C29	P2	120.19(11)
C21	N2	Ru1	107.69(8)	C34	C29	C30	118.35(14)
C22	N2	Ru1	118.01(9)	C31	C30	C29	120.98(14)
C22	N2	C21	113.36(11)	C32	C31	C30	120.07(15)
C2	C1	P1	120.34(11)	C31	C32	C33	119.57(15)
C2	C1	C6	118.73(14)	C32	C33	C34	120.50(15)
C6	C1	P1	120.68(11)	C33	C34	C29	120.51(14)
C3	C2	C1	120.47(14)	C36	C35	P2	123.02(12)
C2	C3	C4	120.35(15)	C36	C35	C40	118.65(14)
C5	C4	C3	119.79(15)	C40	C35	P2	118.28(11)
C4	C5	C6	120.11(15)	C35	C36	C37	120.55(15)
C5	C6	C1	120.55(14)	C38	C37	C36	120.21(15)
C8	C7	P1	120.31(11)	C39	C38	C37	119.70(14)

C12	C7	P1	120.53(12)	C38	C39	C40	120.49(16)
C12	C7	C8	118.73(14)	C39	C40	C35	120.35(15)
C9	C8	C7	120.76(15)	Cl2S	C1S	Cl1S	112.13(10)