Sumanene-Functionalised Bis(terpyridine)-Ruthenium(II) Complexes Showing Photoinduced Structural Change and Cation Sensing

Junyi Han^a, Yumi Yakiyama^{*a,b}, Youhei Takeda^a, and Hidehiro Sakurai^{a,b}

^aDivision of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

^bInnovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Table of Contents

1) General Methods	S2
2) Synthesis	S2
MS and NMR Charts	S10
3) Evaluation of Quantum Yield	S22
4) Stern-Volmer plots	S22
5) Supporting Figures	S23
6) Computational Experiments	S34
7) References	S41

1) General Methods

All the chemical reagents and solvents were commercially purchased and purified according to the standard methods, if necessary. Air- and moisture-sensitive reactions were carried out using commercially available anhydrous solvents under inert atmosphere of nitrogen. Unless otherwise noted. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ECS400 NMR spectrometer (1H: 400 MHz and 13C: 100 MHz). Chemical shift (δ) are expressed relative to the resonances of the residual non-deuterated solvent for ¹H (CDCl₃: ${}^{1}H(\delta) = 7.26$ ppm) and for ${}^{13}C$ (CDCl₃: ${}^{13}C(\delta) = 77.0$ ppm). High resolution mass spectra (HRMS) were measured using electron impact (EI) methods on JEOL JMS-777V spectrometer. Matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) mass spectra were measured on Bruker Autoflex III spectrometer. The preparative TLC (PTLC) purification was conducted using Wako gel B-5F PTLC plates. Flash column chromatography was prepared using Kanto Silica gel 60N (neutral, spherical, 40-50 µm) and performed with a Yamazen preparative medium pressure liquid chromatography system. UV-vis spectra were recorded on a JASCO V-670 spectrophotometer. Steady-state emission spectra were recorded on a JASCO FP-6500DS spectrometer. Lifetime measurements were recorded on a HAMAMATSU C11347-01 spectrometer with an integrating sphere. Elemental analyses were measured on a J-Science Micro corder JM10 at the Analysis Center in Osaka University.

2) Synthesis

a) Synthesis of ligand L1 and L2

Scheme S1. Synthetic route to the ligand L1 and L2.

4'-(4,7-dihydro-1H-tricyclopenta[def,jkl,pqr]triphenylen-2-yl)-2,2':6',2''-terpyridine (L1)

To a solution of NaOH (100.0 mg, 2.40 mmol) in EtOH (10 mL), **2** (40.0 mg, 0.14 mmol)^{S1} and 2-acetylpyridine (17.0 mg, 0.30 mmol) was added. After stirring at room temperature for 24 h, aqueous NH₃ (28%, 2 mL) was added. The resulting mixture was refluxed for 16 h. After cooling to room temperature, the solid was collected by suction filtration and was

washed with MeOH to give the product L1 as a pale-yellow solid (52.5 mg, 0.11 mmol, 79%). L1: mp: 287 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.73 (s, 2H), 8.72 (d, 2H), 8.67 (d, *J* =

7.9 Hz, 2H), 7.87 (td, J = 7.7, 1.8 Hz, 2H), 7.73 (s, 1H), 7.34 (ddd, J = 7.6, 4.8, 1.2 Hz, 2H), 7.17–7.04 (m, 4H), 5.17 (d, J = 19.8 Hz, 1H), 4.80 (d, J = 19.5 Hz, 1H), 4.72 (d, J = 19.5 Hz, 1H), 3.59 (d, J = 19.5 Hz, 1H), 3.49 (d, J = 19.5 Hz, 1H), 3.44 (d, J = 19.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.60, 155.96, 150.18, 150.02, 149.90, 149.36, 149.12, 148.98, 148.81, 148.64, 148.58, 137.00, 123.95, 123.55, 123.89, 123.78, 123.30, 122.92, 121.49, 120.34, 51.51, 43.52, 41.97. HRMS (EI) *m*/*z* Calcd. for C₃₆H₂₁N₃ [M]⁺: 495.1735. Found: 495.1787.

4'-(4-(4,7-dihydro-1H-tricyclopenta[def,jkl,pqr] triphenylen-2-yl)phenyl)-2,2':6',2''terpyridine (L2)

An aqueous solution of K_2CO_3 (1.0 M, 0.16 mL, 0.16 mmol) was added to a THF solution (5 mL) of a mixture of **4** (13.7 mg, 0.040 mmol) **3** (17.6 mg, 0.050 mmol), and Pd (PPh₃)₄ (14.0 mg, 0.005 mmol) under N₂ at 25 °C. After stirring at 70 °C for 20 h, the reaction mixture was cooled to room temperature and was extracted with chloroform (3 ×

10mL). The combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 , filtered and then concentrated in vacuo. The crude product was then purified by column chromatography on neutral alumina gel with CHCl₃ to afford **L2** as a pale-yellow powder (16.7 mg, 0.029 mmol, 73%).

L2: mp: 252 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.79 (s, 2H), 8.74 (d, J = 4.4 Hz, 2H), 8.69 (d, J = 8.1 Hz, 2H), 7.99 (d, J = 8.1 Hz, 2H), 7.89 (t, J = 7.5 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.44 (s, 1H), 7.36 (t, J = 7.5 Hz, 2H), 7.16–7.05 (m, 4H), 4.96 (d, J = 19.8 Hz, 1H), 4.80 (d, J = 19.2 Hz, 1H), 4.72 (d, J = 19.7 Hz, 1H), 3.55 (d, J = 19.3 Hz, 1H), 3.43 (d, J = 17.0 Hz, 1H), 3.38 (d, J = 17.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.35, 156.07, 150.18, 149.88, 149.25, 149.15, 149.06, 148.88, 148.74, 148.52, 146.46, 141.61, 137.59, 137.27, 137.01, 132.25, 132.15, 129.12, 128.72, 128.55, 127.69, 123.96, 123.60, 123.51, 123.46, 123.28, 122.74, 121.48, 118.81, 42.67, 41.97, 41.86. HRMS (EI) *m/z* Calcd. for C₄₂H₂₅N₃ [M]⁺: 571.2048. Found: 571.2050.

b) Synthesis of phenyl-terpy ligands SL1, SL2, and SL3.

Scheme S2. Synthetic route to the ligand SL1, SL2, and SL3.

4'-phenyl-2,2':6',2''-terpyridine (SL1)

SI 1

To a solution of NaOH (0.96 g, 24.00 mmol) in EtOH (20 mL), benzaldehyde (0.60 g, 4.40 mmol) and 2-acetylpyridine (1.06 g, 8.80 mmol) was added. After stirring at room temperature for 24 h, aqueous NH₃•H₂O (28%, 3 mL) was added. The resulting mixture was refluxed for 20 h and was cooled to room temperature. The solid so formed was collected by suction filtration and was

washed with EtOH and CHCl₃ to give the product **SL1** as a white solid (1.21 g, 3.92 mmol, 89%).

SL1: mp: 189 °C (dec.); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.80 (s, 2H), 8.76 (d, J = 4.4 Hz, 2H), 8.71 (d, J = 8.0 Hz, 2H), 7.98–7.91 (m, 4H), 7.52 (t, J = 7.4 Hz, 2H), 7.48–7.38 (m, 3H). HRMS (EI) m/z Calcd. for C₂₁H₁₅N₃ [M⁺]: 309.1266. Found: 309.1215.

4'-([1,1'-biphenyl]-4-yl)-2,2':6',2''-terpyridine (SL2)

An aqueous solution of K_2CO_3 (1.0 M, 0.4 mL, 0.40 mmol) was added to a THF solution (10 mL) of a mixture of Bromobenzene (15.5 mg, 0.10 mmol), **3** (35.3 mg, 0.10 mmol), and Pd (PPh3)4 (30.0 mg, 0.01 mmol) under N₂ at 25 °C. After stirring at 70 °C for 24 h. After cooling to room

temperature, the mixture was extracted with chloroform. The combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 , and then concentrated in vacuo, the crude product was purified by column chromatography on neutral alumina gel with CHCl₃ to afford the product **SL2** as a pale-yellow powder (25.0 mg, 0.065 mmol, 65%).

SL2: mp: 206 °C (dec.); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.84 (s, 2H), 8.77 (d, J = 4.8 Hz, 2H), 8.72 (d, J = 8.1 Hz, 2H), 8.04 (d, J = 7.9 Hz, 2H), 7.93 (t, J = 7.7 Hz, 2H), 7.76 (d, J = 7.9 Hz, 2H), 7.69 (d, J = 7.4 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.42 – 7.36 (m, 3H). HRMS (EI) m/z Calcd. for C₂₇H₁₉N₃ [M⁺]: 385.1579. Found: 385.1587.

