Sumanene-Functionalised Bis(terpyridine)-Ruthenium(II) Complexes Showing Photoinduced Structural Change and Cation Sensing

Junyi Han^{a}, Yumi Yakiyama ${ }^{* a, b}$, Youhei Takeda ${ }^{a}$, and Hidehiro Sakurai ${ }^{a, b}$
${ }^{\text {a Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, }}$ Suita, Osaka 565-0871, Japan
${ }^{\text {b }}$ Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Table of Contents

1) General Methods S2
2) Synthesis S2

MS and NMR Charts S10
3) Evaluation of Quantum Yield S22
4) Stern-Volmer plots S22
5) Supporting Figures S23
6) Computational Experiments S34
7) References S41

1) General Methods

All the chemical reagents and solvents were commercially purchased and purified according to the standard methods, if necessary. Air- and moisture-sensitive reactions were carried out using commercially available anhydrous solvents under inert atmosphere of nitrogen. Unless otherwise noted. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-ECS400 NMR spectrometer (${ }^{1} \mathrm{H}: 400 \mathrm{MHz}$ and $\left.{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right)$. Chemical shift (δ) are expressed relative to the resonances of the residual non-deuterated solvent for ${ }^{1} \mathrm{H}$ $\left(\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H}(\delta)=7.26 \mathrm{ppm}\right)$ and for ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}:{ }^{13} \mathrm{C}(\delta)=77.0 \mathrm{ppm}\right)$. High resolution mass spectra (HRMS) were measured using electron impact (EI) methods on JEOL JMS777 V spectrometer. Matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) mass spectra were measured on Bruker Autoflex III spectrometer. The preparative TLC (PTLC) purification was conducted using Wako gel B-5F PTLC plates. Flash column chromatography was prepared using Kanto Silica gel 60N (neutral, spherical, 40-50 $\mu \mathrm{m}$) and performed with a Yamazen preparative medium pressure liquid chromatography system. UV-vis spectra were recorded on a JASCO V-670 spectrophotometer. Steady-state emission spectra were recorded on a JASCO FP6500DS spectrometer. Lifetime measurements were recorded on a HAMAMATSU C11347-01 spectrometer with an integrating sphere. Elemental analyses were measured on a J-Science Micro corder JM10 at the Analysis Center in Osaka University.

2) Synthesis

a) Synthesis of ligand $\boldsymbol{L} 1$ and $\mathbf{L 2}$

Scheme S1. Synthetic route to the ligand L1 and L2.

4'-(4,7-dihydro-1H-tricyclopenta[def,jkl,pqr]triphenylen-2-yl)-2,2':6',2'-terpyridine (L1)

L1 To a solution of $\mathrm{NaOH}(100.0 \mathrm{mg}, 2.40 \mathrm{mmol})$ in EtOH (10 mL), $2(40.0$ $\mathrm{mg}, 0.14 \mathrm{mmol})^{\mathrm{S} 1}$ and 2-acetylpyridine $(17.0 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added. After stirring at room temperature for 24 h , aqueous $\mathrm{NH}_{3}(28 \%, 2 \mathrm{~mL})$ was added. The resulting mixture was refluxed for 16 h . After cooling to room temperature, the solid was collected by suction filtration and was washed with MeOH to give the product $\mathbf{L 1}$ as a pale-yellow solid ($52.5 \mathrm{mg}, 0.11 \mathrm{mmol}, 79 \%$). L1: mp: $287{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.73(\mathrm{~s}, 2 \mathrm{H}), 8.72(\mathrm{~d}, 2 \mathrm{H}), 8.67(\mathrm{~d}, J=$
$7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{ddd}, J=7.6,4.8,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.17-7.04 (m, 4H), $5.17(\mathrm{~d}, J=19.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=19.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.59(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.60,155.96,150.18,150.02,149.90,149.36,149.12,148.98,148.81$, $148.64,148.58,137.00,123.95,123.55,123.89,123.78,123.30,122.92,121.49,120.34,51.51$, 43.52, 41.97. HRMS (EI) m / z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{21} \mathrm{~N}_{3}[\mathrm{M}]^{+}$: 495.1735. Found: 495.1787.

4'-(4-(4,7-dihydro-1H-tricyclopenta[def,jkl,pqr]
 triphenylen-2-yl)phenyl)-2,2':6',2"terpyridine (L2)

L2

An aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{M}, 0.16 \mathrm{~mL}, 0.16 \mathrm{mmol})$ was added to a THF solution (5 mL) of a mixture of $4(13.7 \mathrm{mg}, 0.040 \mathrm{mmol}) \mathbf{3}$ $(17.6 \mathrm{mg}, 0.050 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(14.0 \mathrm{mg}, 0.005 \mathrm{mmol})$ under N_{2} at $25^{\circ} \mathrm{C}$. After stirring at $70^{\circ} \mathrm{C}$ for 20 h , the reaction mixture was cooled to room temperature and was extracted with chloroform $(3 \times$ $10 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated in vacuo. The crude product was then purified by column chromatography on neutral alumina gel with CHCl_{3} to afford $\mathbf{L} \mathbf{2}$ as a pale-yellow powder (16.7 $\mathrm{mg}, 0.029 \mathrm{mmol}, 73 \%$).
L2: mp: $252{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.79(\mathrm{~s}, 2 \mathrm{H}), 8.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2$ Hz, 2H), 7.44 (s, 1H), 7.36 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 4 \mathrm{H}), 4.96$ (d, $J=19.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.80(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=19.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.35,156.07,150.18$, $149.88,149.25,149.15,149.06,148.88,148.74,148.52,146.46,141.61,137.59,137.27$, $137.01,132.25,132.15,129.12,128.72,128.55,127.69,123.96,123.60,123.51,123.46$, $123.28,122.74,121.48,118.81,42.67,41.97,41.86$. HRMS (EI) m / z Calcd. for $\mathrm{C}_{42} \mathrm{H}_{25} \mathrm{~N}_{3}[\mathrm{M}]^{+}$: 571.2048. Found: 571.2050.
b) Synthesis of phenyl-terpy ligands SL1, SL2, and SL3.

Scheme S2. Synthetic route to the ligand SL1, SL2, and SL3.

To a solution of $\mathrm{NaOH}(0.96 \mathrm{~g}, 24.00 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$, benzaldehyde $(0.60 \mathrm{~g}, 4.40 \mathrm{mmol})$ and 2-acetylpyridine $(1.06 \mathrm{~g}, 8.80 \mathrm{mmol})$ was added. After stirring at room temperature for 24 h , aqueous $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(28 \%, 3 \mathrm{~mL})$ was added. The resulting mixture was refluxed for 20 h and was cooled to room temperature. The solid so formed was collected by suction filtration and was washed with EtOH and CHCl_{3} to give the product SL1 as a white solid ($1.21 \mathrm{~g}, 3.92 \mathrm{mmol}$, 89\%).
SL1: mp: $189{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.80$ (s, 2H), 8.76 (d, $J=4.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.71$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.98-7.91$ (m, 4H), 7.52 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.48-7.38 (m, 3H). HRMS (EI) m/z Calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}$ [$\left.\mathrm{M}^{+}\right]$: 309.1266. Found: 309.1215.

4'-([1,1'-biphenyl]-4-yl)-2,2':6',2'-terpyridine (SL2)

An aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{M}, 0.4 \mathrm{~mL}, 0.40 \mathrm{mmol})$ was added to a THF solution $(10 \mathrm{~mL})$ of a mixture of Bromobenzene $(15.5 \mathrm{mg}, 0.10$ $\mathrm{mmol}), \mathbf{3}(35.3 \mathrm{mg}, 0.10 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{PPh} 3) 4(30.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ under N_{2} at $25^{\circ} \mathrm{C}$. After stirring at $70^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the mixture was extracted with chloroform. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo, the crude product was purified by column chromatography on neutral alumina gel with CHCl_{3} to afford the product SL2 as a pale-yellow powder ($25.0 \mathrm{mg}, 0.065 \mathrm{mmol}, 65 \%$).
SL2: mp: $206{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.84$ (s, 2H), 8.77 (d, $J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.72$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 8.04 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.93$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76 (d, $J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.69 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.42-7.36$ (m, 3H). HRMS (EI) m / z Calcd. for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{3}\left[\mathrm{M}^{+}\right]$: 385.1579. Found: 385.1587.

