Electronic Supplementary Information

Experimental section

Materials: Sodium nitrate (NaNO₃, 99.0%), sodium nitrite (NaNO₂, 99.0%), ammonium chloride (NH₄Cl), sodium hydroxide (NaOH), sodium salicylate $(C_7H_5NaO_3),$ trisodium citrate dihydrate $(C_6H_5Na_3O_7 \cdot 2H_2O),$ p– dimethylaminobenzaldehyde $(C_9H_{11}NO),$ sodium nitroferricyanide dihydrate (C₅FeN₆Na₂O·2H₂O), 0.8 wt% sulfamic acid solution (H₃NO₃S) and sodium hypochlorite solution (NaClO) were purchased from Aladdin Ltd. (Shanghai, China). Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O) was purchased from Chengdu Kelong Chemical Reagent Co. Ltd. Sulfuric acid (H₂SO₄), hydrogen peroxide (H₂O₂), hydrochloric acid (HCl), hydrazine monohydrate (N₂H₄·H₂O) and ethyl alcohol (C₂H₅OH) were bought from Beijing Chemical Corporation. (China). Ti plate (thickness is 0.2 mm) was purchased from Qingyuan Metal Materials Co., Ltd (Xingtai, China) and treated with 3 M HCl for 30 minutes before hydrothermal reaction. All chemicals used in this work were analytical grade and direct use without further purification.

Preparation of Co-TiO₂/TP: Firstly, Ti plates were cut into small pieces (2.0×4.0 cm²) and sonicated in acetone, ethanol, and distilled water for 15 min, respectively. After then, they were put into 40 mL of 5 M NaOH aqueous solution in a 50 mL Teflon-lined autoclave. The autoclave was kept in an electric oven at 180°C for 24 h. After the autoclave was cooled down naturally to room temperature, the samples were moved out, washed with deionized water and ethanol several times and dried at 60 °C for 30 min. Then the resulting Na₂Ti₂O₅/TP was immersed in 0.25 M Co(NO₃)₂ for 1 h to exchange Na⁺ with Co²⁺. The resulting CoTi₂O₅·H₂O/TP was rinsed with deionized water and dried at 60 °C for 30 min. Subsequently, CoTi₂O₅·H₂O/TP was annealed in a tube furnace at 500°C under an Ar atmosphere for 2 hours. After cooling to room temperature, Co-TiO₂/TP was finally obtained.

Preparation of TiO₂/TP: Firstly, Ti plates were cut into small pieces $(2.0 \times 4.0 \text{ cm}^2)$

and sonicated in acetone, ethanol, and distilled water for 15 min, respectively. After then, they were put into 40 mL of 5 M NaOH aqueous solution in a 50 mL Teflonlined autoclave. The autoclave was kept in an electric oven at 180°C for 24 h. After the autoclave was cooled down naturally to room temperature, the samples were moved out, washed with deionized water and ethanol several times and dried at 60 °C for 30 min. Then the resulting Na₂Ti₂O₅/TP was immersed in 1 M HCl for 1 h to exchange Na⁺ with H⁺. The as-prepared H₂Ti₂O₅·H₂O/TP was rinsed with deionized water and ethanol several times and dried at 60 °C for 30 min. Subsequently, H₂Ti₂O₅·H₂O/TP was annealed in a tube furnace at 500°C under an Ar atmosphere for 2 hours. After cooling to room temperature, TiO₂/TP was finally obtained.

Characterizations: XRD data were acquired by a LabX XRD–6100 X-ray diffractometer with a Cu K α radiation (40 kV, 30 mA) of wavelength 0.154 nm (SHIMADZU, Japan). SEM measurements were carried out on a GeminiSEM 300 scanning electron microscope (ZEISS, Germany) at an accelerating voltage of 5 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The absorbance data of the spectrophotometer was measured on a UV-Vis spectrophotometer. TEM image was obtained from a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. Gas chromatography (GC-2014C, SHIMADZU) was utilized to quantitatively detect H₂ and N₂. ¹H NMR spectra were collected on Varian VNMRS 600 MHz (the USA).

