Electronic Supplementary Information

1,10-Penanthroline ring-opening mediated by cis-{Re(CO)₂} complexes

Purificación Cañadas, Julio Pérez, Ramón López and Lucía Riera

Table of Contents	S1
Experimental Section	S2
Crystal Structure Determination Details	S9
Computational Details	S10
References	S17
NMR spectra	S19

Experimental Section

General: All manipulations were carried out under an argon atmosphere using Schlenk techniques. Solvents were distilled from Na (hexane), Na/benzophenone (THF and Et₂O) and CaH₂ (MeCN and CH₂Cl₂). Compounds *fac*-[Re(CO)₃(N-N)(OTf)] (N-N= bipy, phen) were prepared as previously reported.¹ Deuterated dichloromethane, was stored under nitrogen in a Young tube and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 400, Bruker Advance 300 or DPX-300 spectrometer. NMR spectra are referred to the internal residual solvent peak for ¹H and ¹³C{¹H} NMR. NMR samples were prepared under nitrogen using Kontes manifolds purchased from Aldrich. IR solution spectra were obtained in a Perkin-Elmer FT 1720-X spectrometer using 0.2 mm. CaF₂ cells. NMR Labelling Schemes:

Synthesis of *fac*-[**Re**(**bipy**)(**CO**)₃(**PMe**₃)]**OTf**.² PMe₃ (38 μL, 0.43 mmol) was added to a solution of *fac*-[**Re**(bipy)(CO)₃(OTf)] (210 mg, 0.36 mmol) in CH₂Cl₂ (20 mL), and the mixture was stirred at room temperature overnight. Then, the solution was evaporated under reduced pressure to a volume of 5 mL, and addition of hexane (20 mL) caused the precipitation of a yellow solid that was washed with hexane (2 × 20 mL), diethylether (1 × 20 mL) and dried under vacuum. Yield: 220 mg (93 %). IR (CH₂Cl₂, cm⁻¹): 2038, 1952, 1923 (v_{CO}). ¹H NMR (CD₂Cl₂): δ 8.98 [d (*J*= 5.4 Hz), 2H, H_{6,6}], 8.75 [d (*J*= 8.2 Hz), 2H, H_{3,3}], 8.32 [m, 2H, H_{4,4}], 7.72 [m, 2H, H_{5,5}], 1.13 [d (*J*_{HP}= 9.0 Hz), 9H, P(CH₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂): δ 195.0 [d (*J*_{CP}= 7.5 Hz), 2CO], 188.4 [d (*J*_{CP}= 59.9 Hz), CO], 156.0 [C_{2,2}], 153.6 [C_{6,6}], 141.4 [C_{4,4}], 129.0 [C_{5,5}], 126.1 [C_{3,3}], 13.9 [d (*J*_{CP}= 31.9 Hz), P(CH₃)₃]. ³¹P{¹H} NMR (CD₂Cl₂): *-*27.8.

Synthesis of *fac*-[Re(CO)₃(phen)(PMe₃)]OTf.³ Complex *fac*-[Re(CO)₃(phen)(PMe₃)]OTf was prepared as described above for the synthesis of the bipy analog starting from *fac*-[Re(bipy)(CO)₃(OTf)] (200 mg, 0.33 mmol) and PMe₃ (35 μL, 0.40 mmol). Compound *fac*-[Re(CO)₃(phen)(PMe₃)]OTf was obtained as a yellow solid. Yield: 210 mg (95 %). IR (CH₂Cl₂, cm⁻¹): 2038, 1953, 1926 (v_{CO}). ¹H NMR (CD₂Cl₂): δ 9.39 [d (*J*= 4.6 Hz), 2H, H_{2,9}], 8.87 [d (*J*= 8.3 Hz), 2H, H_{4,7}], 8.27 [s, 2H, H_{5,6}], 8.10 [m, 2H, H_{3,8}], 1.00 [d (*J*_{HP}= 8.4 Hz), 9H, P(CH₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂): δ 195.1 [d (*J*_{CP}= 6.7 Hz), 2CO], 188.4 [d (*J*_{CP}= 60.7 Hz), CO], 154.4 [C_{2,9}], 146.9, 132.0 [quaternary], 140.4 [C_{4,7}], 129.1 [C_{5,6}], 127.6 [C_{3,8}], 13.8 [d (*J*_{CP}= 32.0 Hz), P(CH₃)₃]. ³¹P{¹H} NMR (CD₂Cl₂): -28.5.

