Supporting information

Constructing a surface spinel layer to stabilize the oxygen frame of

Li-rich layered oxides

Xiaoyan Xie, Jiaxiang Cui, Zhenkun Liu, Zhuo Yao, Xiaokai Ding, Chenyu Liu* and

Dong Luo*

Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of

Chemical Engineering and Light Industry, Guangdong University of Technology,

Guangzhou 510006, China.

*Corresponding authors:

Chenyu Liu (cy.liu@gdut.edu.cn); Dong Luo (luodong@gdut.edu.cn)

List of contents

1. Supplementary Figs:

Figure S1. Scanning electron microscope images of various CA-treatment: a) 50g/L
CA-treatment and b) 210g/L CA-treatment1
Figure S2. Transmission electron microscope images of the as-prepared PRI materials.
Figure S3. Transmission electron microscope images of the as-prepared CA-LR
materials
Figure S4. Raman spectra before cycling. a) PRI, b) 50g/L-CA, c) 84g/L-CA and d)
210g/L-CA samples
Figure S5. Cycle voltammetry curves of the as-prepared pristine material at the scan
rate of 0.1 mV s ⁻¹ starting from the oxidation process under the 1 st and 2 nd cycle5
Figure S6. a) Initial galvanostatic cycling profile of the as-prepared pristine material
at the current density of 0.1C. b) Iinitial dQ/dV image of the PRI at the current density
of 0.1 C5
Figure S7. a) Medium voltage versus cycle number plot PRI samples at 1C. b)
Normalized charge-discharge curves of the PRI sample in the 10 th , 50 th , 100 th , 150 th and
200 th cycles at 1 C
Figure S8. Charge-discharge curves of a) PRI and b) CA-LR materials at 1 C between
2.0 and 4.8 V
Figure S9. Cycling performance of the Li-rich material before and after citric acid
treatment between 2.0 and 4.8 V with current density of 1 C7
Figure S10. Equivalent electric circuit used to fit the experimental7
Figure S11. a) Ni 2p, b) Mn 2p, c) P 2p and d) Mn 3s X-ray photoelectron spectroscopy

spectra after 200 cycles
2. Supplementary Tables:
Table S1. Lattice parameters of the samples. 9
Table S2. Occupancy of atoms in PRI and CA-LR sample as calculated by Rietveld
refinement10
Table S3. Area ratios of peak I, II and III in Raman spectra of the three samples11
Table S4. Parameters for electrochemical impedance spectroscopy in term of the fitted
results
Table S5. Diffusion coefficient of Li ⁺ for PRI and CA-LR samples before and after
charged to 4.8V

Figure S1. Scanning electron microscope images of various CA-treatment: **a)** 50g/L CA-treatment and **b)** 210g/L CA-treatment.

Figure S2. Transmission electron microscope images of the as-prepared PRI materials.

Figure S2 shows a selected domain of the transmission electron microscope images for the as-prepared PRI materials, which belong to the monoclinic structure of Li_2MnO_3 with spcing group of C2/m. Figure S2a shows a zone axis along (1,-1,2), which d-spacings was 0.15 and 0.24nm belongs to the (2,4,1) and (-2,0,1) planes, respectively, for the angle of 57°, and the slight and sharp FFT pattern was conducted. Another area of the PRI materials showed the (0,-1,2) zone axis along the (0,2,1), (2,2,1) and (-2,2,1) planes, for d-spacing of 0.32nm, 0.34nm and 0.43nm, respectively, and the included angle was 71.5° and 116.0°.

Figure S3. Transmission electron microscope images of the as-prepared CA-LR materials.

In addition, **Figure S3a** showed the diffuse streak pattern and the corresponding FFT pattern of the CA-LR materials, indexed to the Li_2MnO_3 phase (C2/m spacing group) along the (1,-3,6) zone axis, and d-spacing of 0.16 and 0.31nm, with the included angle of 81.0°. It was worthy to note that diffuse streak was indistinct, which was due to the treatment of citric acid to pre-activate the Li_2MnO_3 phase. Another region in Figure S3b showed the well-defined lattice stripe along (2,-3,2) zone axis, for d-spacing of 0.35 and 0.28nm, with the angle of 43.0°.

Figure S4. Raman spectra before cycling. **a)** PRI, **b)** 50g/L-CA, **c)** 84g/L-CA and **d)** 210g/L-CA samples.