4'-([1,1':4',1'-terphenyl]-4-yl)-2,2':6',2"-terpyridine (SL3)

An aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{M}, 0.4 \mathrm{~mL}, 0.40 \mathrm{mmol})$ was added to a THF solution (10 mL) of a mixture of 4-bromobiphenyl ($23.3 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathbf{3}(35.3 \mathrm{mg}, 0.10 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($30.0 \mathrm{mg}, 0.01 \mathrm{mmol}$) under N_{2} at $25^{\circ} \mathrm{C}$. After stirring at $70^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the mixture was extracted with chloroform. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo, the crude product was purified by column chromatography on neutral alumina gel with CHCl_{3} to afford the product $\mathbf{S L 3}$ as a pale-yellow powder ($31.3 \mathrm{mg}, 0.068 \mathrm{mmol}, 68 \%$).
SL3: mp: $271{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.89$ (s, 2H), 8.79 (d, $J=4.9 \mathrm{~Hz}$, 2H), 8.75 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.08 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.97$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.82 (d, $J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.77 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$. HRMS (EI) m/z Calcd. for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{~N}_{3}\left[\mathrm{M}^{+}\right]$: 416.1892. Found: 416.1823.
c) Synthesis of $\left[R u(\mathbf{L 1})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ complex (C1) and $\left[\mathrm{Ru}(\mathbf{L 2})_{2}\right](\mathrm{PF6})_{2}$ complex (C2)

Scheme S3. Synthetic route to C1 and C2.
$\left[\mathrm{Ru}(\mathrm{L} 1)_{2}\right]\left(\mathrm{PF}_{6}\right)_{\mathbf{2}} \quad(\mathbf{C 1})$

L1 ($20.0 \mathrm{mg}, 0.04 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH} / \mathrm{CHCl}_{3}(10 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1: 1)$ and the mixture was degassed by N_{2} bubbling (10 min). $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}(9.7 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added and the suspension was heated to $80^{\circ} \mathrm{C}$ for 24 hours. The deep red solution was allowed to cool and $\mathrm{NH}_{4} \mathrm{PF}_{6}(40.0 \mathrm{mg}, 0.24 \mathrm{mmol})$ was added. A red solid immediately precipitated which was collected by filtration and subsequently washed with water ($3 \times 10 \mathrm{~mL}$) and $\mathrm{MeOH}(3 \times 10 \mathrm{~mL}$, to aid drying). The solid material was washed down with acetonitrile. The solvent was removed in vacuo to yield the complex $\mathbf{C 1}$ as red solid ($22.1 \mathrm{mg}, 0.016 \mathrm{mmol}, 80 \%$).
C1: mp: $371^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 8.96$ (s, 4 H), 8.60 (d, $J=9.1 \mathrm{~Hz}$, $4 \mathrm{H}), 7.99(\mathrm{~s}, 2 \mathrm{H}), 7.94(\mathrm{td}, J=7.9,1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.44(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 8 \mathrm{H})$, 7.19 (ddd, $J=7.1,5.6,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.40$ (d, $J=19.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.96 (d, $J=19.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.79$ (d, $J=19.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.83 (d, $J=15.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.78 (d, $J=15.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.59 (d, $J=20.0 \mathrm{~Hz}$, 2H). MALDI-TOF MS (m / z) : Calcd. for [C $\left.{ }_{72} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{Ru}\right]^{+}: 1092.25$. Found: 1092.48. Anal. Calcd for $\mathrm{C}_{72} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{RuF}_{12} \mathrm{P}_{2}$: C, 62.57; H, 3.06; N, 6.08. Found: C, 62.74; H, 3.01; N, 6.17.
$\left[\mathrm{Ru}(\mathbf{L} 2)_{2}\right]\left(\mathrm{PF}_{6}\right)_{\mathbf{2}} \quad(\mathbf{C} 2)$

C2

L2 ($15.0 \mathrm{mg}, 0.026 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH} / \mathrm{CHCl}_{3}$ (10 mL , $\mathrm{v} / \mathrm{v}=1: 1$) and the mixture was degassed by N_{2} bubbling (10 min). $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}(6.3 \mathrm{mg}, 0.013 \mathrm{mmol})$ was added and the suspension was heated to $80^{\circ} \mathrm{C}$ for 24 hours. The deep red solution was allowed to cool and $\mathrm{NH}_{4} \mathrm{PF}_{6}(25.4 \mathrm{mg}$, $0.16 \mathrm{mmol})$ was added. A red solid immediately precipitated which was collected by filtration and subsequently washed with water $(3 \times 10 \mathrm{~mL})$ and $\mathrm{MeOH}(3 \times 10 \mathrm{~mL}$, to aid drying $)$. The solid material was washed down with acetonitrile. The solvent was removed in vacuo to yield the complex $\mathbf{C 2}$ as red solid ($16.8 \mathrm{mg}, 0.011 \mathrm{mmol}, 85 \%$).
C2: mp: $335{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 9.09(\mathrm{~s}, 4 \mathrm{H}), 8.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}$,
$4 \mathrm{H}), 8.34(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.66(\mathrm{~s}, 2 \mathrm{H})$, $7.46(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.26-7.14(\mathrm{~m}, 12 \mathrm{H}), 5.13(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J=19.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.75(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=19.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J$ $=18.4 \mathrm{~Hz}, 2 \mathrm{H})$. MALDI-TOF MS (m / z) : Calcd. for $\left[\mathrm{C}_{84} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{Ru}\right]^{+}: 1244.31$. Found: 1244.40. Anal. Calcd for $\mathrm{C}_{84} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{RuF}_{12} \mathrm{P}_{2}$: C, 65.76; H, 3.28; N, 5.48. Found: C, 65.91; H,3.21; N, 5.57.

d) Synthesis of $\left[R u(\mathbf{L 1})\left(\mathbf{S L 1}_{1}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{C 3})$ and $[R u(\mathbf{L 1})(\mathbf{S L 2})]\left(P F_{6}\right)_{2}(\mathbf{C 4})$ complexes

SL1
5

L1

C3

SL2

Scheme S4. Synthetic route to C3 and C4.
$[\mathrm{Ru}(\mathrm{L} 1)(\mathrm{SL} 1)](\mathrm{PF} 6)_{2} \quad$ (C3)

To a solution of SL1 ($50.0 \mathrm{mg}, 0.16 \mathrm{mmol}$) and $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(33.1 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and $\mathrm{EtOH}(5 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . After cooling to ambient temperature, the precipitates were filtered and washed with MeOH to afford 5 (67.7 $\mathrm{mg}, 0.13 \mathrm{mmol}, 82 \%) .{ }^{\mathrm{S} 3}$ After evaporated to dryness under vacuum, it was applied to the synthesis of $\mathbf{C} 3$ directly. To a flask containing a mixture of $5(10.0 \mathrm{mg}, 0.019 \mathrm{mmol})$ and $\mathbf{L 1}(9.6 \mathrm{mg}, 0.019 \mathrm{mmol}), \mathrm{MeOH}(4 \mathrm{~mL}), \mathrm{CHCl}_{3}(4 \mathrm{~mL})$, and $\mathrm{N}-$ ethylmorpholine ($6.5 \mathrm{mg}, 0.057 \mathrm{mmol}$) were added. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . After cooling to ambient temperature, the solvent was evaporated in vacuo and the residue was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, eluting with a mixture of MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The complex was counterion exchanged with $\mathrm{NH}_{4} \mathrm{PF}_{6}(18.5 \mathrm{mg}, 0.114 \mathrm{mmol})$ to give $\mathbf{C 3}$, as a red precipitate ($14.4 \mathrm{mg}, 0.012 \mathrm{mmol}, 65 \%$).
C3: mp: $355{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 8.99(\mathrm{~s}, 2 \mathrm{H}), 8.93$ (s, 2H), 8.62
$(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.88$ (m, 4H), $7.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.12(\mathrm{~m}, 8 \mathrm{H}), 5.37(\mathrm{~d}, J=20.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=19.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}$, $J=20.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=20.0 \mathrm{~Hz}$, 1H). MALDI-TOF MS (m/z): Calcd. for $\left[\mathrm{C}_{57} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{Ru}\right]^{+}$: 906.20. Found: 906.06. Anal. Calcd for $\mathrm{C}_{57} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{RuF}_{12} \mathrm{P}_{2}$: C, 57.25; H, 3.03; N, 7.03. Found: C, 57.41; H, 3.01; N, 7.09.