Synthesis of *cis,trans*-[Re(bipy)(CO)₂(NCMe)(PMe₃)]OTf (1). Me₃NO·2H₂O (98 mg, 0.88 mmol) was added to a solution of *fac*-[Re(bipy)(CO)₃(PMe₃)]OTf (380 mg, 0.58 mmol) in MeCN (25 mL), and the mixture was refluxed for 5 h. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using dichloromethane-acetone (1:1 v/v) as eluent. The resulting orange solution was evaporated to a volume of 5 mL and addition of hexane (20 mL) caused the precipitation of compound **1** as an orange solid, which was washed with diethyl ether (20 mL), and dried under vacuum. Yield: 336 mg (87 %). IR (CH₂Cl₂, cm⁻¹): 1937, 1863 (v_{CO}). ¹H NMR (CD₂Cl₂): δ 8.98 [d (*J*= 5.4 Hz), 2H, H_{6.6}], 8.63 [d (*J*= 8.0 Hz), 2H, H_{3.3}], 8.23 [m, 2H, H_{4.4}], 7.60 [m, 2H, H_{5.5}], 2.16 [s, 3H, NCCH₃], 1.13 [d (*J*_{HP}= 9.2 Hz), 9H, P(CH₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂): δ 201.7 [d (*J*_{CP}= 7.2 Hz), CO], 156.4 [C_{2.2}], 152.7 [C_{6.6}], 140.4 [C_{4.4}], 128.3 [C_{5.5}], 125.1 [C_{3.3}], 123.0 [d (*J*_{CP}= 9.7 Hz), NCCH₃], 17.1 [d (*J*_{CP}= 35.6 Hz), P(CH₃)₃], 4.2 [NCCH₃]. ³¹P{¹H} NMR (CD₂Cl₂): -21.1. Anal. Calcd. for C₁₈H₂₀F₃N₃O₅PReS: C 32.53, H 3.03, N 6.32. Found: C 32.49, H 3.10, N 6.20.

Synthesis of *cis,trans*-[Re(CO)₂(NCMe)(phen)(PMe₃)]OTf (2). Compound 2 was prepared as described above for compound 1, starting from *fac*-[Re(CO)₃(phen)(PMe₃)]OTf (340 mg, 0.50 mmol) and Me₃NO·2H₂O (85 mg, 0.76 mmol). Compound 2 was obtained as an orange microcrystalline solid. Yield: 256 mg (74 %). IR (CH₂Cl₂, cm⁻¹): 1933, 1866 (v_{CO}). ¹H NMR (CD₂Cl₂): δ 9.38 [d (*J*= 5.2 Hz), 2H, H_{2,9}], 8.77 [d (*J*= 8.0 Hz), 2H, H_{4,7}], 8.23 [s, 2H, H_{5,6}], 8.01 [dd (*J*= 8.0, 5.2 Hz), 2H, H_{3,8}], 2.06 [s, 3H, NCCH₃], 1.03 [d (*J*_{HP}= 9.1 Hz), 9H, P(CH₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂): δ 201.6 [d (*J*_{CP}= 6.7 Hz), CO], 153.2 [C_{2,9}], 147.0, 131.4 [quaternary], 139.5 [C_{4,7}], 128.5 [C_{5,6}], 126.8 [C_{3,8}], 123.1 [d (*J*_{CP}= 11.2 Hz), NCCH₃), 17.0 [d (*J*_{CP}= 35.9 Hz), P(CH₃)₃], 4.1 [NCCH₃]. ³¹P{¹H} NMR (CD₂Cl₂): -21.5. Anal. Calcd. for C₁₈H₂₀F₃N₃O₅PReS: C 34.88, H 2.93, N 6.10. Found: C 34.96, H 2.88, N 5.91.

Synthesis of *cis,trans*-[**Re(bipy)(CO)**₂(**N-Melm)(PMe**₃)]**OTf (1a).** N-Melm (38 μL, 0.47 mmol) was added to a solution of *cis,trans*-[**Re(bipy)**(CO)₂(NCMe)(PMe₃)]**OTf (1)** (240 mg, 0.36 mmol) in THF (30 mL), and the mixture was refluxed for 3 h. The solvent was evaporated under reduced pressure to a volume of 5 mL, addition of hexane (20 mL) caused the precipitation of compound **1a** as an orange solid, which was washed with hexane (2 x 20 mL), diethyl ether (2 x 20 mL), and dried under vacuum. Yield: 235 mg (92 %). IR (CH₂Cl₂, cm⁻¹): 1922, 1817 (v_{CO}). ¹H NMR (CD₂Cl₂): δ 9.05 [d (*J*= 5.1 Hz), 2H, H_{6.6}·], 8.57 [d (*J*= 8.1 Hz), 2H, H_{3.3}·], 8.20 [m, 2H, H_{4.4}·], 7.61 [m, 2H, H_{5.5}·], 7.23 [s, 1H, NC*H*N N-MeIm], 6.72, 6.45 [s, 1H each, *CH* N-MeIm], 3.55 [s, 3H, *CH*₃ N-MeIm], 1.19 [d (*J*_{HP}= 9.0 Hz), 9H, P(CH₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂): δ 204.4 [CO], 156.0 [C_{2.2}·], 152.2 [C_{6.6}·], 140.1 [C_{4.4}·], 139.9 (NCHN N-MeIm), 130.2 (CH N-MeIm), 128.2 [C_{5.5}·], 125.1 [C_{3.3}·], 122.2 (CH N-MeIm), 34.7 (CH₃ N-MeIm), 17.8 [d (*J*_{CP}= 34.5 Hz), P(CH₃)₃]. ³¹P{¹H} NMR (CD₂Cl₂): -21.2. Anal. Calcd. for C₂₀H₂₃F₃N₄O₅PReS: C 34.04, H 3.29, N 7.94. Found: C 34.23, H 3.18, N 7.98.