4'-([1,1':4',1''-terphenyl]-4-yl)-2,2':6',2''-terpyridine (SL3)

An aqueous solution of K_2CO_3 (1.0 M, 0.4 mL, 0.40 mmol) was added to a THF solution (10 mL) of a mixture of 4-bromobiphenyl (23.3 mg, 0.10 mmol), **3** (35.3 mg, 0.10 mmol), and Pd (PPh₃)₄ (30.0 mg, 0.01 mmol) under N₂ at 25 °C. After stirring at 70 °C for 24 h. After cooling to room temperature, the mixture was extracted

with chloroform. The combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 , and then concentrated in vacuo, the crude product was purified by column chromatography on neutral alumina gel with CHCl₃ to afford the product **SL3** as a pale-yellow powder (31.3 mg, 0.068 mmol, 68%).

SL3: mp: 271 °C (dec.); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.89 (s, 2H), 8.79 (d, J = 4.9 Hz, 2H), 8.75 (d, J = 8.0 Hz, 2H), 8.08 (d, J = 8.0 Hz, 2H), 7.97 (t, J = 7.8 Hz, 2H), 7.82 (d, J = 8.3 Hz, 2H), 7.77 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 7.2 Hz, 2H), 7.48 (t, J = 7.7 Hz, 2H), 7.43 (t, J = 6.2 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H). HRMS (EI) m/z Calcd. for C₃₃H₂₃N₃ [M⁺]: 416.1892. Found: 416.1823.

c) Synthesis of $[Ru(L1)_2](PF_6)_2$ complex (C1) and $[Ru(L2)_2](PF6)_2$ complex (C2)

Scheme S3. Synthetic route to C1 and C2.

L1 (20.0 mg, 0.04 mmol) was dissolved in EtOH/CHCl₃ (10 mL, v/v=1:1) and the mixture was degassed by N₂ bubbling (10 min). RuCl₂(DMSO)₄ (9.7mg, 0.02 mmol) was added and the suspension was heated to 80 °C for 24 hours. The deep red solution was allowed to cool

and NH₄PF₆ (40.0 mg, 0.24 mmol) was added. A red solid immediately precipitated which was collected by filtration and subsequently washed with water (3×10 mL) and MeOH (3×10 mL, to aid drying). The solid material was washed down with acetonitrile. The solvent was removed in vacuo to yield the complex **C1** as red solid (22.1 mg, 0.016 mmol, 80%).

C1: mp: 371 °C (dec.); ¹H NMR (400 MHz, Acetonitrile- d_3) δ 8.96 (s, 4H), 8.60 (d, J = 9.1 Hz, 4H), 7.99 (s, 2H), 7.94 (td, J = 7.9, 1.5 Hz, 4H), 7.44 (d, J = 4.3 Hz, 4H), 7.34 – 7.22 (m, 8H), 7.19 (ddd, J = 7.1, 5.6, 1.3 Hz, 4H), 5.40 (d, J = 19.9 Hz, 2H), 4.96 (d, J = 19.9 Hz, 2H), 4.79 (d, J = 19.9 Hz, 2H), 3.83 (d, J = 15.4 Hz, 2H), 3.78 (d, J = 15.5 Hz, 2H), 3.59 (d, J = 20.0 Hz, 2H). MALDI-TOF MS (m/z): Calcd. for [C₇₂H₄₂N₆Ru]⁺: 1092.25. Found: 1092.48. Anal. Calcd for C₇₂H₄₂N₆RuF₁₂P₂: C, 62.57; H, 3.06; N, 6.08. Found: C, 62.74; H, 3.01; N, 6.17.

 $[Ru (L2)_2](PF_6)_2$ (C2)

L2 (15.0 mg, 0.026 mmol) was dissolved in EtOH/CHCl₃ (10 mL, v/v=1:1) and the mixture was degassed by N₂ bubbling (10 min). RuCl₂(DMSO)₄ (6.3 mg, 0.013 mmol) was added and the suspension was

heated to 80 °C for 24 hours. The deep red solution was allowed to cool and NH_4PF_6 (25.4 mg, 0.16mmol) was added. A red solid immediately precipitated which was collected by filtration and subsequently washed with water (3×10 mL) and MeOH (3×10 mL, to aid drying). The solid material was washed down with acetonitrile. The solvent was removed in vacuo to yield the complex **C2** as red solid (16.8 mg, 0.011 mmol, 85%).

C2: mp: 335 °C (dec.); ¹H NMR (400 MHz, Acetonitrile- d_3) δ 9.09 (s, 4H), 8.69 (d, J = 7.8 Hz,

4H), 8.34 (d, J = 6.7 Hz, 4H), 8.05 (d, J = 7.1 Hz, 4H), 7.96 (t, J = 7.9 Hz, 4H), 7.66 (s, 2H), 7.46 (d, J = 5.6 Hz, 4H), 7.26 – 7.14 (m, 12H), 5.13 (d, J = 19.6 Hz, 2H), 4.85 (d, J = 19.6 Hz, 2H), 4.75 (d, J = 20.0 Hz, 2H), 3.69 (d, J = 19.7 Hz, 2H), 3.54 (d, J = 18.8 Hz, 2H), 3.50 (d, J = 18.4 Hz, 2H). MALDI-TOF MS (m/z): Calcd. for [C₈₄H₅₀N₆Ru]⁺: 1244.31. Found: 1244.40. Anal. Calcd for C₈₄H₅₀N₆RuF₁₂P₂: C, 65.76; H, 3.28; N, 5.48. Found: C, 65.91; H, 3.21; N, 5.57.

d) Synthesis of $[Ru(L1)(SL1)](PF_6)_2(C3)$ and $[Ru(L1)(SL2)](PF_6)_2(C4)$ complexes

Scheme S4. Synthetic route to C3 and C4.

[Ru (L1) (SL1)](PF6)₂ (C3)

To a solution of **SL1** (50.0 mg, 0.16 mmol) and RuCl₃•3H₂O (33.1 mg, 0.16 mmol) in CHCl₃ (5mL) and EtOH (5 mL). The mixture was stirred at 80 °C for 24 h. After cooling to ambient temperature, the precipitates were filtered and washed with MeOH to afford **5** (67.7 mg, 0.13 mmol, 82%).^{S3} After evaporated to dryness

under vacuum, it was applied to the synthesis of **C3** directly. To a flask containing a mixture of **5** (10.0 mg, 0.019 mmol) and **L1** (9.6 mg, 0.019 mmol), MeOH (4 mL), CHCl₃ (4 mL), and N-ethylmorpholine (6.5 mg, 0.057 mmol) were added. The mixture was stirred at 80 °C for 24 h. After cooling to ambient temperature, the solvent was evaporated in vacuo and the residue was purified by column chromatography (Al₂O₃), eluting with a mixture of MeOH and CH₂Cl₂. The complex was counterion exchanged with NH₄PF₆ (18.5 mg, 0.114 mmol) to give **C3**, as a red precipitate (14.4 mg, 0.012 mmol, 65%).

C3: mp: 355 °C (dec.); ¹H NMR (400 MHz, Acetonitrile-*d*₃) δ 8.99 (s, 2H), 8.93 (s, 2H), 8.62

(d, J = 7.8 Hz, 2H), 8.58 (d, J = 8.1 Hz, 2H), 8.18 (d, J = 7.3 Hz, 2H), 7.96 (s, 1H), 7.94 – 7.88 (m, 4H), 7.74 (t, J = 7.6 Hz, 2H), 7.66 (t, J = 7.3 Hz, 1H), 7.42 (d, J = 4.1 Hz, 2H), 7.41 (d, J = 4.3 Hz, 2H), 7.29 – 7.12 (m, 8H), 5.37 (d, J = 20.1 Hz, 1H), 4.92 (d, J = 19.4 Hz, 1H), 4.76 (d, J = 20.1 Hz, 1H), 3.81 (d, J = 17.6 Hz, 1H), 3.76 (d, J = 17.1 Hz, 1H), 3.55 (d, J = 20.0 Hz, 1H). MALDI-TOF MS (m/z): Calcd. for [C₅₇H₃₆N₆Ru]⁺: 906.20. Found: 906.06. Anal. Calcd for C₅₇H₃₆N₆RuF₁₂P₂: C, 57.25; H, 3.03; N, 7.03. Found: C, 57.41; H, 3.01; N, 7.09.

[Ru (L1) (SL2)] (PF6)₂ (C4)

To a solution of **SL2** (30.8 mg, 0.080 mmol) and RuCl₃•3H₂O (16.6 mg, 0.080 mmol) in CHCl₃ (5mL) and EtOH (5 mL). The mixture was stirred at 80 °C for 24 h. After cooling to ambient temperature, the precipitates were filtered and washed with MeOH to afford **6** (33.8 mg, 0.066 mmol, 82%).^{S3} After

dryness under vacuum, it was applied to the synthesis of C4 directly. To a flask containing a mixture of 6 (11.2 mg, 0.019 mmol) and L1 (9.6 mg, 0.019 mmol), MeOH (4 mL), CHCl₃ (4 mL), and N-ethylmorpholine (6.5 mg, 0.057 mmol) were added. The mixture was stirred at 80 °C for 24 h. After cooling to ambient temperature, the solvent was evaporated in vacuo and the residue was purified by column chromatography (Al₂O₃), eluting with a mixture of MeOH and CH₂Cl₂. The complex was counterion exchanged with NH₄PF₆ (18.5 mg, 0.114 mmol) to give C4, as a red precipitate (17.8 mg, 0.014 mmol, 71%).