[Ru (L1) (SL2)] (PF6) ${ }_{2} \quad$ (C4)

To a solution of SL2 ($30.8 \mathrm{mg}, 0.080 \mathrm{mmol}$) and $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(16.6 \mathrm{mg}, 0.080 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and $\mathrm{EtOH}(5 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . After cooling to ambient temperature, the precipitates were filtered and washed with MeOH to afford 6 ($33.8 \mathrm{mg}, 0.066 \mathrm{mmol}, 82 \%$). ${ }^{\text {S3 }}$ After dryness under vacuum, it was applied to the synthesis of $\mathbf{C 4}$ directly. To a flask containing a mixture of $6(11.2 \mathrm{mg}, 0.019 \mathrm{mmol})$ and $\mathbf{L 1}(9.6 \mathrm{mg}, 0.019 \mathrm{mmol}), \mathrm{MeOH}(4 \mathrm{~mL}), \mathrm{CHCl}_{3}(4$ $\mathrm{mL})$, and N -ethylmorpholine $(6.5 \mathrm{mg}, 0.057 \mathrm{mmol})$ were added. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . After cooling to ambient temperature, the solvent was evaporated in vacuo and the residue was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, eluting with a mixture of MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The complex was counterion exchanged with $\mathrm{NH}_{4} \mathrm{PF}_{6}(18.5 \mathrm{mg}, 0.114 \mathrm{mmol})$ to give $\mathbf{C 4}$, as a red precipitate ($17.8 \mathrm{mg}, 0.014 \mathrm{mmol}, 71 \%$).
C4: mp: $296{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 9.05$ (s, 2H), 8.94 (s, 2H), 8.65 $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.97-7.90(\mathrm{~m}, 4 \mathrm{H}), 7.83(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 4 \mathrm{H}), 5.37(\mathrm{~d}, J=20.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.93(\mathrm{~d}, J=19.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=20.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=19.8 \mathrm{~Hz}, 1 \mathrm{H})$. MALDI-TOF MS (m/z): Calcd. for $\left[\mathrm{C}_{63} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{Ru}\right]^{+}: 982.23$. Found: 982.22. Anal. Calcd for $\mathrm{C}_{63} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{RuF}_{12} \mathrm{P}_{6}$: C, 59.49; H, 3.17; N, 6.61. Found: C, 59.55; H, 3.14; N, 6.68 .
e) Synthesis of $\left[R u(S L 1)_{2}\right]\left(P F_{6}\right)_{2}$ complex $(\mathbf{S C 1}),[R u(S L 1)(S L 2)]\left(P F_{6}\right)_{2}$ complex $(\mathbf{S C 2})$ and $[R u(\mathbf{S L 1})(\boldsymbol{S L} 3)]\left(\mathrm{PF}_{6}\right)_{2}$ complex $(\mathbf{S C 3})$

SL3
SC3
Scheme S5. Synthetic route to support complex SL1, SL2 and SC3.
$\left[\operatorname{Ru}(\mathrm{SL} 1)_{2}\right](\mathrm{PF} 6)_{2} \quad(\mathbf{S C 1})$

SL1 ($8.0 \mathrm{mg}, 0.026 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH} / \mathrm{CHCl}_{3}$ ($10 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1: 1$) and the mixture was degassed by N_{2} bubbling (10 min). $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}(6.3 \mathrm{mg}, 0.013 \mathrm{mmol})$ was added and the suspension was heated to $80^{\circ} \mathrm{C}$ for 24 hours. The deep red solution was allowed to cool and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ ($25.4 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added. A red solid immediately precipitated which was collected by filtration and subsequently washed with water $(3 \times 5 \mathrm{~mL})$ and $\mathrm{MeOH}(3 \times 5 \mathrm{~mL}$, to aid drying). The solid material was washed down with acetonitrile. The solvent was removed in vacuo to yield the complex $\mathbf{S C} 2$ as red solid (11.8 mg , $0.012 \mathrm{mmol}, 90 \%$).
SC1: mp: $216{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 9.02(\mathrm{~s}, 4 \mathrm{H}), 8.66$ (d, $J=8.1$ $\mathrm{Hz}, 4 \mathrm{H}), 8.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.78$ (t, $J=7.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.70(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.45(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H})$. MALDI-TOF MS (m/z): Calcd. for $\left[\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{Ru}\right]^{+}: 720.16$. Found: 720.18.
$[\mathrm{Ru}(\mathrm{SL} 1)(\mathrm{SL} 2)](\mathrm{PF})_{2} \quad(\mathrm{SC} 2)$

To a flask containing a mixture of $\mathbf{5}(10.0 \mathrm{mg}, 0.019$ mmol) and SL2 ($8.1 \mathrm{mg}, 0.019 \mathrm{mmol}$), $\mathrm{MeOH}(4 \mathrm{~mL}$), $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$, and N -ethylmorpholine ($6.5 \mathrm{mg}, 0.057$ $\mathrm{mmol})$ were added. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . After cooling to ambient temperature, the solvent was evaporated in vacuo and the residue was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, eluting with a mixture of MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The complex was counterion exchanged with $\mathrm{NH}_{4} \mathrm{PF}_{6}(18.5 \mathrm{mg}, 0.114 \mathrm{mmol})$ to give $\mathbf{S C 2}$, as a red precipitate ($16.9 \mathrm{mg}, 0.015 \mathrm{mmol}, 82 \%$).
SC2: mp: $233{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 9.07$ (s, 2H), 9.02 (s, 2H), 8.68 (d, $J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.65(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 8.06 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$ (t, $J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.69(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.46(\mathrm{~m}$, $4 \mathrm{H}), 7.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H})$. MALDI-TOF MS (m / z): Calcd. for $\left[\mathrm{C}_{48} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{Ru}\right]^{+}$: 796.19. Found: 796.22.
$[$ Ru(SL1) (SL3)](PF6) 2 (SC3)

To a flask containing a mixture of $\mathbf{5}$ (10.0 mg , $0.019 \mathrm{mmol})$ and SL3 ($8.8 \mathrm{mg}, 0.019 \mathrm{mmol}$), $\mathrm{MeOH}(4 \mathrm{~mL}), \mathrm{CHCl}_{3}(4 \mathrm{~mL})$, and N ethylmorpholine ($6.5 \mathrm{mg}, 0.057 \mathrm{mmol}$) were added. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . After cooling to ambient temperature, the solvent was evaporated in vacuo and the residue was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, eluting with a mixture of MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The complex was counterion exchanged with $\mathrm{NH}_{4} \mathrm{PF}_{6}(18.5 \mathrm{mg}, 0.114 \mathrm{mmol})$ to give $\mathbf{S C} 3$, as a red precipitate ($17.9 \mathrm{mg}, 0.015 \mathrm{mmol}, 81 \%$). SC3: mp: $302{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{\text {H }} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 9.09$ (s, 2H), 9.03 (s, 2H), 8.69 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 8.13 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.78$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (t, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.47$ (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 4 \mathrm{H})$. MALDI-TOF MS (m/z): Calcd. for [C $\left.\mathrm{C}_{54} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{Ru}\right]^{+}: 872.22$. Found: 872.48.