Synthesis of *cis,trans*-[**Re(bipy)(CO)**₂(**N-MesIm)(PMe**₃)]**OTf** (**1b**). N-MesIm (67 mg, 0.36 mmol) was added to a solution of *cis,trans*-[**Re(bipy)**(CO)₂(NCMe)(PMe₃)]**OTf** (**1**) (200 mg, 0.30 mmol) in THF (30 mL), and the mixture was refluxed for 3 h. The solvent was evaporated under reduced pressure to a volume of 5 mL, addition of hexane (20 mL) caused the precipitation of compound **1b** as an orange solid, which was washed with hexane (2 x 20 mL), diethyl ether (2 x 20 mL), and dried under vacuum. Yield: 210 mg (86 %). IR (CH₂Cl₂, cm⁻¹): 1923, 1849 (v_{CO}). ¹H NMR (CD₂Cl₂): δ 9.08 [d (*J*= 4.7 Hz), 2H, H_{6.6}], 8.62 [d (*J*= 8.3 Hz), 2H, H_{3.3}], 8.23 [m, 2H, H_{4.4}], 7.61 [m, 2H, H_{5.5}], 7.24 [s, 1H, NC*H*N N-MesIm], 6.92 [s, 2H, Mes], 6.72, 6.58 [s, 1H each, *CH* N-MesIm], 2.28 [s, 3H, *CH*₃ Mes], 1.69[s, 6H, *CH*₃ Mes], 1.24 [d (*J*_{HP}= 8.9 Hz), 9H, P(*CH*₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂): δ 204.4 [d (*J*_{CP}= 7.5 Hz), *CO*], 156.1 [C_{2.2}], 152.2 [C_{6.6}], 140.5, 135.1, 130.2 [quaternary Mes], 140.4 [C_{4.4}], 139.8 [NCHN N-MesIm], 130.2 (CH N-MesIm), 129.6 (2×CH Mes), 128.4 [C_{5.5}], 125.3 [C_{3.3}], 122.6 [CH N-MesIm], 21.1[CH₃ Mes], 17.9 [d (*J*_{CP}= 34.7 Hz), P(CH₃)₃], 17.2 [2×CH₃ Mes]. ³¹P{¹H} NMR (CD₂Cl₂): -21.2. Anal. Calcd. for C₂₈H₃₁F₃N₄O₅PReS: C 41.53, H 3.86, N 6.92. Found: C 41.25, H 3.60, N 6.82.

Synthesis of *cis,trans*-[**Re**(**CO**)₂(**N**-**Melm**)(**phen**)(**PMe**₃)]**OTf** (**2a**). Compound **2a** was prepared as decribed above for **1a**, starting from *cis,trans*-[**Re**(CO)₂(NCMe)(phen)(PMe₃)]OTf (**2**) (262 mg, 0.38 mmol) and N-Melm (40 μ L, 0.49 mmol). Compound **2a** was obtained as an orange solid. Yield: 245 mg (88 %). IR (CH₂Cl₂, cm⁻¹): 1925, 1850 (v_{C0}). ¹H NMR (CD₂Cl₂): δ 9.47 [d (*J*= 5.1 Hz), 2H, H_{2,9}], 8.72 [d (*J*= 8.2 Hz), 2H, H_{4,7}], 8.17 [s, 2H, H_{5,6}], 8.01 [dd (*J*= 8.2, 5.1 Hz), 2H, H_{3,8}], 7.27 [s, 1H, NC*H*N N-MeIm], 6.60, 6.28 [s, 1H each, *CH* N-MeIm], 3.46 [s, 3H, *CH*₃ N-MeIm], 1.04 [d (*J*_{HP}= 8.9 Hz), 9H, P(CH₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂): δ 204.4 [CO], 153.0 [C_{2,9}], 147.1, 131.5 [quaternary], 140.3 [NCHN N-MeIm], 139.4 [C_{4,7}], 129.9 [CH N-MeIm], 128.8 [C_{5,6}], 127.0 [C_{3,8}], 122.3 [CH N-MeIm], 34.8 [CH₃ N-MeIm], 17.9 [d (*J*_{CP}= 34.5 Hz), P(CH₃)₃]. ³¹P{¹H} NMR (CD₂Cl₂): -21.6. Anal. Calcd. for C₂₂H₂₃F₃N₄O₅PReS: C 36.21, H 3.18, N 7.68. Found: C 36.16, H 2.97, N 7.32.