Figure S5. Cycle voltammetry curves of the as-prepared pristine material at the scan rate of 0.1 mV s⁻¹ starting from the oxidation process under the 1^{st} and 2^{nd} cycle.

Figure S6. a) Initial galvanostatic cycling profile of the as-prepared pristine material at the current density of 0.1C. **b)** Initial dQ/dV image of the PRI at the current density of 0.1 C.

Figure S7. a) Medium voltage versus cycle number plot PRI samples at 1C. **b)** Normalized charge-discharge curves of the PRI sample in the 10th, 50th, 100th, 150th and 200th cycles at 1 C

Figure S8. Charge-discharge curves of **a**) PRI and **b**) CA-LR materials at 1 C between 2.0 and 4.8 V.

Figure S9. Cycling performance of the Li-rich material before and after citric acid treatment between 2.0 and 4.8 V with current density of 1 C.

Figure S10. Equivalent electric circuit used to fit the experimental.

Figure S11. a) Ni 2p, b) Mn 2p, c) P 2p and d) Mn 3s X-ray photoelectron spectroscopy spectra after 200 cycles.

	sample		PRI	CA-LR
Lattice R-3m parameter phase	R-3m	a(Å)	2.8594	2.8601
		c(Å)	14.2566	14.2649
	phase	V(Å ³)	100.95	101.06
		c/a	4.9859	4.9876

 Table S1. Lattice parameters of the samples.

Sample	Atom	Site	X	у	Z	Occupancy	Mental in Li 3a site
	Li	3a	0	0	0	0.9573	
	Ni	3a	0	0	0	0.0427	
DDI	Li	3b	0	0	0.5	0.0427	1.070/
PRI	Ni	3b	0	0	0.5	0.4573	4.27%
	Mn	3b	0	0	0.5	0.5000	
	Ο	6c	0	0	0.242	1.0000	
Sample	Atom	Site	X	у	Z	Occupancy	Mental in Li 3a site
Sample	Atom Li	Site 3a	x 0	у 0	z 0	Occupancy 0.9152	Mental in Li 3a site
Sample	Atom Li Ni	Site 3a 3a	x 0 0	y 0 0	z 0 0	Occupancy 0.9152 0.0848	Mental in Li 3a site
Sample	Atom Li Ni Li	Site 3a 3a 3b	x 0 0 0	y 0 0 0	z 0 0 0.5	Occupancy 0.9152 0.0848 0.0848	Mental in Li 3a site
Sample CA-LR	Atom Li Ni Li Ni	Site 3a 3a 3b 3b	x 0 0 0 0	y 0 0 0 0	z 0 0 0.5 0.5	Occupancy 0.9152 0.0848 0.0848 0.4152	Mental in Li 3a site 8.48%
Sample CA-LR	Atom Li Ni Li Ni Mn	Site 3a 3a 3b 3b 3b	x 0 0 0 0 0	y 0 0 0 0 0	z 0 0.5 0.5 0.5	Occupancy 0.9152 0.0848 0.0848 0.4152 0.5000	Mental in Li 3a site 8.48%

Table S2. Occupancy of atoms in PRI and CA-LR sample as calculated by Rietveld refinement.

sample	Peak I (%)	Peak II (%)	Peak III (%)
PRI	51.4	48.6	0
50g/L-CA	61.0	22.5	16.5
84g/L-CA	58.9	25.0	16.1
210g/L-CA	67.7	19.4	12.9

Table S3. Area ratios of peak I, II and III in Raman spectra of the three samples.

Table S4. Parameters for electrochemical impedance spectroscopy in term of the fitted results.

sample	$R_s(\Omega)$	$R_{sf}(\Omega)$	$R_{ct} (\Omega)$	$R_{total} (\Omega)$
PRI	2.615	214.8	908.8	1126.2
PRI-4.8V	4.026	86.3	1805	1895.3
CA	1.683	138.2	7.269×10 ⁻²	140.0
CA-4.8V	2.196	127.8	407.6	537.6

Table S5. Diffusion coefficient of Li⁺ for PRI and CA-LR samples before and after charged to 4.8V.

	PRI	PRI-4.8V	CA	CA-4.8V
D (Li ⁺)	5.60×10 ⁻¹⁷	2.19×10 ⁻¹⁶	9.51×10 ⁻¹⁷	4.00×10 ⁻¹⁵