NMR Charts

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR charts of $\mathbf{L} 1$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR charts of $\mathbf{L} 2$

MALDI-TOF MS, ${ }^{1} \mathrm{H}$ NMR and COSY NMR charts of $\mathbf{C 1}$

MALDI-TOF MS, ${ }^{1} \mathrm{H}$ NMR and COSY NMR charts of $\mathbf{C} 2$
1243.4

1160118012001220124012601280130013201340
M/Z

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$

MALDI-TOF MS, ${ }^{1} \mathrm{H}$ NMR and COSY NMR charts of $\mathbf{C} 3$

H NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$)

9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.67 .47 .27 .06 .86 .66 .46 .26 .05 .85 .65 .45 .25 .04 .84 .64 .44 .24 .03 .83 .63 .4 f2 (ppm)

MALDI-TOF MS, ${ }^{1} \mathrm{H}$ NMR and COSY NMR charts of $\mathbf{C 4}$

${ }^{1} \mathrm{H}$ NMR and COSY NMR charts of SC2
$\int^{8} \tilde{j}_{\sim}^{m} \underset{\sim}{\bar{j}}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$

${ }^{1} \mathrm{H}$ NMR and COSY NMR charts of SC3

3) Evaluation of Quantum Yield

A relative value of quantum yield was obtained by following relationship with using the corrected spectra data JASCO Spectra Manager ${ }^{\mathrm{TM}}$.

$$
\Phi_{u}=\Phi_{s t} \cdot\left(\frac{F_{u}}{F_{s t}}\right) \cdot\left(\frac{A_{s t}}{A_{u}}\right) \cdot\left(\frac{D_{u}}{D_{s t}}\right) \cdot\left(\frac{I_{e x, s t}}{I_{e x, u}}\right) \cdot\left(\frac{n_{u}{ }^{2}}{n_{s t}{ }^{2}}\right)
$$

Here, is the fluorescence quantum yield for the standard sample; F_{u} and $F_{s t}$ are the integrated values for the emission spectra of the unknown and standard samples; $A_{s t}$ and A_{u} are the absorbance at the excitation wavelength of the standard and unknown samples; $I_{e x, s t}$ and $I_{e x, u}$ are the intensities of the excitation light at the excitation wavelengths for the standard and unknown samples; and n_{u} and $n_{s t}$ are the average refractive indexes for the emission spectra measurement range for the standard and unknown samples.

In this measurement, quinine sulfate in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ was used as the standard ($\lambda_{\mathrm{ex}}=310 \mathrm{~nm}$, $\Phi=0.55$). ${ }^{54}$ Sample concentrations were low enough (less than 10% absorption across the spectrum) and the same sample solutions were used in both absorption and emission spectra measurements. Also, $I_{e x, s t} / I_{\text {ex,u }}$ was corrected automatically in the software and considered to be 1.0. Therefore the above equation becomes:

$$
\Phi_{u}=\Phi_{s t} \cdot\left(\frac{F_{u}}{F_{s t}}\right) \cdot\left(\frac{A_{s t}}{A_{u}}\right) \cdot\left(\frac{n_{u}{ }^{2}}{n_{s t}{ }^{2}}\right)
$$

The obtained parameters for the calculation of Φ_{u} are shown below table.
Table S1. The parameter used to calculate quantum yields using quinine sulfate as a standard.

	F_{u}	A_{u}	n_{u}	$F_{\text {st }}$	$A_{\text {st }}$	$n_{\text {st }}$
C1	1472	0.08	$\begin{gathered} 1.34^{\mathrm{S5}} \\ \left(\mathrm{CH}_{3} \mathrm{CN}\right) \end{gathered}$	63255	0.05	$\begin{gathered} 1.33^{\mathrm{S5} 5} \\ \text { (water) } \end{gathered}$
C2	5933	0.06				
C3	9085	0.05				
C4	11592	0.06				

4) Stern-Volmer plots

The effectiveness of $\mathbf{C 1}-\mathbf{C 4}$ for Li^{+}trapping were evaluated from emission titration data using the following Stern-Volmer equation,

$$
\frac{I_{0}}{I}=1+K_{S V} \cdot[\mathrm{Q}]
$$

where I_{0} and I are emission intensity of complexes in the absence and presence of Li^{+}and $[\mathrm{Q}]$ is the concentration of $\mathrm{Li}^{+} . K_{\mathrm{sv}}$ is the Stern-Volmer constant of the complex of the present system which is represented by the equation,

$$
K_{\mathrm{sv}}=\tau_{0} \cdot k_{\mathrm{q}}
$$

where τ_{0} is the life time of the complex without Li^{+}and k_{q} is the rate of the emission quenching process. The plots for C1-C4 are available in page S34.

5) Supporting Figures

So

Figure S1. Optimized structure of $\mathbf{C 3}$ and $\mathbf{C 4}$ in both S 0 and S 1 states.

Figure S2. Absorption (ε, solid lines) and fluorescence spectra (dashed lines) of $\mathbf{L} 1$ and $\mathbf{L 2}$ in $\mathrm{CH}_{3} \mathrm{CN}\left(1.0 \times 10^{-6} \mathrm{M}\right)$ at 298 K . The values on the PL spectra and in parentheses show the emission maximum (nm) and photoluminescence quantum yield (PLQY) determined with the Quinine sulfate standard. The excitation wavelength $\lambda_{\text {ex }}$ for PL measurements was 300 nm .

Figure S3. Simulated absorption spectra of $\mathbf{C 1}-\mathbf{C 4}$ in acetonitrile.

Figure S4. The distribution of hole (blue) and electron (green) of C1-C4 at absorption around 280 nm .

Figure S5. Emission spectra of C1-C4 in $\mathrm{CH}_{3} \mathrm{CN}\left(1.0 \times 10^{-4} \mathrm{M}\right)$ at 298 K . Excitation wavelength was 510 nm for all the spectra.

Figure S6. Photoluminescence spectra $\left(\lambda_{\mathrm{ex}}=300 \mathrm{~nm}\right)$ of $\mathbf{S C 1}-\mathbf{S C} 3$ in $\mathrm{CH}_{3} \mathrm{CN}\left(c=10^{-5} \mathrm{M}\right)$ at room temperature.

Figure S7. Photoluminescence spectra of $\mathbf{C 2}$ and $\mathbf{C 3}$ with different concentrations in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature $\left(\lambda_{\text {ex. }}=300 \mathrm{~nm}\right)$.

Figure S8. Photoluminescence spectra $\left(\lambda_{\mathrm{ex}}=300 \mathrm{~nm}\right)$ of $\mathbf{C 4}$ in a water/ $\mathrm{CH}_{3} \mathrm{CN}$ mixture $(1.0 \times$ $10^{-5} \mathrm{M}$, water fraction $0-70 \%$).

Figure S9. a) Normalized photoluminescence spectra ($\left.\lambda_{\mathrm{ex}}=300 \mathrm{~nm}\right)$ of $\mathbf{C} 1$ to $\mathbf{C 3}\left(c=10^{-6} \mathrm{M}\right)$, in different solvents. b) Photographs of C1-C3 in DCM and $\mathrm{CH}_{3} \mathrm{CN}$ on excitation at 365 nm with an ultraviolet lamp at $298 \mathrm{~K}\left(c=10^{-5} \mathrm{M}\right)$. Low solubility of the complexes to hexane prohibited the clear emergence of the dual emission.

Figure S10. Time-resolved fluorescence emission $\lambda_{\mathrm{em}}=400 \mathrm{~nm}$ for $\mathbf{C 1}\left(10^{-4} \mathrm{M}\right)$ in MeCN at 300 K under nitrogen. $\left(\lambda_{\mathrm{ex}}=280 \mathrm{~nm}\right)$.

Figure S11. Time-resolved fluorescence emission (a) $\lambda_{\mathrm{em}}=430 \mathrm{~nm}$ and (b) $\lambda_{\mathrm{em}}=515 \mathrm{~nm}$ for $\mathbf{C 2}\left(10^{-4} \mathrm{M}\right)$ in MeCN at 300 K under nitrogen. $\left(\lambda_{\mathrm{ex}}=280 \mathrm{~nm}\right)$.

Figure S12. Time-resolved fluorescence emission (a) $\lambda_{\mathrm{em}}=424 \mathrm{~nm}$ and (b) $\lambda_{\mathrm{em}}=511 \mathrm{~nm}$ for C3 $\left(10^{-4} \mathrm{M}\right)$ in MeCN at 300 K under nitrogen. $\left(\lambda_{\mathrm{ex}}=280 \mathrm{~nm}\right)$.

Figure S13. Time-resolved fluorescence emission (a) $\lambda_{\mathrm{em}}=434 \mathrm{~nm}$ and (b) $\lambda_{\mathrm{em}}=534 \mathrm{~nm}$ for $\mathbf{C 4}\left(10^{-4} \mathrm{M}\right)$ in MeCN at 300 K under nitrogen. $\left(\lambda_{\mathrm{ex}}=280 \mathrm{~nm}\right)$.