Synthesis of *cis,trans*-[Re(CO)₂(N-MesIm)(phen)(PMe₃)]OTf (2b). Compound 2b was prepared as decribed above for 1b, starting from *cis,trans*-[Re(CO)₂(NCMe)(phen)(PMe₃)]OTf (2) (230 mg, 0.33 mmol) and N-MesIm (81 mg, 0.43 mmol). Compound 2b was obtained as an orange solid. Yield: 225 mg (82 %). IR (CH₂Cl₂, cm⁻¹): 1926, 1851 (v_{CO}). ¹H NMR (CD₂Cl₂): δ 9.49 [d (*J*= 5.0 Hz), 2H, H_{2,9}], 8.76 [d (*J*= 8.2 Hz), 2H, H_{4,7}], 8.20 [s, 2H, H_{5,6}], 8.01 [dd (*J*= 8.2, 5.0 Hz), 2H, H_{3,8}], 7.09 [s, 1H, NC*H*N N-MesIm], 6.85 [s, 2H, Mes], 6.57, 6.47 [s, 1H each, *CH* N-MesIm], 2.24 [s, 3H, *CH*₃ Mes], 1.49 [s, 6H, *CH*₃ Mes], 1.14 [d (*J*_{HP}= 9.0 Hz), 9H, P(*CH*₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂): δ 204.2 [d (²*J*_{CP}= 6.8 Hz), *CO*], 152.7 [C_{2,9}], 146.8, 140.4, 134.9, 131.8, 131.4 [quaternary], 139.5 [NCHN N-MesIm], 139.4 [C_{4,7}], 130.1 (*CH* N-MesIm), 129.5 (2×*CH* Mes), 128.7 [C_{5,6}], 127.0 [C_{3,8}], 122.4 [CH N-MesIm], 21.2 [*CH*₃ Mes], 17.8 [d (*J*_{CP}= 34.8 Hz), P(*CH*₃)₃], 17.1 (2×*CH*₃ Mes]. ³¹P{¹H} NMR

S4

 (CD_2Cl_2) : -21.7. Anal. Calcd. for $C_{30}H_{31}F_3N_4O_5PReS$: C 43.21, H 3.75, N 6.72. Found: C 43.13, H 3.33, N 6.34.

Reaction of cis,trans-[Re(bipy)(CO)₂(N-Melm)(PMe₃)]OTf (1a) with KN(SiMe₃)₂ and MeOTf (2 eq.). Synthesis of 3a. KN(SiMe₃)₂ (0.22 mL of a 0.5 M solution in toluene, 0.11 mmol) was added to a solution of cis,trans-[Re(bipy)(CO)₂(N-MeIm)(PMe₃)]OTf (1a) (65 mg, 0.09 mmol) in THF (20 mL) previously cooled to -78 °C. The mixture was allowed to reach room temperature, and after 15-20 min the solvent was evaporated to dryness under reduced pressure. A solution of MeOTf (21 μ L, 0.189mmol) in CH₂Cl₂ (20 mL) was added to the solid residue, and after 30 min., the mixture was filtered via canula and evaporated to dryness. The resulting brown solid was washed with diethylether (3 × 15 mL) and dried in vacuo. Slow diffusion of hexane (15 mL) into a concentrated solution of 3a in CH₂Cl₂ (5 mL) at -20 °C afforded crystals, one of which was used for a solid state structure determination. Yield: 46 mg (68 %). IR (CH₂Cl₂, cm⁻¹): 1929, 1850 (v_{co}). ¹H NMR (CD₂Cl₂): δ 8.72 [d (*J*= 5.4 Hz), 1H, H₆], 7.88 [m, 1H, H₄], 7.55 [s, 1H, CH N-Melm], 7.41 [m, 2H, H₃, H₅], 7.26 [m, 1H, H₄], 7.04 [s, 1H, CH N-Melm], 6.98, 6.91 [m, 1H each, H₃, H₅], 3.82 [s, 3H, CH₃ N-Melm], 3.20 [d (J_{HP}= 3.5 Hz), 3H, CH₃ NMe₂], 2.63 [s, 3H, CH₃ NMe₂], 1.61 [d (J_{HP}= 8.1 Hz), 9H, P(CH₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂): δ 204.6 [d (²J_{CP}= 6.9 Hz), CO], 202.2 [d (²J_{CP}= 5.4 Hz), CO], 158.8 [C₂], 153.5 [C₆], 141.1 [C₄], 140.7 [C₄], 135.8, 126.0 [C₆, NCN N-MeIm], 135.5 [CH N-MeIm], 133.9, 131.1 [C₃, C₅], 126.5, 124.0 [C_{3'}, C_{5'}], 126.1 [CH N-MeIm], 88.6 [C₂], 56.5 [d (J_{CP}= 7.5 Hz), CH₃ NMe₂], 47.6 [CH₃ NMe₂], 37.8 [CH₃ N-MeIm], 20.5 [d (*J*_{CP}= 33.5 Hz), P(CH₃)₃]. ³¹P{¹H} NMR (CD₂Cl₂): -28.5. Anal. Calcd. for C₂₂H₂₄F₃N₄O₅PReS: C 36.01, H 3.71, N 7.64. Found: C 35.92, H 3.40, N 7.69.