C4: mp: 296 °C (dec.); ¹H NMR (400 MHz, Acetonitrile- d_3) δ 9.05 (s, 2H), 8.94 (s, 2H), 8.65 (d, J = 7.7 Hz, 2H), 8.58 (d, J = 8.0 Hz, 2H), 8.30 (d, J = 7.9 Hz, 2H), 8.03 (d, J = 8.1 Hz, 2H), 7.97 – 7.90 (m, 4H), 7.83 (d, J = 7.4 Hz, 2H), 7.56 (t, J = 7.7 Hz, 2H), 7.47 (t, J = 7.0 Hz, 1H), 7.42 (d, J = 4.3 Hz, 4H), 7.31 – 7.21 (m, 4H), 7.14 - 7.18 (m, 4H), 5.37 (d, J = 20.2 Hz, 1H), 4.93 (d, J = 19.9 Hz, 1H), 4.77 (d, J = 20.5 Hz, 1H), 3.81 (d, J = 15.8 Hz, 1H), 3.75 (d, J = 15.8 Hz, 1H), 3.56 (d, J = 19.8 Hz, 1H). MALDI-TOF MS (m/z): Calcd. for [C₆₃H₄₀N₆Ru]⁺: 982.23. Found: 982.22. Anal. Calcd for C₆₃H₄₀N₆RuF₁₂P₆: C, 59.49; H, 3.17; N, 6.61. Found: C, 59.55; H, 3.14; N, 6.68.

e) Synthesis of [*Ru*(*SL1*)₂](*PF*₆)₂ complex (*SC1*), [*Ru*(*SL1*)(*SL2*)](*PF*₆)₂ complex (*SC2*) and [*Ru*(*SL1*)(*SL3*)](*PF*₆)₂ complex (*SC3*)

Scheme S5. Synthetic route to support complex SL1, SL2 and SC3.

[Ru(SL1)₂](PF6)₂ (SC1)

SL1 (8.0 mg, 0.026 mmol) was dissolved in EtOH/CHCl₃ (10 mL, v/v=1:1) and the mixture was degassed by N₂ bubbling (10 min). RuCl₂(DMSO)₄ (6.3 mg, 0.013 mmol) was added and the suspension was heated to 80 °C for 24 hours. The deep red solution was allowed to cool and NH₄PF₆ (25.4 mg, 0.16mmol) was added. A red solid

immediately precipitated which was collected by filtration and subsequently washed with water $(3\times5 \text{ mL})$ and MeOH $(3\times5 \text{ mL})$, to aid drying). The solid material was washed down with acetonitrile. The solvent was removed in vacuo to yield the complex **SC2** as red solid (11.8 mg, 0.012 mmol, 90%).

SC1: mp: 216 °C (dec.); ¹H NMR (400 MHz, Acetonitrile- d_3) δ 9.02 (s, 4H), 8.66 (d, J = 8.1 Hz, 4H), 8.22 (d, J = 7.6 Hz, 4H), 7.95 (t, J = 7.9 Hz, 4H), 7.78 (t, J = 7.5 Hz, 5H), 7.70 (t, J = 7.2 Hz, 2H), 7.45 (d, J = 5.5 Hz, 4H), 7.19 (t, J = 6.7 Hz, 4H). MALDI-TOF MS (m/z): Calcd. for [C₄₂H₃₀N₆Ru]⁺: 720.16. Found: 720.18.

[Ru(SL1)(SL2)](PF6)₂ (SC2)

To a flask containing a mixture of **5** (10.0 mg, 0.019 mmol) and **SL2** (8.1 mg, 0.019 mmol), MeOH (4 mL), CHCl₃ (4 mL), and N-ethylmorpholine (6.5 mg, 0.057 mmol) were added. The mixture was stirred at 80 °C for 24 h. After cooling to ambient temperature, the solvent was evaporated in vacuo and the residue was

purified by column chromatography (Al₂O₃), eluting with a mixture of MeOH and CH₂Cl₂. The complex was counterion exchanged with NH_4PF_6 (18.5 mg, 0.114 mmol) to give SC2, as a red precipitate (16.9 mg, 0.015 mmol, 82%).

SC2: mp: 233 °C (dec.); ¹H NMR (400 MHz, Acetonitrile-*d*₃) δ 9.07 (s, 2H), 9.02 (s, 2H), 8.68 (d, *J* = 9.8 Hz, 2H), 8.65 (d, *J* = 9.2 Hz, 2H), 8.32 (d, *J* = 8.0 Hz, 2H), 8.21 (d, *J* = 7.6 Hz, 2H), 8.06 (d, *J* = 7.8 Hz, 2H), 7.96 (t, *J* = 8.0 Hz, 4H), 7.86 (d, *J* = 7.6 Hz, 2H), 7.78 (t, *J* = 7.8 Hz, 2H), 7.69 (t, *J* = 7.7 Hz, 1H), 7.59 (t, *J* = 8.1 Hz, 2H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.44 -7.46 (m, 4H), 7.19 (t, *J* = 8.0 Hz, 4H). MALDI-TOF MS (m/z): Calcd. for [C₄₈H₃₄N₆Ru]⁺: 796.19. Found: 796.22.

[Ru(SL1) (SL3)](PF6)₂ (SC3)

To a flask containing a mixture of **5** (10.0 mg, 0.019 mmol) and **SL3** (8.8 mg, 0.019 mmol), MeOH (4 mL), CHCl₃ (4 mL), and N-ethylmorpholine (6.5 mg, 0.057 mmol) were added. The mixture was stirred at 80 °C for 24 h. After cooling to ambient temperature, the solvent

was evaporated in vacuo and the residue was purified by column chromatography (Al₂O₃), eluting with a mixture of MeOH and CH₂Cl₂. The complex was counterion exchanged with NH₄PF₆ (18.5 mg, 0.114 mmol) to give **SC3**, as a red precipitate (17.9 mg, 0.015 mmol, 81%). **SC3**: mp: 302 °C (dec.); ¹H NMR (400 MHz, Acetonitrile-*d*₃) δ 9.09 (s, 2H), 9.03 (s, 2H), 8.69 (d, *J* = 8.0 Hz, 2H), 8.66 (d, *J* = 8.2 Hz, 2H), 8.35 (d, *J* = 8.4 Hz, 2H), 8.22 (d, *J* = 7.4 Hz, 2H), 8.13 (d, *J* = 8.4 Hz, 2H), 7.98 (d, *J* = 7.2 Hz, 2H), 7.97 (t, *J* = 6.5 Hz, 4H), 7.87 (d, *J* = 8.3 Hz, 2H), 7.78 (d, *J* = 7.6 Hz, 2H), 7.77 (d, *J* = 7.6 Hz, 2H), 7.70 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.47 (d, *J* = 4.9 Hz, 2H), 7.45 (d, *J* = 4.9 Hz, 2H), 7.44 (t, *J* = 4.8 Hz, 1H), 7.20 (t, *J* = 6.6 Hz, 4H). MALDI-TOF MS (m/z): Calcd. for [C₅₄H₃₈N₆Ru]⁺: 872.22. Found: 872.48.

NMR Charts

¹H NMR and ¹³C NMR charts of L1

f2 (ppm)

¹H NMR and COSY NMR charts of SC3

f2 (ppm)

3) Evaluation of Quantum Yield

A relative value of quantum yield was obtained by following relationship with using the corrected spectra data JASCO Spectra ManagerTM.

$$\Phi_{u} = \Phi_{st} \cdot \left(\frac{F_{u}}{F_{st}}\right) \cdot \left(\frac{A_{st}}{A_{u}}\right) \cdot \left(\frac{D_{u}}{D_{st}}\right) \cdot \left(\frac{I_{ex,st}}{I_{ex,u}}\right) \cdot \left(\frac{n_{u}^{2}}{n_{st}^{2}}\right)$$

Here, is the fluorescence quantum yield for the standard sample; F_u and F_{st} are the integrated values for the emission spectra of the unknown and standard samples; A_{st} and A_u are the absorbance at the excitation wavelength of the standard and unknown samples; $I_{ex,st}$ and $I_{ex,u}$ are the intensities of the excitation light at the excitation wavelengths for the standard and unknown samples; and n_u and n_{st} are the average refractive indexes for the emission spectra measurement range for the standard and unknown samples.