The fittings for the emissions of $\mathbf{C} 2$ (at 430 nm), $\mathbf{C 3}$ (at 424 nm) and $\mathbf{C 4}$ (at 434 nm) were done by using second order equation (1), and fittings for $\mathbf{C 1}$ (at 400 nm), $\mathbf{C 2}$ (at 515 nm), $\mathbf{C 3}$ (at 511 nm) and $\mathbf{C 4}$ (at 534 nm) were by using third order equation (2).

$$
\begin{gather*}
F_{i t}=B+A_{1} \mathrm{e}^{-t / \tau_{1}}+A_{2} \mathrm{e}^{-t / \tau_{2}} \tag{1}\\
F_{i t}=B+A_{1}^{\prime} \mathrm{e}^{-t / \tau_{1}}+A^{\prime}{ }_{2} \mathrm{e}^{-t / \tau_{2}}+A^{\prime}{ }_{3} \mathrm{e}^{-t / \tau_{3}} \tag{2}
\end{gather*}
$$

Table S2. Lifetime of $\mathbf{C 1}$ to $\mathbf{C 4}$ at different emission maxima.

complex	$\lambda_{\mathrm{em}}[\mathrm{nm}]$	$\tau[\mathrm{ns}]$	A_{1}	A_{2}	A_{1}^{\prime}	A_{2}^{\prime}	A_{3}^{\prime}
$\mathbf{C 1}$	400	7.3	-	-	566.894	448.254	429.909
$\mathbf{C 2}$	430	3.8	673.468	29.1798	-928.279	517.818	201.204
515	3.2						
$\mathbf{C 3}$	424	3.1	200.634	513.121	-1434.45	889.63	135.61
	511	6.8					
$\mathbf{C 4}$	434	3.2	84.238	476.555	-1505.83	1038.29	147.223

Figure S14. Molecular orbitals of C1. (a) LUMO of S_{0} geometry. (b) LUMO of S_{1} geometry. (c) HOMO of S_{0} geometry. (d) HOMO of S_{1} geometry.
(a)

(b)

LUMO
(c)

HOMO
(d)

Figure S15. Molecular orbitals of C2. (a) LUMO of S_{0} geometry. (b) LUMO of S_{1} geometry. (c) HOMO of S_{0} geometry. (d) HOMO of S_{1} geometry.
(a)

Lumo
(b)

(d)

Figure S16. Molecular orbitals of C3. (a) LUMO of S_{0} geometry. (b) LUMO of S_{1} geometry. (c) HOMO of S_{0} geometry. (d) HOMO of S_{1} geometry.

Figure S17. Schematic drawings of the selective frontier molecular orbitals for $\mathbf{C 1}$ to $\mathbf{C 4}$ in T_{1} state.

Table S3. The transition information of the complexes $\mathbf{C 1} \mathbf{- C 4}$ in S_{1} and T_{1} states

Complex	$\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}$ (nm/oscillator strength)	$\mathrm{T}_{1} \rightarrow \mathrm{~S}_{0}$ $(\mathrm{~nm})$
$\mathbf{C 1}$	$519.88 / 0.0179$	686.34
$\mathbf{C 2}$	$528.45 / 0.0141$	750.78
$\mathbf{C 3}$	$548.85 / 0.0153$	784.21
$\mathbf{C 4}$	$549.60 / 0.0175$	741.63

Figure S18. Lithium cation $\left(\mathrm{LiPF}_{6}\right)$ binding studies with a) $\mathbf{C} 1$, b) $\mathbf{C} \mathbf{2}$ and c) $\mathbf{C} 3$ using the photoluminescence spectra titration method (solvent: $\mathrm{CH}_{3} \mathrm{CN}$:water=1:1; concentration: 10^{-5} $\mathrm{M} ; \lambda_{\mathrm{ex}}=300 \mathrm{~nm}$).

Figure S19. Lithium cation $\left(\mathrm{LiPF}_{6}\right)$ binding studies with a) SC1, b) SC3, and c) SC3 using the photoluminescence spectra titration method (solvent: $\mathrm{CH}_{3} \mathrm{CN}$:water=1:1; concentration: 10^{-4} $\mathrm{M} ; \lambda_{\mathrm{ex}}=300 \mathrm{~nm}$).

Figure S20. Stern-Volmer plots for the emission quenching of $\mathbf{C 1}-\mathbf{C 4}$ by the addition of Li^{+}.

Figure S21. Plot of $\left(I-I_{\min }\right) /\left(I_{\max }-I_{\min }\right)$ vs $\log \left(\left[\mathrm{Li}^{+}\right]\right)$for the calculation of detection limit of C1-C4.

Figure S22. The Job's plot related to the interactions of the a) C1, b) C2, c) C3 and d) C4 with Li^{+}. All the data is based on the florescence spectra titration results. x stands for the molar fraction of Li^{+}, I_{0} stands for the emission intensity of $\mathbf{C 1}-\mathbf{C 4}$ without Li^{+}added, and I stands for the emission intensity of $\mathbf{C 1}-\mathbf{C 4}$ with the given amount of Li^{+}added.

6) Computational Experiments

All the theoretical calculations were conducted by Gaussian09. ${ }^{\mathrm{S} 6}$ The ground state structure optimizations were performed at the PBE0 functional and 6-311G(d) basis set for $\mathrm{C}, \mathrm{H}, \mathrm{N}$, and O and SDD basis set for Ru. Simulation of UV-vis spectra, and excited state (S_{1} and T_{1}) optimizations were performed by TD-DFT (time-dependent density functional theory) using the optimized coordinates at the PBE0 functional and $6-311 \mathrm{G}(\mathrm{d})$ basis set for $\mathrm{C}, \mathrm{H}, \mathrm{N}$, and O and SDD basis set for Ru. Multiwfn 3.8 was used to analyze the wave functions. ${ }^{57}$

Optimized cartesian coordinates of $\mathbf{C 1}$

C	8.91043	0.64005	-1.04443	C	-10.5094	-2.86646	-0.32605
C	10.24502	0.57568	-0.54083	C	-9.36383	2.69199	-0.03804
C	10.82763	-0.65297	-0.29071	C	-11.7556	-2.35027	-1.06608
C	10.09463	-1.85454	-0.54043	C	-6.46401	-2.0846	0.96014
C	8.80485	-1.78984	-1.03387	C	-4.69155	0.61126	0.63112
C	10.50937	-2.86645	0.32605	C	-3.87431	-0.24059	1.38371
C	9.59197	-3.88962	0.56354	C	-2.50556	-0.24761	1.1704
C	8.26372	-3.82261	0.0562	N	-1.96311	0.57203	0.25271
C	7.83331	-2.73085	-0.69683	C	-2.71271	1.40926	-0.48788
C	10.52922	1.70558	0.22746	C	-4.08785	1.4422	-0.3213
C	11.53823	1.56456	1.17931	C	-1.50738	-1.07446	1.86383
C	12.13901	0.29949	1.43589	C	-1.91485	2.21457	-1.42591
C	11.74042	-0.84539	0.74621	C	-1.82347	-2.0061	2.84295
C	6.81698	-0.59581	-1.14272	C	-0.80883	-2.73912	3.44033
C	6.14907	0.60439	-0.84315	C	0.50278	-2.52309	3.04223
C	6.89832	1.7989	-0.58812	C	0.75627	-1.58156	2.05843
C	8.28674	1.81402	-0.62127	N	-0.21608	-0.87167	1.47825
C	11.75562	-2.35026	1.06608	N	-0.57024	1.99555	-1.37996
C	9.36383	2.69199	0.03804	C	0.23189	2.68508	-2.19677
C	6.46402	-2.08461	-0.96015	C	-0.25074	3.62079	-3.09655
C	-8.80485	-1.78984	1.03387	C	-1.61759	3.85211	-3.15198
C	-10.0946	-1.85454	0.54043	C	-2.45649	3.14095	-2.30666
C	-10.8276	-0.65297	0.29071	Ru	0	0.56308	0
C	-10.245	0.57568	0.54083	C	4.69155	0.61125	-0.63112
C	-8.91043	0.64005	1.04444	C	3.8743	-0.24058	-1.38373
C	-8.19999	-0.5191	1.2937	C	2.50555	-0.24759	-1.17042
C	-8.28674	1.81403	0.62128	N	1.96311	0.57203	-0.25271
C	-6.89832	1.79891	0.58813	C	2.71272	1.40923	0.4879
C	-6.14907	0.6044	0.84315	C	4.08785	1.44218	0.32132
C	-6.81698	-0.59581	1.14272	C	1.50737	-1.07441	-1.86388
C	-11.7404	-0.84539	-0.74621	C	1.91485	2.21452	1.42596
C	-12.139	0.29948	-1.43589	C	1.82346	-2.00602	-2.84302
C	-11.5382	1.56456	-1.17932	C	0.80881	-2.73903	-3.44043
C	-10.5292	1.70558	-0.22746	C	-0.5028	-2.523	-3.04232
C	-7.8333	-2.73085	0.69683	C	-0.75629	-1.5815	-2.0585
C	-8.26371	-3.82261	-0.0562	N	0.21607	-0.87163	-1.47829
C	-9.59196	-3.88962	-0.56353	N	0.57024	1.99551	1.38
S34							