Electrochemical measurements: All electrochemical measurements were carried out on the CHI660E electrochemical workstation (Shanghai, Chenhua) using a standard three-electrode setup. The electrolyte solution was Ar-saturated of 0.1 M NaOH with 0.1 M NO₃⁻, using Co-TiO₂/TP, TiO₂/TP, or TP as the working electrode, a graphite rod as the counter electrode, and a Hg/HgO as the reference electrode. We use an Htype electrolytic cell separated by a Nafion 117 membrane which was protonated by boiling in ultrapure water, H₂O₂ (5%) aqueous solution and 0.5 M H₂SO₄ at 80 °C for another 2 h, respectively. All the potentials reported in our work were converted to a reversible hydrogen electrode via calibration with the following equation: E (RHE) = E (Hg/HgO) + (0.098 + 0.0591 \times pH) V and the presented current density was normalized to the geometric surface area.

Determination of NH₃: The concentration of produced NH₃ was determined by spectrophotometry measurement with the indophenol blue method (the obtained electrolyte was diluted 40 times).¹ In detail, 2 mL of the diluted catholyte was obtained from the cathodic chamber and mixed with 2 mL of a 1 M NaOH solution that contained salicylic acid and sodium citrate. Then, 1 mL of 0.05 M NaClO and 0.2 mL of 1 wt% C₅FeN₆Na₂O were dropped into the collected electrolyte solution. After standing at room temperature for 2 h, the ultraviolet-visible absorption spectrum was measured. The concentration-absorbance curve was calibrated using the standard NH₄Cl solution with NH₃ concentrations of 0, 0.25, 0.5, 1.5, 2.0, 3.0 and 4.0 μ g mL⁻¹ in 0.1 M NaOH. The absorbance at 655 nm was measured to quantify the NH₃ concentration using standard NH₄Cl solutions (y = 0.42074 x + 0.02455, $R^2 = 0.9997$). Determination of NO₂⁻: The NO₂⁻ concentration was analyzed using the Griess test.² The Griess reagent was prepared by dissolving 0.1 g N-(1-naphthyl) ethylenediamine dihydrochloride, 1.0 g sulfonamide and 2.94 mL H₃PO₄ in 50 mL deionized water. In a typical colourimetric assay, the 1.0 mL Griess reagent was mixed with the 1.0 mL nitrite-containing solution and 2.0 mL H₂O and allowed to react at room temperature for 10 min, in which sulfonamide reacts with NO₂⁻ to form a diazonium salt and then further reacts with the amine to form an azo dye (magenta). The absorbance at 540 nm was measured to quantify the NO_2^- concentration with a standard curve of NO_2^- (y = $0.20595 \text{ x} + 0.06651, \text{ R}^2 = 0.9999$).

Determination of N₂H₄: In this work, we used the method of Watt and Chrisp³ to determine the concentration of produced N₂H₄. The chromogenic reagent was a mixed solution of 5.99 g C₉H₁₁NO, 30 mL HCl and 300 mL C₂H₅OH. In detail, 1 mL of electrolyte was added into 1 mL prepared colour reagent and stirred for 15 min in the dark. The absorbance at 455 nm was measured to quantify the N₂H₄ concentration with a standard curve of hydrazine (y = 0.6878 x + 0.1066, R² = 0.9997).

Detection of Co²⁺: First, the Co-TiO₂ nanoribbons array was scraped from the TP and weighed 40 mg. Next, the Co-TiO₂ powder was dissolved into 2 mL of mixed acid

prepared from hydrochloric acid and nitric acid (V_{HCI} : $V_{HNO3} = 3:1$). Finally, the prepared solution was diluted 20,000-fold and the concentration of Co ions was measured on an inductively coupled plasma-mass spectrometry (ICP-MS) instrument.

Calculations of FE and NH₃ yield:

The amount of NH_3 (m_{NH3}) was calculated by the following equation:

$$m_{\rm NH3} = [\rm NH_3] \times V$$

FE of NH₃ formation was calculated by the following equation:

$$FE = (8 \times F \times [NH_3] \times V) / (M_{NH3} \times Q) \times 100\%$$

The NH₃ yield rate is calculated using the following equation:

Where F is the Faradaic constant (96485 C mol⁻¹), [NH₃] is the NH₃ concentration, V is the volume of electrolyte in the anode compartment (70 mL), M_{NH3} is the molar mass of the NH₃ molecule, Q is the total quantity of applied electricity; t is the electrolysis time (1 h) and A is the geometric area of the working electrode (1 × 1 cm²).

Calculation of the partial current density:

$$j_{\text{partial}} = \text{FE} \times \text{I}$$

Among them, j_{partial} represents the partial current density at each given potential; FE is the corresponding Faradaic efficiency of each product at the given potential; I is the corresponding current at each given potential.