In this measurement, quinine sulfate in 0.5 M H₂SO₄ was used as the standard ($\lambda_{ex} = 310$ nm, $\Phi = 0.55$).^{S4} Sample concentrations were low enough (less than 10% absorption across the spectrum) and the same sample solutions were used in both absorption and emission spectra measurements. Also, $I_{ex,st}/I_{ex,u}$ was corrected automatically in the software and considered to be 1.0. Therefore the above equation becomes:

$$\Phi_{u} = \Phi_{st} \cdot \left(\frac{F_{u}}{F_{st}}\right) \cdot \left(\frac{A_{st}}{A_{u}}\right) \cdot \left(\frac{n_{u}^{2}}{n_{st}^{2}}\right)$$

The obtained parameters for the calculation of Φ_u are shown below table.

	F _u	Au	n_u	F _{st}	A _{st}	n _{st}
C 1	1472	0.08				
C2	5933	0.06	1.34 ⁸⁵	62255	0.05	1.33 ⁸⁵
C3	9085	0.05	(CH ₃ CN)	63255	0.05	(water)
C4	11592	0.06				

Table S1. The parameter used to calculate quantum yields using quinine sulfate as a standard.

4) Stern-Volmer plots

The effectiveness of C1-C4 for Li⁺ trapping were evaluated from emission titration data using the following Stern-Volmer equation,

$$\frac{I_0}{I} = 1 + K_{SV} \cdot [Q]$$

where I_0 and I are emission intensity of complexes in the absence and presence of Li⁺ and [Q] is the concentration of Li⁺. K_{sv} is the Stern-Volmer constant of the complex of the present system which is represented by the equation,

$$K_{\rm sv}=\tau_0\,k_{\rm q}$$

where τ_0 is the life time of the complex without Li⁺ and k_q is the rate of the emission quenching process. The plots for C1-C4 are available in page S34.

5) Supporting Figures

Figure S1. Optimized structure of C3 and C4 in both S0 and S1 states.

Figure S2. Absorption (ε , solid lines) and fluorescence spectra (dashed lines) of L1 and L2 in CH₃CN (1.0 × 10⁻⁶ M) at 298 K. The values on the PL spectra and in parentheses show the emission maximum (nm) and photoluminescence quantum yield (PLQY) determined with the Quinine sulfate standard. The excitation wavelength λ_{ex} for PL measurements was 300 nm.

Figure S3. Simulated absorption spectra of C1–C4 in acetonitrile.

Figure S4. The distribution of hole (blue) and electron (green) of **C1-C4** at absorption around 280 nm.

Figure S5. Emission spectra of C1-C4 in CH₃CN (1.0×10^{-4} M) at 298 K. Excitation wavelength was 510 nm for all the spectra.

Figure S6. Photoluminescence spectra ($\lambda_{ex} = 300 \text{ nm}$) of **SC1-SC3** in CH₃CN ($c = 10^{-5} \text{ M}$) at room temperature.

Figure S7. Photoluminescence spectra of C2 and C3 with different concentrations in CH₃CN at room temperature ($\lambda_{ex.} = 300$ nm).

Figure S8. Photoluminescence spectra ($\lambda_{ex} = 300 \text{ nm}$) of C4 in a water/CH₃CN mixture (1.0 × 10⁻⁵ M, water fraction 0–70%).

Figure S9. a) Normalized photoluminescence spectra ($\lambda_{ex} = 300 \text{ nm}$) of C1 to C3 ($c = 10^{-6} \text{ M}$), in different solvents. b) Photographs of C1-C3 in DCM and CH₃CN on excitation at 365 nm with an ultraviolet lamp at 298 K ($c = 10^{-5} \text{ M}$). Low solubility of the complexes to hexane prohibited the clear emergence of the dual emission.

Figure S10. Time-resolved fluorescence emission $\lambda_{em} = 400$ nm for C1 (10⁻⁴ M) in MeCN at 300 K under nitrogen. ($\lambda_{ex} = 280$ nm).

Figure S11. Time-resolved fluorescence emission (a) $\lambda_{em} = 430$ nm and (b) $\lambda_{em} = 515$ nm for **C2** (10⁻⁴ M) in MeCN at 300 K under nitrogen. ($\lambda_{ex} = 280$ nm).

Figure S12. Time-resolved fluorescence emission (a) $\lambda_{em} = 424$ nm and (b) $\lambda_{em} = 511$ nm for C3 (10⁻⁴ M) in MeCN at 300 K under nitrogen. ($\lambda_{ex} = 280$ nm).

Figure S13. Time-resolved fluorescence emission (a) $\lambda_{em} = 434$ nm and (b) $\lambda_{em} = 534$ nm for C4 (10⁻⁴ M) in MeCN at 300 K under nitrogen. ($\lambda_{ex} = 280$ nm).

The fittings for the emissions of **C2** (at 430 nm), **C3** (at 424 nm) and **C4** (at 434 nm) were done by using second order equation (1), and fittings for **C1** (at 400 nm), **C2** (at 515 nm), **C3** (at 511 nm) and **C4** (at 534 nm) were by using third order equation (2).

$$F_{it} = B + A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2}$$
(1)

$$F_{it} = B + A'_{1} e^{-t/\tau_{1}} + A'_{2} e^{-t/\tau_{2}} + A'_{3} e^{-t/\tau_{3}}$$
(2)

Table S2. Lifetime of C1 to C4 at different emission maxima.

complex	$\lambda_{\rm em} [\rm nm]$	τ [ns]	A_1	A_2	A'_1	A'_2	A'_3
C1	400	7.3	_	_	566.894	448.254	429.909
C2	430 515	3.8 3.2	673.468	29.1798	-928.279	517.818	201.204
С3	424 511	3.1 6.8	200.634	513.121	-1434.45	889.63	135.61
C4	434 534	3.2 7.5	84.238	476.555	-1505.83	1038.29	147.223

Figure S14. Molecular orbitals of **C1**. (a) LUMO of S₀ geometry. (b) LUMO of S₁ geometry. (c) HOMO of S₀ geometry. (d) HOMO of S₁ geometry.

Figure S15. Molecular orbitals of **C2**. (a) LUMO of S₀ geometry. (b) LUMO of S₁ geometry. (c) HOMO of S₀ geometry. (d) HOMO of S₁ geometry.

Figure S16. Molecular orbitals of **C3**. (a) LUMO of S₀ geometry. (b) LUMO of S₁ geometry. (c) HOMO of S₀ geometry. (d) HOMO of S₁ geometry.

Figure S17. Schematic drawings of the selective frontier molecular orbitals for C1 to C4 in T_1 state.

Table S3. The transition information of the complexes C1-C4 in S_1 and T_1 states

Complex	$S_1 \rightarrow S_0$ (nm/oscillator strength)	$T_1 \rightarrow S_0$ (nm)
C1	519.88/0.0179	686.34
C2	528.45/0.0141	750.78
C3	548.85/0.0153	784.21
C4	549.60/0.0175	741.63

Figure S18. Lithium cation (LiPF₆) binding studies with a) **C1**, b) **C2** and c) **C3** using the photoluminescence spectra titration method (solvent: CH₃CN:water=1:1; concentration: 10^{-5} M; $\lambda_{ex} = 300$ nm).

Figure S19. Lithium cation (LiPF₆) binding studies with a) **SC1**, b) **SC3**, and c) **SC3** using the photoluminescence spectra titration method (solvent: CH₃CN:water=1:1; concentration: 10^{-4} M; $\lambda_{ex} = 300$ nm).

Figure S20. Stern-Volmer plots for the emission quenching of C1-C4 by the addition of Li⁺.

Figure S21. Plot of $(I-I_{min})/(I_{max}-I_{min})$ vs Log ([Li⁺]) for the calculation of detection limit of C1-C4.

Figure S22. The Job's plot related to the interactions of the a) C1, b) C2, c) C3 and d) C4 with Li⁺. All the data is based on the florescence spectra titration results. *x* stands for the molar fraction of Li⁺, I_0 stands for the emission intensity of C1-C4 without Li⁺ added, and *I* stands for the emission intensity of C1-C4 with the given amount of Li⁺ added.