C	-0.23188	2.68501	2.19683	H	-11.6929	-2.53571	-2.1413
C	0.25075	3.62069	3.09664	H	-5.7728	-2.2345	0.1261
C	1.6176	3.85201	3.15207	H	-5.97894	-2.50666	1.8486
C	2.4565	3.14087	2.30673	H	-4.31043	-0.87361	2.1456
H	9.82526	-4.69431	1.25544	H	-4.6925	2.09198	-0.94053
H	7.559	-4.57912	0.3904	H	-2.85561	-2.1565	3.13561
H	11.79368	2.3859	1.84321	H	-1.04278	-3.469	4.20707
H	12.81788	0.22911	2.28145	H	1.32718	-3.07178	3.48168
H	6.35134	2.67775	-0.26054	H	1.76351	-1.37881	1.71461
H	12.67377	-2.83661	0.71451	H	1.29088	2.47023	-2.1177
H	11.69291	-2.5357	2.1413	H	0.44223	4.15236	-3.73771
H	9.02186	3.10442	0.99039	H	-2.03021	4.57737	-3.84427
H	9.64342	3.54298	-0.59482	H	-3.52604	3.30791	-2.33317
H	5.97895	-2.50667	-1.84861	H	4.31041	-0.87358	-2.14564
H	5.7728	-2.23451	-0.12611	H	4.6925	2.09193	0.94056
H	-6.35134	2.67776	0.26055	H	2.85559	-2.15642	-3.13569
H	-12.8179	0.2291	-2.28146	H	1.04276	-3.46888	-4.20719
H	-11.7937	2.38589	-1.84321	H	-1.3272	-3.07167	-3.48179
H	-7.55899	-4.57912	-0.3904	H	-1.76352	-1.37875	-1.71467
H	-9.82525	-4.69432	-1.25543	H	-1.29087	2.47017	2.11776
H	-9.02186	3.10442	-0.99039	H	-0.44222	4.15226	3.73781
H	-9.64343	3.54298	0.59482	H	2.03022	4.57725	3.84439
H	-12.6738	-2.83662	-0.71451	H	3.52605	3.30782	2.33325

Optimized cartesian coordinates of $\mathbf{C 2}$

C	-13.35167	-0.68131	-0.90521
C	-14.69788	-0.68291	-0.42871
C	-15.34383	0.52157	-0.18975
C	-14.66582	1.75856	-0.4331
C	-13.36399	1.75715	-0.9102
C	-15.15611	2.7671	0.40273
C	-14.29905	3.85208	0.62521
C	-12.95473	3.8501	0.13449
C	-12.44972	2.76196	-0.58774
C	-14.95874	-1.83742	0.31822
C	-16.01074	-1.74905	1.23682
C	-16.67832	-0.50593	1.48164
C	-16.30429	0.6679	0.81498
C	-11.30913	0.65291	-1.02577
C	-10.5778	-0.52893	-0.74608
C	-11.28481	-1.76378	-0.48622
C	-12.67582	-1.83845	-0.50055
C	-16.40702	2.18859	1.123
C	-13.73746	-2.78181	0.1337
C	-11.03346	2.17879	-0.8477
C	9.11345	-0.50078	0.57977
C	8.41476	-1.32266	-0.33185
C	7.03244	-1.28331	-0.43212
C	6.26382	-0.42428	0.38037

C	6.95572	0.40232	1.28868
C	8.33888	0.3668	1.38006
C	13.37572	1.74341	0.8866
C	14.67415	1.74821	0.40036
C	15.34674	0.51303	0.13394
C	14.69893	-0.69296	0.35971
C	13.35623	-0.69458	0.84601
C	12.7014	0.49906	1.11748
C	12.67412	-1.84379	0.42984
C	11.28317	-1.76544	0.42789
C	10.58157	-0.53255	0.71114
C	11.31839	0.64348	1.00182
C	16.30048	0.67149	-0.87534
C	16.66608	-0.49343	-1.56203
C	15.99656	-1.73814	-1.33079
C	14.95096	-1.83711	-0.40595
C	12.4622	2.75551	0.58578
C	12.96533	3.85295	-0.12359
C	14.30617	3.85838	-0.62374
C	15.16155	2.7677	-0.42373
C	13.72824	-2.78065	-0.22629
C	16.40572	2.19635	-1.16126
C	11.04619	2.17289	0.8479
C	4.7987	-0.39983	0.29039

C	3.99753	-0.06876	1.40679	H	-16.3823	2.38688	2.20005
C	2.61056	-0.05979	1.30472	H	-17.341	2.62473	0.74266
N	2.00844	-0.37441	0.13063	H	-13.96898	-3.63473	-0.51914
C	2.7347	-0.69831	-0.9681	H	-13.39444	-3.19688	1.08765
C	4.12453	-0.71359	-0.9117	H	-10.57098	2.62581	-1.73906
C	1.64831	0.2533	2.38468	H	-10.35122	2.36779	-0.01107
C	1.89521	-1.00277	-2.14847	H	8.96802	-1.9896	-0.98434
C	2.02776	0.60851	3.68111	H	6.54231	-1.95619	-1.13065
C	1.05524	0.88824	4.63827	H	6.40997	1.10381	1.91397
C	-0.28898	0.8072	4.27689	H	8.83827	1.00463	2.10127
C	-0.6092	0.44889	2.97116	H	10.68785	-2.6262	0.13576
N	0.32196	0.17631	2.0383	H	17.38368	-0.45671	-2.37816
N	0.53884	-0.92875	-1.94753	H	16.2465	-2.57034	-1.98431
C	-0.28505	-1.1952	-2.97789	H	12.31662	4.67431	-0.41894
C	0.17536	-1.54273	-4.24413	H	14.59672	4.68376	-1.26927
C	1.55087	-1.6194	-4.45822	H	13.9621	-3.64397	0.41187
C	2.41334	-1.34681	-3.39899	H	13.37684	-3.18039	-1.18373
Ru	-0.00094	-0.3798	0.0237	H	17.34361	2.62388	-0.78076
C	-4.7993	-0.41825	-0.26752	H	16.37433	2.41101	-2.235
C	-4.05209	0.74962	-0.54221	H	10.35804	2.3763	0.01954
C	-2.66415	0.73949	-0.44933	H	10.59212	2.60874	1.74901
N	-2.01058	-0.39183	-0.08512	H	4.47435	0.14653	2.35499
C	-2.68461	-1.53515	0.19397	H	4.70204	-0.94224	-1.79891
C	-4.07221	-1.57122	0.10639	H	3.0784	0.66615	3.94141
C	-1.75357	1.87762	-0.70589	H	1.34401	1.16431	5.64732
C	-1.79404	-2.65931	0.55896	H	-1.08102	1.01616	4.9878
C	-2.19106	3.14964	-1.08177	H	-1.64064	0.37254	2.64501
C	-1.26498	4.16567	-1.30572	H	-1.34592	-1.12345	-2.76499
C	0.0921	3.88717	-1.14876	H	-0.53464	-1.74695	-5.03822
C	0.4711	2.60223	-0.77287	H	1.94791	-1.88653	-5.43228
N	-0.41481	1.61307	-0.55301	H	3.4861	-1.4002	-3.54487
N	-0.45027	-2.37736	0.55655	H	-4.57337	1.66289	-0.80121
C	0.41767	-3.35419	0.87937	H	-4.60505	-2.49544	0.29265
C	0.01506	-4.64254	1.21714	H	-3.25076	3.34561	-1.19821
C	-1.34738	-4.93827	1.22264	H	-1.59917	5.15611	-1.5975
C	-2.2551	-3.93533	0.89061	H	0.84954	4.64594	-1.31285
C	-6.26318	-0.43756	-0.37266	H	1.51477	2.33961	-0.63956
C	-6.94483	0.41402	-1.26572	H	1.46652	-3.07948	0.86157
C	-8.32627	0.37557	-1.37967	H	0.75891	-5.39067	1.46887
C	-9.11122	-0.50277	-0.60101	H	-1.6997	-5.93177	1.48074
C	-8.42338	-1.34112	0.30442	H	-3.31874	-4.14403	0.88952
C	-7.04151	-1.31568	0.41018	H	-6.38633	1.07421	-1.92395
H	-14.59175	4.6684	1.28119	H	-8.81432	1.00626	-2.11479
H	-12.30575	4.66488	0.44704	H	-8.98667	-1.99575	0.96069
H	-16.26775	-2.5901	1.87613	H	-6.56486	-1.95042	1.15246
H	-17.40167	-0.47911	2.29307				
H	-10.69382	-2.62974	-0.20056				