Reaction of *cis,trans*-[Re(bipy)(CO)₂(N-MesIm)(PMe₃)]OTf (1b) with KN(SiMe₃)₂ and MeOTf (2 eq.). Synthesis of 3b and 4b. Following the procedure described for the synthesis of compound 3a, starting from *cis,trans*-[Re(bipy)(CO)₂(N-MesIm)(PMe₃)]OTf (1b) (60 mg, 0.074 mmol), KN(SiMe₃)₂ (0.18 mL of a 0.5 M solution in toluene, 0.089 mmol), and MeOTf (16 μ L, 0.148 mmol), a mixture of compounds 3b and 4b was obtained. Slow diffusion of hexane (20 mL) into a concentrated solution of the mixture of 3b and 4b in CH₂Cl₂ (5 mL) afforded orange (3b) and yellow crystals (4b), which could be only partially separated. One of the yellow crystals was employed for the X-ray structure determination of compound 4b. IR (CH₂Cl₂, cm⁻¹): 1927, 1849 (v_{CO}). <u>Compound 3b</u>: ¹H NMR (CD₂Cl₂): δ 8.76 [d (*J*= 5.5 Hz), 1H, H₆], 7.86 [m, 1H, H₄], 7.77 [s, 1H, CH N-MesIm], 7.42 [m, 1H, H₅], 7.34 [m, 1H, H₃], 7.08 [s, 1H, Mes], 6.95 [m, 4H, CH N-MesIm, Mes, H₃, H₄], 5.48 [m, 1H, H₅], 3.22 [d (*J*_{HP}= 3.4 Hz), 3H, CH₃ NMe₂], 2.64 [s, 3H, CH₃ NMe₂], 2.35, 2.00 [s, 3H each, CH₃ Mes], 1.64 [d (*J*_{HP}= 8.4 Hz), 9H, P(CH₃)₃], 1.24 [s, 3H, CH₃ Mes]. ¹³C{¹H} NMR (CD₂Cl₂): δ 204.6 [d (*J*_{CP}= 4.7 Hz), CO], 158.9 [C₂], 153.5 [C₆], 141.4, 139.9, 135.8, 134.8, 134.3, 132.9, [quaternary], 141.0 [C₃], 140.7 [C₄], 136.9 [CH N-MesIm], 130.7 [C₅], 130.1, 129.6 [CH Mes], 126.5 [C₅], 124.3 [C₃], 123.3 [CH N-MesIm], 88.5 [C₂], 56.6 [d (*J*_{CP}= 7.2 Hz), CH₃ NMe₂], 47.7 [CH₃

NMe₂], 21.3 [CH₃ N-MesIm], 20.5 [d (J_{CP} = 33.9 Hz), P(CH₃)₃], 17.9, 16.6 [CH₃ N-MesIm]. ³¹P{¹H} NMR (CD₂Cl₂): -28.4. <u>Compound 4b</u>: ¹H NMR (CD₂Cl₂): δ 8.73 [d (J= 5.4 Hz), 1H, H₆], 7.73 [m, 1H, H₄'], 7.69 [s, 1H, CH N-MesIm], 7.28 [m, 1H, H₅], 7.22 [d (J= 5.4 Hz), 1H, H₃], 7.19 [d (J= 8.3 Hz), 1H, H₃], 7.08, 6.95 [s, 1H each, Mes], 6.90 [s, 1H, CH N-MesIm], 6.73 [s, 1H, H₄], 6.09 (s_br, 1H, NH], 5.48 [m, 1H, H₅], 2.56 [d (J= 5.9 Hz), 3H, N(H)(CH₃)], 2.64 [s, 3H, CH₃ NMe₂], 2.35, 2.00 [s, 3H each, CH₃ Mes], 1.64 [d (J_{HP} = 8.4 Hz), 9H, P(CH₃)₃], 1.28 [s, 3H, CH₃ Mes]. ¹³C{¹H} NMR (CD₂Cl₂): δ 205.1 [d (J_{CP} = 7.8 Hz), CO], 202.8 [d (J_{CP} = 6.3 Hz), CO], 159.9 [C₂], 153.1 [C₆], 141.1, 135.3, 134.9, 134.1, 133.2, 119.0 [quaternary], 140.3 [C₃], 139.7 [C₄'], 138.1 [C₄], 137.1 [CH N-MesIm], 131.1 [C₅], 130.4, 130.3 [CH Mes], 125.5 [C₅'], 123.6 [CH N-MesIm], 122.3 [C₃'], 83.4 [C₂], 36.2 [N(H)(CH₃)], 21.3 [CH₃N-MesIm], 18.7 [d (J_{CP} = 34.4 Hz), P(CH₃)₃], 17.8, 16.5 [CH₃N-MesIm]. ³¹P{¹H} NMR (CD₂Cl₂): -20.8.