6) Computational Experiments

С

С

-8.26371

-9.59196

-3.82261

-3.88962

All the theoretical calculations were conducted by Gaussian09.⁸⁶ The ground state structure optimizations were performed at the PBE0 functional and 6-311G(d) basis set for C, H, N, and O and SDD basis set for Ru. Simulation of UV-vis spectra, and excited state (S_1 and T_1) optimizations were performed by TD-DFT (time-dependent density functional theory) using the optimized coordinates at the PBE0 functional and 6-311G(d) basis set for C, H, N, and O and SDD basis set for Ru. Multiwfn 3.8 was used to analyze the wave functions.^{S7}

Optimized cartesian coordinates of C1 С С 8.91043 0.64005 -1.04443-10.5094 -2.86646 -0.32605 С С 10.24502 0.57568 -0.54083-9.36383 2.69199 -0.03804С -0.65297 С 10.82763 -0.29071-11.7556 -2.35027 -1.06608С С -1.85454 -0.54043 -2.0846 10.09463 -6.46401 0.96014 С 8.80485 -1.78984 -1.03387 С 0.61126 -4.69155 0.63112 С С 10.50937 -2.86645 0.32605 -3.87431 -0.24059 1.38371 С С -0.24761 9.59197 -3.88962 0.56354 -2.50556 1.1704 С 8.26372 -3.82261 Ν -1.96311 0.57203 0.25271 0.0562 С С 7.83331 -2.73085 -0.69683 -2.71271 1.40926 -0.48788 С С 10.52922 1.70558 0.22746 -4.08785 1.4422 -0.3213 С С 11.53823 1.56456 1.17931 -1.50738 -1.07446 1.86383 С С 12.13901 0.29949 1.43589 -1.914852.21457 -1.42591С С 11.74042 -0.84539 0.74621 -1.82347 -2.0061 2.84295 С С 6.81698 -0.59581 -1.14272-0.80883 -2.73912 3.44033 С С 6.14907 0.60439 -0.84315 0.50278-2.52309 3.04223 С С 6.89832 1.7989 -0.588120.75627 -1.58156 2.05843 С -0.62127 Ν -0.87167 8.28674 1.81402 -0.21608 1.47825 С 11.75562 -2.35026 Ν -0.57024 1.99555 -1.37996 1.06608 С 2.69199 С 9.36383 0.03804 0.23189 2.68508 -2.19677 С С 6.46402 -2.08461 -0.25074 3.62079 -3.09655 -0.96015 С -8.80485 -1.78984 1.03387 С -1.61759 3.85211 -3.15198 С С -10.0946 -1.85454 0.54043 -2.456493.14095 -2.30666 С Ru -10.8276 -0.65297 0.29071 0 0.56308 С 4.69155 0.61125 -10.2450.57568 0.54083 С -0.63112 С С -8.91043 0.64005 1.04444 3.8743 -0.24058-1.38373 С С -8.19999 -0.5191 1.2937 2.50555 -0.24759 -1.17042С Ν 0.57203 -8.28674 1.81403 0.62128 1.96311 -0.25271С С -6.89832 1.79891 0.58813 2.71272 1.40923 0.4879 С С 0.6044 1.44218 -6.14907 0.84315 4.08785 0.32132 С С -6.81698 -0.59581 1.14272 1.50737 -1.07441 -1.86388 С С -11.7404 -0.84539 -0.74621 1.91485 2.21452 1.42596 С 0.29948 С -2.00602 -12.139 -1.43589 1.82346 -2.84302С С -11.5382 1.56456 -1.17932 0.80881 -2.73903 -3.44043С -10.5292 1.70558 -0.22746 С -0.5028 -2.523 -3.04232 С С -7.8333 -2.73085 0.69683 -0.75629-1.5815 -2.0585

0

-0.0562

-0.56353

Ν

Ν

0.21607

0.57024

-0.87163

1.99551

-1.47829

1.38

С	-0.23188	2.68501	2.19683	Н	-11.6929	-2.53571	-2.1413
С	0.25075	3.62069	3.09664	Н	-5.7728	-2.2345	0.1261
С	1.6176	3.85201	3.15207	Н	-5.97894	-2.50666	1.8486
С	2.4565	3.14087	2.30673	Н	-4.31043	-0.87361	2.1456
Н	9.82526	-4.69431	1.25544	Н	-4.6925	2.09198	-0.94053
Н	7.559	-4.57912	0.3904	Н	-2.85561	-2.1565	3.13561
Н	11.79368	2.3859	1.84321	Н	-1.04278	-3.469	4.20707
Н	12.81788	0.22911	2.28145	Н	1.32718	-3.07178	3.48168
Н	6.35134	2.67775	-0.26054	Н	1.76351	-1.37881	1.71461
Н	12.67377	-2.83661	0.71451	Н	1.29088	2.47023	-2.1177
Н	11.69291	-2.5357	2.1413	Н	0.44223	4.15236	-3.73771
Н	9.02186	3.10442	0.99039	Н	-2.03021	4.57737	-3.84427
Н	9.64342	3.54298	-0.59482	Н	-3.52604	3.30791	-2.33317
Н	5.97895	-2.50667	-1.84861	Н	4.31041	-0.87358	-2.14564
Н	5.7728	-2.23451	-0.12611	Н	4.6925	2.09193	0.94056
Н	-6.35134	2.67776	0.26055	Н	2.85559	-2.15642	-3.13569
Н	-12.8179	0.2291	-2.28146	Н	1.04276	-3.46888	-4.20719
Н	-11.7937	2.38589	-1.84321	Н	-1.3272	-3.07167	-3.48179
Н	-7.55899	-4.57912	-0.3904	Н	-1.76352	-1.37875	-1.71467
Н	-9.82525	-4.69432	-1.25543	Н	-1.29087	2.47017	2.11776
Н	-9.02186	3.10442	-0.99039	Н	-0.44222	4.15226	3.73781
Н	-9.64343	3.54298	0.59482	Н	2.03022	4.57725	3.84439
Н	-12.6738	-2.83662	-0.71451	Н	3.52605	3.30782	2.33325
Optin	nized cartesian c	oordinates	of C2				
С	-13.35167	-0.68131	-0.90521	С	6.95572	0.40232	1.28868
С	-14.69788	-0.68291	-0.42871	С	8.33888	0.3668	1.38006
С	-15.34383	0.52157	-0.18975	С	13.37572	1.74341	0.8866
С	-14.66582	1.75856	-0.4331	С	14.67415	1.74821	0.40036
С	-13.36399	1.75715	-0.9102	С	15.34674	0.51303	0.13394
С	-15.15611	2.7671	0.40273	С	14.69893	-0.69296	0.35971
С	-14.29905	3.85208	0.62521	С	13.35623	-0.69458	0.84601
С	-12.95473	3.8501	0.13449	С	12.7014	0.49906	1.11748
С	-12.44972	2.76196	-0.58774	С	12.67412	-1.84379	0.42984
С	-14.95874	-1.83742	0.31822	С	11.28317	-1.76544	0.42789
С	-16.01074	-1.74905	1.23682	С	10.58157	-0.53255	0.71114
С	-16.67832	-0.50593	1.48164	С	11.31839	0.64348	1.00182
С	-16.30429	0.6679	0.81498	С	16.30048	0.67149	-0.87534
С	-11.30913	0.65291	-1.02577	С	16.66608	-0.49343	-1.56203
С	-10.5778	-0.52893	-0.74608	С	15.99656	-1.73814	-1.33079
С	-11.28481	-1.76378	-0.48622	С	14.95096	-1.83711	-0.40595
С	-12.67582	-1.83845	-0.50055	С	12.4622	2.75551	0.58578
С	-16.40702	2.18859	1.123	С	12.96533	3.85295	-0.12359
С	-13.73746	-2.78181	0.1337	С	14.30617	3.85838	-0.62374
С	-11.03346	2.17879	-0.8477	С	15.16155	2.7677	-0.42373
С	9.11345	-0.50078	0.57977	С	13.72824	-2.78065	-0.22629
С	8.41476	-1.32266	-0.33185	С	16.40572	2.19635	-1.16126
С	7.03244	-1.28331	-0.43212	С	11.04619	2.17289	0.8479
С	6.26382	-0.42428	0.38037	С	4.7987	-0.39983	0.29039