Calculation of the energy consumed in the formation of $V_{Os}(E_f)$:

The energy consumed to form V_{Os} in Co-TiO₂ can be calculated by the following equation:

$$E_{\rm f} = E_{\rm (VOs-Co-TiO2)} + E_{\rm (O2)}/2 - E_{\rm (Co-TiO2)}.$$

Among them, $E_{(VOs-Co-TiO2)}$ denotes the total energy of the Co-TiO₂ system after the formation of V_{Os}; $E_{(O2)}$ is the energy of the O₂ molecule; $E_{(Co-TiO2)}$ refers to the total energy of the TiO₂ system after Co doping into TiO₂.

The energy consumed to form V_{Os} in TiO_2 can be calculated by the following equation:

$E_{\rm f} = E_{\rm (VOs-TiO2)} + E_{\rm (O2)}/2 - E_{\rm (TiO2)}.$

Among them, $E_{(VOs-TiO2)}$ presents the total energy of TiO₂ after the formation of V_{Os}; $E_{(O2)}$ is the energy of the O₂ molecule; $E_{(TiO2)}$ represents the total energy of the TiO₂ system without V_{Os}.

DFT calculations details: First-principles calculations with spin-polarized were performed using density functional theory (DFT) implemented in the VASP package,⁴ and the projector augmented wave (PAW) approach was used to describe the interaction between ionic core and valence electrons with a cutoff of 500 eV.⁵ Perdew-Burke-Ernzerhof functional (PBE) with semi-empirical corrections of DFT-D3 were employed to depict the exchange-correlation functional effect by general gradient approximation (GGA).⁶ Co-TiO₂ (101) and TiO₂ (101) surfaces with two terminations were modelled. The bottom two layers were fixed, and the upper two layers were permitted to relax. The thickness of the vacuum region is 15 Å to avert spurious interaction. The Brillouin zone was built by $3 \times 3 \times 1$ special k-points based on the Monkhorst Pack scheme for structural configuration optimizations.⁷ The total energy is less than 10^{-5} eV and the force convergence threshold is 0.02 eV/Å, respectively. The DFT calculation results were analyzed by VASPKIT software.⁸

Fig. S1. XRD patterns for Co-TiO₂/TP and TiO₂/TP.

Fig. S2. SEM image of bare TP

Fig. S3. SEM images of (a) $Na_2Ti_2O_5/TP$ and (b) $CoTi_2O_5/TP$.

Fig. S4. SEM images of (a) TiO_2/TP , and (b) Co- TiO_2/TP .

a		にいたかいという	N D C C C C			<u>2 μm</u>		0					
b										Map Sum Sp	ectru	m	
				Element	Line•Type	Apparent Con	centration	k•Ratio	Wt%	Atomic %			
	/e/	5-		0	K-series		25.83	0.08691	42.06	68.49			
	cps,			Ti	K•series		37.37	0.37371	57.94	31.51			
				Total:					100.00	100.00			
		- - - 0		· <mark>^</mark> · · · ·	· [· · · · ·] ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							· I

Fig. S5. (a) The SEM and corresponding EDX mapping images of Ti and O for TiO_2/TP . (b) EDX spectrum of TiO_2/TP .

Fig. S6. (a) EDX spectrum for Co-TiO₂/TP. (b) The ICP-MS data of Co ions and calibration curve.

Fig. S7. HRTEM image of undoped TiO_2

Fig. S8. XPS survey spectrum of $Co-TiO_2$.

Fig. S9. (a) UV-Vis absorption spectra of indophenol assays kept with different concentrations of NH_4^+ after incubated for 2 h at room temperature. (b) Calibration curve used for estimation of NH_4^+ concentration.

Fig. S10. UV-Vis absorption spectra of various NO_2^- concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for quantification of $NO_2^$ concentration.

Fig. S11. (a) UV-Vis absorption spectra of various N_2H_4 concentrations after incubated for 15 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentration.

Fig. S12. LSV curves of TiO_2/TP and TP in 0.1 M NaOH with and without 0.1 M NO_3^{-} .

Fig. S13. (a) Chronoamperometry curves and (b) corresponding UV-Vis spectra of $Co-TiO_2/TP$ at different given potentials.

Fig. S14. UV-Vis absorption spectra of the electrolytes estimated by the method of Watt and Chrisp for the calculation of N_2H_4 concentration.