Reaction of cis,trans-[Re(CO)₂(N-Melm)(phen)(PMe₃)]OTf (2a) with KN(SiMe₃)₂ and MeOTf (2 eq.). Synthesis of 5a and 6a. KN(SiMe₃)₂ (0.15 mL of a 0.5 M solution in toluene, 0.075 mmol) was added to a solution of cis, trans-[Re(CO)₂(N-Melm)(phen)(PMe₃)]OTf (2a) (45 mg, 0.062 mmol) in THF (25 mL) previously cooled to -78 °C. The mixture was allowed to reach room temperature, and after 20 min the solvent was evaporated to dryness under reduced pressure. A solution of MeOTf (17 µL, 0.15 mmol) in CH₂Cl₂ (15 mL) was added to the residue and stirred for 30 min. The resulting slurry was then filtered via canula, concentrated under vacuum to a volume of 5 mL, and the addition of hexane (20 mL) caused the precipitation of a brown solid, which was washed with hexane (2 x 20 mL) and dried under vacuum. Slow diffusion of hexane (10 mL) into a concentrated solution in CH₂Cl₂ (5 mL) at room temperature, afforded orange crystals of 5a, one of which was used for a solid-state structure determination by X-ray diffraction. Crystallization of the mother liquor by slow diffusion of hexane (15 mL) into a concentrated solution in CH₂Cl₂ (5 mL) at -20 °C, afforded orange crystals of 6a. <u>Compound 5a</u>: Yield: 17 mg (36 %). IR (CH₂Cl₂, cm⁻¹): 1930, 1848 (v_{CO}). ¹H NMR (CD₂Cl₂): δ 9.42 [dd (J= 5.3, 1.5 Hz), 1H, H₉], 8.49 [dd (J= 8.3, 1.5 Hz), 1H, H₇], 8.13, 7.82 [d (J= 8.3 Hz), 1H each, H₅ and H₆], 7.69 [d (*J*= 5.8 Hz), 1H, H₃/H₄], 7.45 [dd (*J*= 8.3, 5.3 Hz), 1H, H₈], 7.34 [s, 1H, CH N-Melm], 7.19 [d (J= 5.8 Hz), 1H, H₃/H₄], 6.84 [d (J= 1.2 Hz), 1H, CH N-Melm], 3.53 [s, 3H, CH₃ N-Melm], 3.29 [s, 3H, CH₃ NMe₂], 2.56 [d (J_{HP}= 1.9 Hz), 3H, CH₃ NMe₂], 1.51 [d (²J_{HP}= 8.2 Hz), 9H, $P(CH_3)_3$]. ¹³C{¹H} NMR (CD₂Cl₂): δ 159.0 [C₉], 144.5, 141.2, 130.1, 115.8, 115.4 [quaternay], 142.0 [C₃/C₄], 141.3 [C₇], 134.2 [C₅/C₆], 132.6 [C₃/C₄], 131.3, 126.0 [CH N-MeIm], 124.2 [C₅/C₆], 122.2 [C₈], 81.2 [C₂], 55.4 [CH₃ NMe₂], 45.7 [d (³J_{CP}= 2.9 Hz), CH₃ NMe₂], 36.8 [CH₃ N-MeIm], 19.6 [d (J_{CP}= 33.4 Hz), $P(CH_3)_3$]. Unfortunately, the signals corresponding to the CO ligands are not observed, probably due to their low intensity, and to the low solubility of compound **5a** in CD₂Cl₂. ³¹P{¹H} NMR (CD₂Cl₂): -23.4. Anal. Calcd. for C₂₄H₂₇F₃N₄O₅PReS: C 38.04, H 3.59, N 7.39. Found: C 39.18, H 3.67, N 7.18. **Compound 6a**: Yield: 14 mg (31 %). IR (CH₂Cl₂, cm⁻¹): 1917, 1835 (v_{co}). ¹H NMR (CD₂Cl₂): δ 9.68 $[d (J= 5.2 Hz), 1H, H_9], 8.35 [dd (J= 8.3, 1.7 Hz), 1H, H_7], 8.04 [d (J= 8.2 Hz), 1H, H_5/H_6], 7.71 [d (J= 8.2 Hz), 1H, H_8/H_6], 7.71 [d (J= 8.2 Hz),$

8.2 Hz), 1H, H₅/H₆], 7.59 [d (J= 5.7 Hz), 1H, H₃/H₄], 7.40 [d (J= 5.7 Hz), 1H, H₃/H₄], 7.33 [dd (J= 8.3, 5.2 Hz), 1H, H₈], 7.07, 6.72 [d (J= 1.6 Hz), 1H each, CH N-MeIm], 6.11 [s_{br}, 1H, NH], 3.51 [s, 3H, CH₃ N-MeIm], 2.51 [d (J= 5.9 Hz), 3H, N(H)(CH₃)], 1.65 [d (J_{HP} = 9.2 Hz), 9H, P(CH₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂): δ 205.9 [d (J_{CP} = 8.1 Hz), CO], 202.7 [d (J_{CP} = 7.2 Hz), CO], 161.1 [C₉], 149.3, 145.2, 142.1, 133.8, 129.6 [quaternay], 139.3, 139.2, 138.6 [C₇, C₃ and C₄], 133.4 [C₅/C₆], 129.2, 125.0 [CH N-MeIm], 123.2 [C₅/C₆], 122.1 [C₈], 75.0 [C₂], 36.4 [CH₃ N-MeIm], 35.2 [N(H)(CH₃)], 18.6 [d (J_{CP} = 34.7 Hz), P(CH₃)₃]. ³¹P{¹H} NMR (CD₂Cl₂): -18.5. Anal. Calcd. for C₂₃H₂₅F₃N₄O₅PReS·0.25hex: C 38.45, H 3.75, N 7.32. Found: C 38.81, H 3.34, N 7.14.