С	3.99753	-0.06876	1.40679	Η	-16.3823	2.38688	2.20005
С	2.61056	-0.05979	1.30472	Н	-17.341	2.62473	0.74266
Ν	2.00844	-0.37441	0.13063	Н	-13.96898	-3.63473	-0.51914
С	2.7347	-0.69831	-0.9681	Н	-13.39444	-3.19688	1.08765
С	4.12453	-0.71359	-0.9117	Н	-10.57098	2.62581	-1.73906
С	1.64831	0.2533	2.38468	Н	-10.35122	2.36779	-0.01107
С	1.89521	-1.00277	-2.14847	Н	8.96802	-1.9896	-0.98434
С	2.02776	0.60851	3.68111	Н	6.54231	-1.95619	-1.13065
С	1.05524	0.88824	4.63827	Н	6.40997	1.10381	1.91397
С	-0.28898	0.8072	4.27689	Н	8.83827	1.00463	2.10127
С	-0.6092	0.44889	2.97116	Н	10.68785	-2.6262	0.13576
Ν	0.32196	0.17631	2.0383	Н	17.38368	-0.45671	-2.37816
Ν	0.53884	-0.92875	-1.94753	Н	16.2465	-2.57034	-1.98431
С	-0.28505	-1.1952	-2.97789	Н	12.31662	4.67431	-0.41894
С	0.17536	-1.54273	-4.24413	Н	14.59672	4.68376	-1.26927
С	1.55087	-1.6194	-4.45822	Н	13.9621	-3.64397	0.41187
С	2.41334	-1.34681	-3.39899	Н	13.37684	-3.18039	-1.18373
Ru	-0.00094	-0.3798	0.0237	Н	17.34361	2.62388	-0.78076
С	-4.7993	-0.41825	-0.26752	Н	16.37433	2.41101	-2.235
С	-4.05209	0.74962	-0.54221	Н	10.35804	2.3763	0.01954
С	-2.66415	0.73949	-0.44933	Н	10.59212	2.60874	1.74901
Ν	-2.01058	-0.39183	-0.08512	Н	4.47435	0.14653	2.35499
С	-2.68461	-1.53515	0.19397	Н	4.70204	-0.94224	-1.79891
С	-4.07221	-1.57122	0.10639	Н	3.0784	0.66615	3.94141
С	-1.75357	1.87762	-0.70589	Н	1.34401	1.16431	5.64732
С	-1.79404	-2.65931	0.55896	Н	-1.08102	1.01616	4.9878
С	-2.19106	3.14964	-1.08177	Н	-1.64064	0.37254	2.64501
С	-1.26498	4.16567	-1.30572	Н	-1.34592	-1.12345	-2.76499
С	0.0921	3.88717	-1.14876	Н	-0.53464	-1.74695	-5.03822
С	0.4711	2.60223	-0.77287	Н	1.94791	-1.88653	-5.43228
Ν	-0.41481	1.61307	-0.55301	Н	3.4861	-1.4002	-3.54487
Ν	-0.45027	-2.37736	0.55655	Н	-4.57337	1.66289	-0.80121
С	0.41767	-3.35419	0.87937	Н	-4.60505	-2.49544	0.29265
С	0.01506	-4.64254	1.21714	Н	-3.25076	3.34561	-1.19821
С	-1.34738	-4.93827	1.22264	Н	-1.59917	5.15611	-1.5975
С	-2.2551	-3.93533	0.89061	Н	0.84954	4.64594	-1.31285
С	-6.26318	-0.43756	-0.37266	Н	1.51477	2.33961	-0.63956
С	-6.94483	0.41402	-1.26572	Н	1.46652	-3.07948	0.86157
С	-8.32627	0.37557	-1.37967	Н	0.75891	-5.39067	1.46887
С	-9.11122	-0.50277	-0.60101	Н	-1.6997	-5.93177	1.48074
С	-8.42338	-1.34112	0.30442	Н	-3.31874	-4.14403	0.88952
С	-7.04151	-1.31568	0.41018	Н	-6.38633	1.07421	-1.92395
Η	-14.59175	4.6684	1.28119	Н	-8.81432	1.00626	-2.11479
Η	-12.30575	4.66488	0.44704	Н	-8.98667	-1.99575	0.96069
Н	-16.26775	-2.5901	1.87613	Н	-6.56486	-1.95042	1.15246
Η	-17.40167	-0.47911	2.29307				
Н	-10.69382	-2.62974	-0.20056				