Fig. S15. UV-Vis absorption spectra of NH₃ concentrations at different conditions.

Fig. S16. NH_3 yields and FEs of Co-TiO₂/TP during the alternating cycle tests between NO_3^- -containing and NO_3^- -free 0.1 M NaOH solution.

Fig. S17. Long-term stability test at -0.5 V.

Fig. S18. (a) Chronoamperometry curves and (b) corresponding UV-Vis absorption spectra of Co-TiO₂/TP for electrogenerated NH₃ during cycling tests at -0.5 V.

Fig. S19. LSV curves of Co-TiO₂/TP before and after 24-h electrolysis.

Fig. S20. SEM image of Co-TiO₂/TP after 24-h electrolysis.

Fig. S21. XRD pattern of Co-TiO $_2$ /TP after 24-h electrolysis.

Fig. S22. Crystal structures of (a) TiO_2 without oxygen vacancies, (b) TiO_2 with oxygen vacancies, (c) Co-TiO₂ without oxygen vacancies, and (d) Co-TiO₂ with oxygen vacancies. Dark blue, red, and light blue spheres denote the Co, O, and Ti atoms, respectively.

Fig. S23. Calculated PDOS of (a) Co-TiO₂ and (b) TiO₂ configuration.

Catalyst	Electrolyte	NH ₃ yield	FE	Ref.	
Co-TiO ₂ /TP	0.1 M NaOH (0.1 M NO ₃ ⁻)	1127 μ mol h ⁻¹ cm ⁻²	98.2%	This work	
TiO _{2-x}	0.5 M Na ₂ SO ₄ (50 ppm NO ₃ ⁻)	45 μ mol h ⁻¹ mg _{cat.} ⁻¹	85%	9	
Pd facets	0.1 M NaOH (20 mM NO₃ [−])	18 μ mol h ⁻¹ cm ⁻²	35%	10	
Ni NP	1 M NaOH (20 mM NO ₃ ⁻)	/	46.3%	11	
Pd/TiO ₂	0.5 M NaOH (0.25 M NO ₃ ⁻)	66 μmol h ⁻¹ cm ⁻²	92%	12	
Cu	1 M NaOH (0.1 M NO3⁻)	/	79%	13	
In–S–G	1 M KOH (0.1 M NO3⁻)	220 μ mol h ⁻¹ mg _{cat.} ⁻¹	75%	14	
Fe SAC	1 M KOH (0.1 M NO3⁻)	/	86%	15	
BC ₂ N/Pd	0.1 M KOH (0.25 M NO ₃ ⁻)	$100 \ \mu mol \ h^{-1} \ cm^{-2}$	97.42%	16	
Fe–PPy SACs	0.1 M KOH (0.1 M NO3⁻)	$160 \ \mu mol \ h^{-1} \ cm^{-2}$	~100%	17	
BCN@Ni	0.1 M KOH (0.1 M NO ₃ ⁻)	140 μ mol h ⁻¹ cm ⁻²	91.15%	18	
Ni ₃ B@NiB _{2.74}	0.1 M KOH (0.1 M NO ₃ ⁻)	200 μ mol h ⁻¹ cm ⁻²	~100%	19	
BCN-Cu	0.1 M KOH (100 mM NO ₃ ⁻)	$110 \ \mu mol \ h^{-1} \ cm^{-2}$	98.23%	20	
ZnCo ₂ O ₄	0.1 M KOH (0.1 M NO3⁻)	$120 \ \mu mol \ h^{-1} \ mg_{cat.}^{-1}$	95.4%	21	
Co-NCNT	0.1 M NaOH (0.1 M NO ₃ ⁻)	350 μ mol h ⁻¹ mg _{cat.} ⁻¹	92%	22	
Cu ₅₀ Ni ₅₀	0.1 M NaOH (10 mM NO ₃ ⁻)	/	84 ± 2%	23	

Table S1. Comparison of catalytic performance of Co-TiO2/TP with otherreported NO3RR electrocatalysts.