Reaction of cis, trans-[Re(CO)₂(N-Melm)(phen)(PMe₃)]OTf (2a) with KN(SiMe₃)₂ and Mel (2 eq.). Synthesis of 5a/I. KN(SiMe₃)₂ (0.13 mL of a 0.5 M solution in toluene, 0.065 mmol) was added to a solution of cis,trans-[Re(CO)₂(N-Melm)(phen)(PMe₃)]OTf (2a) (40 mg, 0.055 mmol) in THF (25 mL) previously cooled to -78 °C. The mixture was allowed to reach room temperature, and after 20 min the solvent was evaporated to dryness under reduced pressure. A solution of freshly passes through alumina MeI (7 µL, 0.11 mmol) in CH₂Cl₂ (15 mL) was added to the residue and stirred overnight. The resulting slurry was then filtered via canula, concentrated under vacuum to a volume of 5 mL, and the addition of hexane (20 mL) caused the precipitation of a brown solid, which was washed with hexane (2 x 20 mL) and dried under vacuum. Compound 5a/I was obtained as a brown solid. Yield: 18 mg (45 %). IR (CH₂Cl₂, cm⁻¹): 1927, 1846 (v_{CO}). ¹H NMR (CD₂Cl₂): δ 9.42 [d (*J*= 4.9 Hz), 1H, H₉], 8.54 [dd (J= 8.1 Hz), 1H, H₇], 8.16, 7.85 [d (J= 8.4 Hz), 1H each, H₅ and H₆], 7.74 [d (J= 5.7 Hz), 1H, H₃/H₄], 7.48 [m, 1H, H₈], 7.35 [d (J= 5.7 Hz), 1H, H₃/H₄], 7.32, 6.89 [s, 1H each, CH N-Melm], 3.58 [s, 3H, CH₃ N-Melm], 3.31 [s, 3H, CH₃ NMe₂], 2.55 [d (J_{HP}= 1.7 Hz), 3H, CH₃ NMe₂], 1.51 [d (J_{HP} = 5.2 Hz), 9H, P(CH₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂): δ 158.9 [C₉], 146.3, 144.5, 141.1, 135.2, 130.1 [quaternay], 142.0 [C₃/C₄], 141.3 [C₇], 134.1 [C₅/C₆], 133.1 [C₃/C₄], 131.2, 126.1 [CH N-MeIm], 124.2 [C₈], [C₅/C₆], 122.2, 81.1 [C₂], 55.7 [CH₃ NMe₂], 45.7 [d (J_{CP}= 2.6 Hz), CH₃ NMe₂], 37.1 [CH₃ N-MeIm], 19.6 [d (J_{CP} = 33.5 Hz), P(CH₃)₃]. Unfortunately, the signals corresponding to the CO ligands are not observed, probably due to their low intensity, and to the low solubility of compound **5a/I** in CD₂Cl₂. ³¹P{¹H} NMR (CD₂Cl₂): -22.8.

Reaction of *cis,trans*-[Re(CO)₂(N-MesIm)(phen)(PMe₃)]OTf (2b) with KN(SiMe₃)₂ and MeOTf (2 eq.). Synthesis of 5b. KN(SiMe₃)₂ (0.13 mL of a 0.5 M solution in toluene, 0.065 mmol) was added to a solution of *cis,trans*-[Re(CO)₂(N-MeIm)(phen)(PMe₃)]OTf (2a) (45 mg, 0.054 mmol) in THF (25 mL) previously cooled to -78 °C. The mixture was allowed to reach room temperature, and after 30 min the solvent was evaporated to dryness under reduced pressure. A solution of MeOTf (12 μ L, 0.11 mmol) in CH₂Cl₂ (15 mL) was added to the residue and stirred for 30 min. The resulting slurry was then filtered via canula, concentrated under vacuum to a volume of 5 mL, and the addition of hexane (20 mL) caused the precipitation of a brown solid, which was washed with diethyl ether (2 x