C	-6.81043	1.08566	0.81905	C	-1.89707	1.37971	-0.40283
C	-8.12217	1.088	0.25403	C	0.4052	-1.06734	2.14559
C	-8.7842	-0.10816	0.04704	C	0.35556	1.82403	-1.52084
C	-8.15729	-1.34257	0.40322	C	-0.00714	-1.84437	3.21965
C	-6.89035	-1.34209	0.95655	C	0.93005	-2.58012	3.92986
C	-8.60738	-2.37282	-0.42303	C	2.26272	-2.52171	3.54857
C	-7.76054	-3.47303	-0.55441	C	2.61375	-1.73142	2.46677
C	-6.45559	-3.47202	0.01402	N	1.71662	-1.02081	1.77658
C	-5.97848	-2.37054	0.72343	N	1.67128	1.48278	-1.42334
C	-8.28459	2.18535	-0.59303	C	2.54306	1.99044	-2.29997
C	-9.25836	2.06017	-1.5831	C	2.16032	2.8556	-3.31162
C	-9.94114	0.82887	-1.79486	C	0.8231	3.21026	-3.41924
C	-9.66066	-0.29727	-1.02129	C	-0.08749	2.688	-2.51266
C	-4.82503	-0.29258	1.09541	H	-8.02248	-4.29951	-1.20943
C	-4.05483	0.83232	0.75541	H	-5.79567	-4.29709	-0.23979
C	-4.69616	2.05986	0.38913	H	-9.42029	2.85513	-2.30592
C	-6.0798	2.18044	0.35581	H	-10.58506	0.75605	-2.66711
C	-9.77513	-1.81363	-1.25394	H	-4.06879	2.87029	0.02964
C	-7.05605	3.09213	-0.40648	H	-10.74301	-2.2091	-0.92239
C	-4.57712	-1.81094	1.01531	H	-9.67637	-2.06865	-2.3121
C	10.97358	-0.8563	-0.87969	H	-6.64217	3.41696	-1.36419
C	10.13898	-1.96913	-0.84936	H	-7.2964	3.9999	0.16017
C	10.4289	0.41754	-0.7512	H	-4.16267	-2.21308	1.94749
C	9.05919	0.57849	-0.59033	H	-3.86457	-2.05889	0.2237
C	8.21112	-0.53397	-0.56136	H	8.64349	1.5782	-0.51213
C	8.76825	-1.81061	-0.69444	H	6.2249	-2.00576	-1.68696
C	6.75563	-0.3632	-0.39409	H	6.91613	1.32626	0.9364
C	5.85735	-1.22019	-1.0387	H	4.64047	-3.21267	-2.56698
C	4.49415	-1.04013	-0.86589	H	2.69943	-4.44652	-3.49727
N	4.03982	-0.04472	-0.08347	H	0.38428	-3.70557	-2.87129
C	4.87192	0.80098	0.55051	H	0.12781	-1.76198	-1.34549
C	6.2436	0.66003	0.41093	H	1.00308	2.49207	1.95715
C	3.41421	-1.83629	-1.46785	H	2.02532	4.29846	3.32288
C	4.16302	1.81045	1.35143	H	4.52815	4.47929	3.39765
C	3.63006	-2.9143	-2.31552	H	5.88219	2.85101	2.10759
C	2.54366	-3.60317	-2.83399	H	-2.38786	-0.62007	2.28931
C	1.26204	-3.19712	-2.49061	H	-2.42651	2.001	-1.11387
C	1.10903	-2.11452	-1.64039	H	-1.05255	-1.87622	3.50002
N	2.15101	-1.44507	-1.13779	H	0.61969	-3.18999	4.77088
N	2.80307	1.72544	1.32026	H	3.02933	-3.07805	4.07457
C	2.07874	2.60576	2.01767	H	3.64093	-1.65593	2.13092
C	2.65802	3.6093	2.7764	H	3.57511	1.6853	-2.1752
C	4.0416	3.70541	2.81466	H	2.90633	3.23898	-3.99748
C	4.80043	2.79538	2.09368	H	0.48929	3.88545	-4.19908
Ru	2.08589	0.18586	0.13531	H	-1.13675	2.95025	-2.57452
C	-2.59424	0.71025	0.60997	H	12.04467	-0.98148	-1.00343
C	-1.87349	-0.11249	1.48355	H	10.55681	-2.96671	-0.94115
C	-0.50321	-0.24945	1.32795	H	11.0722	1.29126	-0.78208
N	0.13051	0.41229	0.3432	H	8.12989	-2.68774	-0.65356
C	-0.52644	1.21415	-0.51486	C	14.30324	-0.55447	-0.52274

C	12.18074	-1.54649	0.048	C	2.56594	-1.50053	-1.62707
C	11.5089	-0.39033	-0.37326	C	2.90644	1.72909	1.74534
C	12.26248	0.6822	-0.87059	C	2.90779	-2.43228	-2.60341
C	13.64731	0.5986	-0.94745	C	1.90812	-3.09236	-3.30703
C	-8.09864	-1.46892	0.79806	C	0.57958	-2.8044	-3.01551
C	-9.39549	-1.40671	0.32282	C	0.3008	-1.86627	-2.03149
C	-10.00376	-0.14361	0.0589	N	1.25799	-1.22367	-1.34816
C	-9.29626	1.02628	0.27472	N	1.55528	1.59931	1.59461
C	-7.95419	0.95791	0.74061	C	0.74444	2.33874	2.36395
C	-7.36188	-0.26385	1.01528	C	1.21795	3.23481	3.31229
C	-7.22198	2.06648	0.30873	C	2.59185	3.37365	3.4732
C	-5.84126	1.91717	0.29657	C	3.44065	2.61183	2.67977
C	-5.2079	0.65467	0.5823	C	7.21488	-0.13904	-0.15428
C	-5.99428	-0.48159	0.88496	C	7.85198	-1.34911	-0.46923
C	-10.96247	-0.25874	-0.94565	C	9.23294	-1.42909	-0.53426
C	-11.26927	0.91828	-1.63382	C	10.03918	-0.30454	-0.29635
C	-10.53915	2.12353	-1.41377	C	9.39721	0.90443	0.01596
C	-9.48797	2.17337	-0.49693	C	8.01663	0.9864	0.09011
C	-7.24131	-2.51992	0.4856	H	14.07292	-2.52281	0.31879
C	-7.80218	-3.5863	-0.2201	H	15.38549	-0.61808	-0.58079
C	-9.14034	-3.52282	-0.70714	H	11.61778	-2.37601	0.46687
C	-9.93648	-2.39381	-0.50074	H	11.75874	1.57422	-1.23256
C	-8.22648	3.04639	-0.33307	H	14.2161	1.43247	-1.34734
C	-11.14467	-1.76504	-1.22554	H	-5.20603	2.74868	0.00127
C	-5.80528	-2.01237	0.73289	H	-11.9898	0.91377	-2.44772
C	-3.75433	0.54681	0.44422	H	-10.74806	2.96294	-2.0717
C	-3.03041	-0.37673	1.22405	H	-7.19851	-4.43778	-0.52394
C	-1.65098	-0.46776	1.10768	H	-9.47628	-4.32984	-1.35312
N	-0.98562	0.3318	0.24856	H	-7.86632	3.42818	-1.29346
C	-1.63581	1.22778	-0.52353	H	-8.40962	3.91798	0.3093
C	-3.01564	1.3494	-0.44866	H	-12.09937	-2.14285	-0.83633
C	-0.75652	-1.36363	1.86443	H	-11.13175	-1.98297	-2.29799
C	-0.72602	1.99779	-1.3928	H	-5.1357	-2.25424	-0.10008
C	-1.20474	-2.28633	2.8057	H	-5.37448	-2.47227	1.63372
C	-0.28981	-3.08951	3.47477	H	-3.56471	-0.98689	1.94237
C	1.06288	-2.95137	3.18506	H	-3.53656	2.04668	-1.09371
C	1.44952	-2.01532	2.23623	H	-2.26468	-2.3758	3.01473
N	0.57447	-1.23586	1.58553	H	-0.62941	-3.81094	4.21084
N	0.60114	1.70356	-1.25962	H	1.81357	-3.55564	3.6823
C	1.48982	2.36579	-2.0136	H	2.49385	-1.8733	1.97875
C	1.12127	3.34089	-2.92957	H	2.53018	2.09462	-1.86817
C	-0.22734	3.64632	-3.0734	H	1.88233	3.84548	-3.51446
C	-1.15606	2.96664	-2.29544	H	-0.55322	4.40245	-3.78026
Ru	0.99899	0.21094	0.14299	H	-2.21297	3.18802	-2.39059
C	5.75209	-0.05439	-0.08403	H	5.39986	-1.50097	-1.64208
C	4.93681	-0.84346	-0.9156	H	5.71193	1.41614	1.49109
C	3.55451	-0.75154	-0.82942	H	3.95056	-2.64078	-2.81427
N	2.98282	0.10023	0.04732	H	2.16446	-3.81955	-4.07058
C	3.72585	0.87944	0.86105	H	-0.23425	-3.29441	-3.5385
C	5.11207	0.81707	0.81573	H	-0.71993	-1.60846	-1.7697