References

- D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction, *Nat. Mater.*, 2013, 12, 836–841.
- 2 G. W. Watt and J. D. Chrisp, Spectrophotometric method for determination of hydrazine, *Anal. Chem.*, 1952, **24**, 2006–2008.
- L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok and S.
 R. Tannenbaum, Analysis of nitrate, nitrite, and [¹⁵N] nitrate in biological fluids, *Anal. Biochem.*, 1982, **126**, 131–138.
- G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium, *Phys. Rev. B*, 1994, 49, 14251–14269.
- 5 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, *Phys. Rev. B*, 1999, **59**, 1758–1775.
- 6 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, *Phys. Rev. B*, 1976, 13, 5188–5192.
- 8 V. Wang, N. Xu, J. Liu, G. Tang and W. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, *Comput. Phys. Commun.*, 2021, 267, 108033.
- 9 R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO₂, ACS Catal., 2020, 10, 3533–3540.
- 10 J. Lim, C. Liu, J. Park, Y. Liu, T. P. Senftle, S. W. Lee and M. C. Hatzell, Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia, ACS Catal., 2021, 11, 7568–7577.

- 11 L. Mattarozzi, S. Cattarin, N. Comisso, P. Guerriero, M. Musiani, L. Vázquez-Gómez and E. Verlato, Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes, *Electrochim. Acta*, 2013, **89**, 488–496.
- 12 Y. Guo, R. Zhang, S. Zhang, Y. Zhao, Q. Yang, Z. Huang, B. Dong and C. Zhi, Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO₂ nanoarrays for ammonia production and energy supply with zinc–nitrate batteries, *Energy Environ. Sci.*, 2021, 14, 3938–3944.
- D. Reyter, G. Chamoulaud, D. Bélanger and L. Roué, Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling, *J. Electroanal. Chem.*, 2006, **596**, 13–24.
- 14 F. Lei, W. Xu, J. Yu, K. Li, J. Xie, P. Hao, G. Cui and B. Tang, Electrochemical synthesis of ammonia by nitrate reduction on indium incorporated in sulfur doped graphene, *Chem. Eng. J.*, 2021, 426, 131317.
- Z. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F. Chen, J. Y. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst, *Nat. Commun.*, 2021, 12, 2870.
- 16 X. Li, X. Zhao, Y. Zhou, J. Hu, H. Zhang, X. Hu and G. Hu, Pd nanocrystals embedded in BC₂N for efficient electrochemical conversion of nitrate to ammonia, *Appl. Surf. Sci.*, 2022, **584**, 152556.
- 17 P. Li, Z. Jin, Z. Fang and G. Yu, A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate, *Energy Environ. Sci.*, 2021, 14, 3522–3531.
- 18 X. Zhao, Z. Zhu, Y. He, H. Zhang, X. Zhou, W. Hu, M. Li, S. Zhang, Y. Dong, X. Hu, A. V. Kuklin, G. V. Baryshnikov, H. Ågren, T. Wågberg and G. Hu, Simultaneous anchoring of Ni nanoparticles and single-atom Ni on BCN matrix promotes efficient conversion of nitrate in water into high-value-added ammonia, *Chem. Eng. J.*, 2022, **433**, 133190.

- 19 L. Li, C. Tang, X. Cui, Y. Zheng, X. Wang, H. Xu, S. Zhang, T. Shao, K. Davey and S. Qiao, Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction, *Angew. Chem., Int. Ed.*, 2021, **60**, 14131–14137.
- 20 X. Zhao, X. Jia, Y. He, H. Zhang, X. Zhou, H. Zhang, S. Zhang, Y. Dong, X. Hu, A. V. Kuklin, G. V. Baryshnikov, H. Ågren and G. Hu, Two-dimensional BCN matrix inlaid with single-atom-Cu driven electrochemical nitrate reduction reaction to achieve sustainable industrial-grade production of ammonia, *Appl. Mater. Today*, 2021, **25**, 101206.
- 21 P. Huang, T. Fan, X. Ma, J. Zhang, Z. Chen and X. Yi, 3D Flower-Like zinc cobaltite for electrocatalytic reduction of nitrate to ammonia under ambient conditions, *ChemSusChem*, 2022, DOI: 10.1002/cssc.202102049.
- J. Chen, Q. Zhou, L. Yue, D. Zhao, L. Zhang, Y. Luo, Q. Liu, N. Li, A. A. Alshehri, M. S. Hamdy, F. Gong and X. Sun, Co–NCNT nanohybrid as a highly active catalyst for the electroreduction of nitrate to ammonia, *Chem. Commun.*, 2022, **58**, 3787–3790.
- Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D. H. Nam, C. Tan, Y. Ding, J. Wu, Y. Lum, C. T. Dinh, D. Sinton, G. Zheng and E. H. Sargent, Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption, *J. Am. Chem. Soc.*, 2020, 142, 5702–5708.