Optimized cartesian coordinates of C3

0.25403 0.04704 0.40322 0.95655 -0.42303 -0.55441 0.01402 0.72343 -0.59303 -1.5831 -1.79486 -1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	C C C C C C C N N C C C C H H H H H H H	0.4052 0.35556 -0.00714 0.93005 2.26272 2.61375 1.71662 1.67128 2.54306 2.16032 0.8231 -0.08749 -8.02248 -5.79567 -9.42029 -10.58506 -4.06879 -10.74301	-1.06734 1.82403 -1.84437 -2.58012 -2.52171 -1.73142 -1.02081 1.48278 1.99044 2.8556 3.21026 2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	2.14559 -1.52084 3.21965 3.92986 3.54857 2.46677 1.77658 -1.42334 -2.29997 -3.31162 -3.41924 -2.51266 -1.20943 -0.23979 -2.30592 -2.66711
0.04704 0.40322 0.95655 -0.42303 -0.55441 0.01402 0.72343 -0.59303 -1.5831 -1.79486 -1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	C C C C C C C C C C C C C C C C C C C	0.35556 - 0.00714 0.93005 2.26272 2.61375 1.71662 1.67128 2.54306 2.16032 0.8231 - 0.08749 - 8.02248 - 5.79567 - 9.42029 - 10.58506 - 4.06879 - 10.74301	1.82403 -1.84437 -2.58012 -2.52171 -1.73142 -1.02081 1.48278 1.99044 2.8556 3.21026 2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	-1.52084 3.21965 3.92986 3.54857 2.46677 1.77658 -1.42334 -2.29997 -3.31162 -3.41924 -2.51266 -1.20943 -0.23979 -2.30592 -2.66711
0.40322 0.95655 -0.42303 -0.55441 0.01402 0.72343 -0.59303 -1.5831 -1.79486 -1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	C C C C N N C C C C H H H H H H H H H H	-0.00714 0.93005 2.26272 2.61375 1.71662 1.67128 2.54306 2.16032 0.8231 -0.08749 -8.02248 -5.79567 -9.42029 -10.58506 -4.06879 -10.74301	-1.84437 -2.58012 -2.52171 -1.73142 -1.02081 1.48278 1.99044 2.8556 3.21026 2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	3.21965 3.92986 3.54857 2.46677 1.77658 -1.42334 -2.29997 -3.31162 -3.41924 -2.51266 -1.20943 -0.23979 -2.30592 -2.66711
0.95655 -0.42303 -0.55441 0.01402 0.72343 -0.59303 -1.5831 -1.79486 -1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	C C C N N C C C C H H H H H H H H H H H	0.93005 2.26272 2.61375 1.71662 1.67128 2.54306 2.16032 0.8231 -0.08749 -8.02248 -5.79567 -9.42029 -10.58506 -4.06879 -10.74301	-2.58012 -2.52171 -1.73142 -1.02081 1.48278 1.99044 2.8556 3.21026 2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	3.92986 3.54857 2.46677 1.77658 -1.42334 -2.29997 -3.31162 -3.41924 -2.51266 -1.20943 -0.23979 -2.30592 -2.66711
-0.42303 -0.55441 0.01402 0.72343 -0.59303 -1.5831 -1.79486 -1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	C C N C C C C C H H H H H H H H H H	$\begin{array}{c} 2.26272\\ 2.61375\\ 1.71662\\ 1.67128\\ 2.54306\\ 2.16032\\ 0.8231\\ -0.08749\\ -8.02248\\ -5.79567\\ -9.42029\\ -10.58506\\ -4.06879\\ -10.74301\end{array}$	-2.52171 -1.73142 -1.02081 1.48278 1.99044 2.8556 3.21026 2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	3.54857 2.46677 1.77658 -1.42334 -2.29997 -3.31162 -3.41924 -2.51266 -1.20943 -0.23979 -2.30592 -2.66711
-0.55441 0.01402 0.72343 -0.59303 -1.5831 -1.79486 -1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	C N C C C C H H H H H H H H H	$\begin{array}{c} 2.61375\\ 1.71662\\ 1.67128\\ 2.54306\\ 2.16032\\ 0.8231\\ -0.08749\\ -8.02248\\ -5.79567\\ -9.42029\\ -10.58506\\ -4.06879\\ -10.74301\end{array}$	-1.73142 -1.02081 1.48278 1.99044 2.8556 3.21026 2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	2.46677 1.77658 -1.42334 -2.29997 -3.31162 -3.41924 -2.51266 -1.20943 -0.23979 -2.30592 -2.66711
0.01402 0.72343 -0.59303 -1.5831 -1.79486 -1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	N C C C C H H H H H H H H H	$\begin{array}{c} 1.71662\\ 1.67128\\ 2.54306\\ 2.16032\\ 0.8231\\ -0.08749\\ -8.02248\\ -5.79567\\ -9.42029\\ -10.58506\\ -4.06879\\ -10.74301\end{array}$	-1.02081 1.48278 1.99044 2.8556 3.21026 2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	1.77658 -1.42334 -2.29997 -3.31162 -3.41924 -2.51266 -1.20943 -0.23979 -2.30592 -2.66711
0.72343 -0.59303 -1.5831 -1.79486 -1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	N C C C H H H H H H H H H	$\begin{array}{c} 1.67128\\ 2.54306\\ 2.16032\\ 0.8231\\ -0.08749\\ -8.02248\\ -5.79567\\ -9.42029\\ -10.58506\\ -4.06879\\ -10.74301\end{array}$	1.48278 1.99044 2.8556 3.21026 2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	-1.42334 -2.29997 -3.31162 -3.41924 -2.51266 -1.20943 -0.23979 -2.30592 -2.66711
-0.59303 -1.5831 -1.79486 -1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	C C C H H H H H H H H	2.54306 2.16032 0.8231 -0.08749 -8.02248 -5.79567 -9.42029 -10.58506 -4.06879 -10.74301	1.99044 2.8556 3.21026 2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	-2.29997 -3.31162 -3.41924 -2.51266 -1.20943 -0.23979 -2.30592 -2.66711
-1.5831 -1.79486 -1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	C C H H H H H H H	2.16032 0.8231 -0.08749 -8.02248 -5.79567 -9.42029 -10.58506 -4.06879 -10.74301	2.8556 3.21026 2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	-3.31162 -3.41924 -2.51266 -1.20943 -0.23979 -2.30592 -2.66711
-1.79486 -1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	С С Н Н Н Н Н Н	0.8231 -0.08749 -8.02248 -5.79567 -9.42029 -10.58506 -4.06879 -10.74301	3.21026 2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	-3.41924 -2.51266 -1.20943 -0.23979 -2.30592 -2.66711
-1.02129 1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	C H H H H H H	-0.08749 -8.02248 -5.79567 -9.42029 -10.58506 -4.06879 -10.74301	2.688 -4.29951 -4.29709 2.85513 0.75605 2.87029	-2.51266 -1.20943 -0.23979 -2.30592 -2.66711
1.09541 0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	Н Н Н Н Н Н	-8.02248 -5.79567 -9.42029 -10.58506 -4.06879 -10.74301	-4.29951 -4.29709 2.85513 0.75605 2.87029	-1.20943 -0.23979 -2.30592 -2.66711
0.75541 0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	Н Н Н Н Н	-5.79567 -9.42029 -10.58506 -4.06879 -10.74301	-4.29709 2.85513 0.75605 2.87029	-0.23979 -2.30592 -2.66711
0.38913 0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	Н Н Н Н	-9.42029 -10.58506 -4.06879 -10.74301	2.85513 0.75605 2.87029	-2.30592 -2.66711
0.35581 -1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	Н Н Н Н	-10.58506 -4.06879 -10.74301	0.75605	-2.66711
-1.25394 -0.40648 1.01531 -0.87969 -0.84936 -0.7512	Н Н Н	-4.06879 -10.74301	2 87029	
-0.40648 1.01531 -0.87969 -0.84936	Н Н ч	-10.74301	2.07027	0.02964
1.01531 -0.87969 -0.84936	Н ч		-2.2091	-0.92239
-0.87969 -0.84936	ц	-9.67637	-2.06865	-2.3121
-0.84936	11	-6.64217	3.41696	-1.36419
_0 7512	Н	-7.2964	3.9999	0.16017
-0.1314	Н	-4.16267	-2.21308	1.94749
-0.59033	Н	-3.86457	-2.05889	0.2237
-0.56136	Н	8.64349	1.5782	-0.51213
-0.69444	Н	6.2249	-2.00576	-1.68696
-0.39409	Н	6.91613	1.32626	0.9364
-1.0387	Н	4.64047	-3.21267	-2.56698
-0.86589	Н	2.69943	-4.44652	-3.49727
-0.08347	Н	0.38428	-3.70557	-2.87129
0.55051	Н	0.12781	-1.76198	-1.34549
0.41093	Н	1.00308	2.49207	1.95715
-1.46785	Н	2.02532	4.29846	3.32288
1.35143	Н	4.52815	4.47929	3.39765
-2.31552	Н	5.88219	2.85101	2.10759
-2.83399	Н	-2.38786	-0.62007	2.28931
-2.49061	Н	-2.42651	2.001	-1.11387
-1.64039	Н	-1.05255	-1.87622	3.50002
-1.13779	Н	0.61969	-3.18999	4.77088
1.32026	Н	3.02933	-3.07805	4.07457
2.01767	Н	3.64093	-1.65593	2.13092
2.7764	Н	3.57511	1.6853	-2.1752
2.81466	Н	2.90633	3.23898	-3.99748
2.09368	Н	0.48929	3.88545	-4.19908
0.13531	Н	-1.13675	2.95025	-2.57452
0.60997	Н	12.04467	-0.98148	-1.00343
1.48355	H	10.55681	-2.96671	-0.94115
	H	11.0722	1.29126	-0.78208
1.32795		0 10000	0 (0774	0 65256
1.32795 0.3432	Н	0.12989	-2.08//4	-0.003306
-	$\begin{array}{c} -0.80387\\ -0.08347\\ 0.55051\\ 0.41093\\ -1.46785\\ 1.35143\\ -2.31552\\ -2.83399\\ -2.49061\\ -1.64039\\ -1.13779\\ 1.32026\\ 2.01767\\ 2.7764\\ 2.81466\\ 2.09368\\ 0.13531\\ 0.60997\\ 1.48355\\ 1.32795\end{array}$	-0.80389 H -0.08347 H 0.55051 H 0.41093 H -1.46785 H 1.35143 H -2.31552 H -2.83399 H -2.49061 H -1.64039 H -1.13779 H 1.32026 H 2.01767 H 2.7764 H 2.81466 H 0.13531 H 0.60997 H 1.48355 H 0.32795 H	-0.80389 H 2.07943 -0.08347 H 0.38428 0.55051 H 0.12781 0.41093 H 1.00308 -1.46785 H 2.02532 1.35143 H 4.52815 -2.31552 H 5.88219 -2.83399 H -2.38786 -2.49061 H -2.42651 -1.64039 H -1.05255 -1.13779 H 0.61969 1.32026 H 3.02933 2.01767 H 3.64093 2.7764 H 3.57511 2.81466 H 2.90633 2.09368 H 0.48929 0.13531 H -1.13675 0.60997 H 12.04467 1.48355 H 10.55681 1.32795 H 11.0722	-0.80589H 2.07743 -4.44052 -0.08347 H 0.38428 -3.70557 0.55051 H 0.12781 -1.76198 0.41093 H 1.00308 2.49207 -1.46785 H 2.02532 4.29846 1.35143 H 4.52815 4.47929 -2.31552 H 5.88219 2.85101 -2.83399 H -2.38786 -0.62007 -2.49061 H -2.42651 2.001 -1.64039 H -1.05255 -1.87622 -1.13779 H 0.61969 -3.18999 1.32026 H 3.02933 -3.07805 2.01767 H 3.64093 -1.65593 2.7764 H 3.57511 1.6853 2.81466 H 2.90633 3.23898 2.09368 H 0.48929 3.88545 0.13531 H -1.13675 2.95025 0.60997 H 12.04467 -0.98148 1.48355 H 10.55681 -2.96671 1.32795 H 11.0722 1.29126

С	12.18074	-1.54649	0.048	С	2.56594	-1.50053	-1.62707
С	11.5089	-0.39033	-0.37326	С	2.90644	1.72909	1.74534
С	12.26248	0.6822	-0.87059	С	2.90779	-2.43228	-2.60341
С	13.64731	0.5986	-0.94745	С	1.90812	-3.09236	-3.30703
С	-8.09864	-1.46892	0.79806	С	0.57958	-2.8044	-3.01551
С	-9.39549	-1.40671	0.32282	С	0.3008	-1.86627	-2.03149
С	-10.00376	-0.14361	0.0589	Ν	1.25799	-1.22367	-1.34816
С	-9.29626	1.02628	0.27472	Ν	1.55528	1.59931	1.59461
С	-7.95419	0.95791	0.74061	С	0.74444	2.33874	2.36395
С	-7.36188	-0.26385	1.01528	С	1.21795	3.23481	3.31229
С	-7.22198	2.06648	0.30873	С	2.59185	3.37365	3.4732
С	-5.84126	1.91717	0.29657	С	3.44065	2.61183	2.67977
С	-5.2079	0.65467	0.5823	С	7.21488	-0.13904	-0.15428
С	-5.99428	-0.48159	0.88496	С	7.85198	-1.34911	-0.46923
С	-10.96247	-0.25874	-0.94565	С	9.23294	-1.42909	-0.53426
С	-11.26927	0.91828	-1.63382	С	10.03918	-0.30454	-0.29635
С	-10.53915	2.12353	-1.41377	С	9.39721	0.90443	0.01596
C	-9.48797	2.17337	-0.49693	C	8.01663	0.9864	0.09011
C	-7.24131	-2.51992	0.4856	Н	14.07292	-2.52281	0.31879
Ċ	-7.80218	-3.5863	-0.2201	Н	15.38549	-0.61808	-0.58079
Ċ	-9.14034	-3.52282	-0.70714	Н	11.61778	-2.37601	0.46687
C	-9.93648	-2.39381	-0.50074	Н	11.75874	1.57422	-1.23256
C	-8.22648	3.04639	-0.33307	Н	14.2161	1.43247	-1.34734
C	-11.14467	-1.76504	-1.22554	Н	-5.20603	2.74868	0.00127
C	-5.80528	-2.01237	0.73289	Н	-11.9898	0.91377	-2.44772
C	-3.75433	0.54681	0.44422	Н	-10.74806	2.96294	-2.0717
C	-3.03041	-0.37673	1.22405	Н	-7.19851	-4.43778	-0.52394
C	-1.65098	-0.46776	1.10768	Н	-9.47628	-4.32984	-1.35312
N	-0.98562	0.3318	0.24856	Н	-7.86632	3.42818	-1.29346
C	-1.63581	1.22778	-0.52353	Н	-8.40962	3.91798	0.3093
C	-3 01564	1 3494	-0 44866	Н	-12,09937	-2.14285	-0.83633
C	-0.75652	-1 36363	1 86443	Н	-11 13175	-1 98297	-2 29799
C	-0.72602	1 99779	-1 3928	Н	-5 1357	-2.25424	-0 10008
C	-1 20474	-2.28633	2.8057	н	-5 37448	-2.47227	1 63372
C	-0.28981	-3.08951	3.47477	Н	-3.56471	-0.98689	1.94237
C	1 06288	-2.95137	3 18506	Н	-3 53656	2.04668	-1 09371
C	1 44952	-2.01532	2.23623	Н	-2.26468	-2.3758	3 01473
N	0 57447	-1 23586	1 58553	Н	-0 62941	-3 81094	4 21084
N	0.60114	1 70356	-1 25962	н	1 81357	-3 55564	3 6823
C	1 48982	2 36579	-2 0136	Н	2 49385	-1 8733	1 97875
C	1 12127	3 34089	-2.92957	Н	2.53018	2.09462	-1 86817
C	-0 22734	3 64632	-3 0734	Н	1 88233	3 84548	-3 51446
C	-1 15606	2 96664	-2 29544	н	-0 55322	4 40245	-3 78026
Ru	0.99899	0.21094	0 14299	н	-2 21297	3 18802	_2 39059
C	5 75209	-0.05/39	-0.08/03	н	5 30086	_1 50007	-1.64208
C	4 93681	-0.84346	-0.00+05	н	5 71193	1 41614	1 49109
C	3 55451	-0 75154	-0 82942	н	3 95056	-2.64078	-2.81427
N	2 98282	0 10023	0.02742	Ч	2 164/6	-3 81955	-4 07058
C	2.70202	0.10023	0.04752	и П	_0.73/75	-3.01955	_3 5385
C	5 11207	0.07944	0.81572	и П	-0.23423	-1.608/6	-5.5565
\sim	5.11207	0.01/0/	0.01373	11	-0./1223	-1.00040	-1./02/