H	-0.31923	2.19678	2.20397	H	9.70047	-2.37431	-0.79178
H	0.51668	3.80784	3.90881	H	9.99527	1.78719	0.21963
H	2.99875	4.06379	4.20509	H	7.5572	1.94658	0.30965
H	4.51549	2.70273	2.78786				
H	7.26461	-2.24834	-0.63542				

Optimized cartesian coordinates of $\mathbf{C 4}$

C	13.46051	-1.72159	-0.06937	C	-0.27924	3.262444	-3.36195
C	14.1893	-0.77358	-0.78076	C	-1.20202	2.720413	-2.47956
C	12.07954	-1.61122	0.031709	Ru	0.960255	0.300016	0.251387
C	11.39967	-0.54847	-0.57507	C	5.661527	-0.08666	-0.12503
C	12.14434	0.399257	-1.28702	C	4.814967	-0.98142	-0.78891
C	13.52509	0.286745	-1.38953	C	3.441701	-0.84895	-0.65972
C	-7.99149	-1.47748	0.8244	N	2.927316	0.135223	0.099332
C	-9.23943	-1.52146	0.230997	C	3.708458	1.01393	0.753179
C	-9.88907	-0.31025	-0.16214	C	5.087786	0.923227	0.655756
C	-9.2676	0.906872	0.048563	C	2.410681	-1.6892	-1.28659
C	-7.97496	0.94931	0.654573	C	2.939004	2.000638	1.52568
C	-7.34661	-0.21868	1.043658	C	2.694147	-2.76751	-2.11324
C	-7.261	2.058373	0.199476	C	1.652017	-3.50423	-2.65606
C	-5.87637	1.977914	0.278453	C	0.345829	-3.14405	-2.35722
C	-5.21271	0.773623	0.681048	C	0.125054	-2.05782	-1.52654
C	-5.96172	-0.36793	1.013112	N	1.124007	-1.34199	-1.00103
C	-10.7253	-0.53839	-1.2548	N	1.584642	1.871821	1.44506
C	-11.0126	0.569064	-2.05249	C	0.806947	2.731221	2.110383
C	-10.3714	1.821935	-1.83692	C	1.325309	3.754561	2.886409
C	-9.43346	1.98773	-0.81875	C	2.702775	3.892935	2.978066
C	-7.04413	-2.48255	0.63508	C	3.516603	3.00555	2.28956
C	-7.46709	-3.60656	-0.07335	C	7.124921	-0.20456	-0.24476
C	-8.75251	-3.65239	-0.68293	C	7.737369	-1.45691	-0.35946
C	-9.63365	-2.57505	-0.59438	C	9.114564	-1.56616	-0.46341
C	-8.23778	2.931831	-0.60587	C	9.931673	-0.42995	-0.46483
C	-10.7896	-2.06039	-1.4696	C	9.314979	0.821718	-0.35664
C	-5.66906	-1.8796	0.963512	C	7.938585	0.93322	-0.24469
C	-3.74552	0.691428	0.580516	H	13.96991	-2.54838	0.416144
C	-3.02782	-0.10276	1.482822	H	15.26846	-0.86059	-0.86024
C	-1.65026	-0.20213	1.368734	H	11.5255	-2.34596	0.607725
N	-1.00679	0.469877	0.39738	H	11.63674	1.21998	-1.78428
C	-1.66028	1.245513	-0.48694	H	14.08358	1.027644	-1.95343
C	-3.03797	1.37144	-0.41807	H	-5.26123	2.802299	-0.07033
C	-0.74345	-0.98774	2.219472	H	-11.626	0.466333	-2.94352
C	-0.76567	1.873843	-1.47009	H	-10.5325	2.602346	-2.57562
C	-1.16521	-1.76969	3.286153	H	-6.77651	-4.41584	-0.29426
C	-0.22892	-2.47343	4.029269	H	-8.96997	-4.49467	-1.3341
C	1.112429	-2.37864	3.687767	H	-7.80263	3.256436	-1.55418
C	1.472985	-1.58481	2.611693	H	-8.5219	3.839278	-0.0593
N	0.57673	-0.90521	1.889988	H	-11.756	-2.47906	-1.16334
N	0.555372	1.570047	-1.33079	H	-10.6498	-2.32627	-2.52044
C	1.438943	2.096271	-2.18422	H	-4.92454	-2.11866	0.199105
C	1.063249	2.944619	-3.21265	H	-5.27451	-2.25647	1.914766

H	-3.55113	-0.61879	2.27726	H	3.722973	-3.02802	-2.32908
H	-3.56335	1.969519	-1.15154	H	1.860974	-4.34881	-3.30297
H	-2.21719	-1.82906	3.536193	H	-0.49971	-3.6907	-2.75738
H	-0.54679	-3.0868	4.864921	H	-0.87811	-1.74124	-1.26721
H	1.878548	-2.90912	4.24052	H	-0.26144	2.583093	2.009461
H	2.507137	-1.48086	2.305949	H	0.651106	4.425375	3.4054
H	2.474728	1.820298	-2.02669	H	3.142539	4.68216	3.577424
H	1.818769	3.34422	-3.87856	H	4.594497	3.094231	2.346014
H	-0.60774	3.924293	-4.15538	H	7.135818	-2.36032	-0.34897
H	-2.25577	2.953798	-2.57335	H	9.560071	-2.55109	-0.55909
H	5.23037	-1.75915	-1.41759	H	9.920558	1.722219	-0.34316
H	5.719582	1.61657	1.196802	H	7.492264	1.92012	-0.17326

7) References

S1 B. B. Shrestha, S. Karanjit, G. Panda, S. Higashibayashi, H. Sakurai, Chem. Lett. 2013, 42, 386.
S2 T. Amaya, S. Seki, T. Moriuchi, K. Nakamoto, T. Nakata, H. Sakane, A. Saeki, S. Tagawa and T. Hirao, J. Am. Chem. Soc., 2009, 131, 408-409.
S3 Z. Zhang, H. Wang, X. Wang, Y. Li, B. Song, O. Bolarinwa, R. A. Reese, T. Zhang, X. Q. Wang, J. Cai, B. Xu, M. Wang, C. Liu, H. B. Yang and X. Li, J. Am. Chem. Soc., 2017, 139, 8174-8185.
S4 J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, 2006.
S5 C. Reichardt, Solvents and Solvent Effects in Organic Chemistry; WILEY-VCH, Weinheim, 2003.
S6 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
S7 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.