Н	-0.31923	2.19678	2.20397	Н	9.70047	-2.37431	-0.79178
Н	0.51668	3.80784	3.90881	Н	9.99527	1.78719	0.21963
Н	2.99875	4.06379	4.20509	Н	7.5572	1.94658	0.30965
Н	4.51549	2.70273	2.78786				
Н	7.26461	-2.24834	-0.63542				
Optim	nized cartesian o	coordinates	of C4				
С	13.46051	-1.72159	-0.06937	С	-0.27924	3.262444	-3.36195
С	14.1893	-0.77358	-0.78076	С	-1.20202	2.720413	-2.47956
С	12.07954	-1.61122	0.031709	Ru	0.960255	0.300016	0.251387
С	11.39967	-0.54847	-0.57507	С	5.661527	-0.08666	-0.12503
С	12.14434	0.399257	-1.28702	С	4.814967	-0.98142	-0.78891
С	13.52509	0.286745	-1.38953	С	3.441701	-0.84895	-0.65972
С	-7.99149	-1.47748	0.8244	Ν	2.927316	0.135223	0.099332
С	-9.23943	-1.52146	0.230997	С	3.708458	1.01393	0.753179
С	-9.88907	-0.31025	-0.16214	С	5.087786	0.923227	0.655756
С	-9.2676	0.906872	0.048563	С	2.410681	-1.6892	-1.28659
С	-7.97496	0.94931	0.654573	С	2.939004	2.000638	1.52568
С	-7.34661	-0.21868	1.043658	С	2.694147	-2.76751	-2.11324
С	-7.261	2.058373	0.199476	С	1.652017	-3.50423	-2.65606
С	-5.87637	1.977914	0.278453	С	0.345829	-3.14405	-2.35722
С	-5.21271	0.773623	0.681048	С	0.125054	-2.05782	-1.52654
С	-5.96172	-0.36793	1.013112	Ν	1.124007	-1.34199	-1.00103
C	-10.7253	-0.53839	-1.2548	N	1.584642	1.871821	1.44506
Ċ	-11.0126	0.569064	-2.05249	C	0.806947	2.731221	2.110383
Č	-10.3714	1.821935	-1.83692	C	1.325309	3.754561	2.886409
C	-9 43346	1 98773	-0.81875	C	2,702775	3 892935	2,978066
C	-7 04413	-2.48255	0.63508	C	3 516603	3 00555	2 28956
C	-7 46709	-3 60656	-0.07335	C C	7 124921	-0 20456	-0 24476
C	-8 75251	-3 65239	-0 68293	C C	7 737369	-1 45691	-0 35946
C	-9 63365	-2 57505	-0 59438	C C	9 114564	-1 56616	-0 46341
C C	-8 23778	2.931831	-0 60587	C C	9 931673	-0 42995	-0 46483
C	-10 7896	-2.06039	-1 4696	C C	9 314979	0.821718	-0 35664
C C	-5 66906	-1 8796	0.963512	C C	7 938585	0.93322	-0 24469
C C	-3 74552	0.601/128	0.580516	и Ч	13 96991	-2 5/838	0.416144
C C	3 02782	0.071420	1 /82822	и П	15 26846	0.86050	0.410144
C C	-1 65026	-0.10270	1.402022	и И	11 5255	-0.00057	0.607725
N N	-1.00679	0.20213	0 30738	н Н	11.5255	1 21008	-1 78/28
N C	-1.00079	1 2/5513	0.39730	и П	14.08358	1.21990	1 053/3
C C	-1.00028	1.245515	0.40094	и П	5 26123	2 8022044	-1.95545
C C	-3.03797	0.08774	-0.41007	и П	-5.20125	0.466333	-0.07033
C C	-0.74343	-0.90774	1 47000		-11.020	0.400333	-2.94552
C C	-0.70307	1.0/3043	-1.4/009	п u	-10.3323	2.002540	-2.37302
C	-1.10321	-1.70909	3.260133	П	-0.77031	-4.41384	-0.29420
C	-0.22892	-2.47545	4.029209	П	-8.90997	-4.49407	-1.3341
C	1.112429	-2.3/804	3.08//0/	Н	-7.80203	3.230430	-1.55418
	1.4/2985	-1.38481	2.011093	H	-8.5219	3.839278	-0.0593
IN N	0.5/6/3	-0.90521	1.889988	H	-11./50	-2.4/906	-1.10334
	0.555372	1.5/004/	-1.550/9	H	-10.0498	-2.32027	-2.52044
C	1.438943	2.0962/1	-2.18422	H	-4.92454	-2.11866	0.199105
C	1.063249	2.944619	-3.21265	Н	-5.2/451	-2.2364/	1.914/66

Н	-3.55113	-0.61879	2.27726	Н	3.722973	-3.02802	-2.32908
Н	-3.56335	1.969519	-1.15154	Н	1.860974	-4.34881	-3.30297
Н	-2.21719	-1.82906	3.536193	Н	-0.49971	-3.6907	-2.75738
Н	-0.54679	-3.0868	4.864921	Н	-0.87811	-1.74124	-1.26721
Н	1.878548	-2.90912	4.24052	Н	-0.26144	2.583093	2.009461
Н	2.507137	-1.48086	2.305949	Н	0.651106	4.425375	3.4054
Н	2.474728	1.820298	-2.02669	Н	3.142539	4.68216	3.577424
Н	1.818769	3.34422	-3.87856	Н	4.594497	3.094231	2.346014
Н	-0.60774	3.924293	-4.15538	Н	7.135818	-2.36032	-0.34897
Н	-2.25577	2.953798	-2.57335	Н	9.560071	-2.55109	-0.55909
Н	5.23037	-1.75915	-1.41759	Н	9.920558	1.722219	-0.34316
Н	5.719582	1.61657	1.196802	Н	7.492264	1.92012	-0.17326

7) References

- S1 B. B. Shrestha, S. Karanjit, G. Panda, S. Higashibayashi, H. Sakurai, *Chem. Lett.* 2013, **42**, 386.
- S2 T. Amaya, S. Seki, T. Moriuchi, K. Nakamoto, T. Nakata, H. Sakane, A. Saeki, S. Tagawa and T. Hirao, *J. Am. Chem. Soc.*, 2009, **131**, 408–409.
- S3 Z. Zhang, H. Wang, X. Wang, Y. Li, B. Song, O. Bolarinwa, R. A. Reese, T. Zhang, X. Q. Wang, J. Cai, B. Xu, M. Wang, C. Liu, H. B. Yang and X. Li, *J. Am. Chem. Soc.*, 2017, **139**, 8174–8185.
- S4 J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, 2006.
- S5 C. Reichardt, Solvents and Solvent Effects in Organic Chemistry; WILEY-VCH, Weinheim, 2003.
- S6 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

S7 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580–592.