20 mL) and dried under vacuum. Slow diffusion of hexane (10 mL) into a concentrated solution in CH₂Cl₂ (5 mL) at room temperature, afforded light red crystals of **5b**, one of which was used for a solid-state structure determination by X-ray diffraction. Yield: 25 mg (57 %). IR (CH₂Cl₂, cm⁻¹): 1930, 1849 (v_{CO}). ¹H NMR (CD₂Cl₂): δ 9.47 [d (J= 5.2 Hz), 1H, H₉], 8.54 [d (J= 8.1 Hz), 1H, H₇], 8.14, 7.65 [d (*J*= 8.3 Hz), 1H each, H₅ and H₆], 7.57 [s, 1H, CH N-MesIm], 7.50 [dd (*J*= 8.1, 5.2 Hz), 1H, H₈], 7.04 [s, 1H, Mes], 6.85 [s, 1H, CH N-MesIm], 6.78 [m, 2H, H₃/H₄ and Mes], 6.23 [d (J= 5.7 Hz), 1H, H₃/H₄], 3.30 [s, 3H, CH₃ NMe₂], 2.51 [s_{br}, 3H, CH₃ NMe₂], 2.35, 2.13 (s, 3H each, CH₃ Mes), 1.54 (d $(J_{HP}= 8.4 \text{ Hz}), 9\text{H}, P(CH_3)_3), 0.64 \text{ (s, 3H, } CH_3 \text{ Mes}).$ ¹³C{¹H} NMR (CD₂Cl₂): δ 207.3 [d ($J_{CP} = 6.4 \text{ Hz}),$ CO], 159.2 [C₉], 145.1, 141.4, 140.9, 135.9, 134.3, 131.9, 130.4, 129.9, 126.2 [quaternay], 141.6 [C₇], 139.8 [Mes], 134.5 [C₅/C₆], 132.7 [CH N-MesIm], 130.1, 129.7, 129.5 [Mes, C₃, C₄], 124.8 [CH N-MesIm], 123.7 [C₅/C₆], 122.3 [C₈], 80.7 [C₂], 55.1 [CH₃ NMe₂], 45.7 [d (J_{CP}= 2.9 Hz), CH₃ NMe₂], 21.3 [CH₃ Mes], 19.5 [d (*J*_{CP}= 33.6 Hz), P(CH₃)₃], 18.2, 16.1 [CH₃ Mes]. Unfortunately, the signals corresponding to one of the CO ligands is not observed, probably due to its low intensity, and to the ³¹P{¹H} NMR (CD₂Cl₂): -23.3. Anal. Calcd. for low solubility of compound 5b in CD_2Cl_2 . C₃₂H₃₅F₃N₄O₅PReS: C 44.59, H 4.09, N 6.50. Found: C 44.46, H 3.92, N 6.25.

Reaction of *cis*,*trans*-[Re(CO)₂(N-MesIm)(phen)(PMe₃)]OTf (2b) with KN(SiMe₃)₂ and MeI (2 eq.). Synthesis of 5b/l. Following the procedure described for the synthesis of compound 5a/l, starting from *cis*,*trans*-[Re(CO)₂(N-MesIm)(phen)(PMe₃)]OTf (1b) (40 mg, 0.048 mmol), KN(SiMe₃)₂ (0.12 mL of a 0.5 M solution in toluene, 0.060 mmol), and MeI (6 μ L, 0.096 mmol), allowed the isolation of compound 5b/l as a brown solid. Yield: 21 mg (52 %). IR (CH₂Cl₂, cm⁻¹): 1930, 1849 (v_{co}). ¹H NMR (CD₂Cl₂): δ 9.48 [d (*J*= 5.2 Hz), 1H, H₉], 8.59 [d (*J*= 8.3 Hz), 1H, H₇], 8.18, 7.66 [d (*J*= 8.3 Hz), 1H each, H₅ and H₆], 7.56 [s, 1H, CH N-MesIm], 7.53 [m, 1H, H₈], 7.04 [s, 1H, Mes], 6.86 [s, 1H, CH N-MesIm], 6.81 [d (*J*= 5.8 Hz), 1H, H₃/H₄], 6.76 [s, 1H, Mes], 6.26 [d (*J*= 5.8 Hz), 1H, H₃/H₄], 3.32 [s, 3H, CH₃ NMe₂], 2.53 [d (*J*_{HP}= 2.0 Hz), 3H, CH₃ NMe₂], 2.35, 2.13 (s, 3H each, CH₃ Mes), 1.55 (d (*J*_{HP}= 8.2 Hz), 9H, P(CH₃)₃), 0.65 (s, 3H, CH₃ Mes). ¹³C{¹H} NMR (CD₂Cl₂): δ 202.2, 201.5 [CO], 159.3 [C₉], 147.5, 145.1, 141.4, 140.9, 137.7, 137.1, 135.9, 135.7, 120.5 [quaternay], 141.7 [C₇], 139.8 [C₃/C₄], 134.5 [C₅/C₆], 132.6 [CH N-MesIm], 30.1 [C₃/C₄], 129.9, 129.5 [Mes], 124.8 [CH N-MesIm], 123.7 [C₅/C₆], 122.4 [C₈], 80.8 [C₂], 55.2 [CH₃ NMe₂], 45.8 [d (*J*_{CP}= 2.8 Hz), CH₃ NMe₂], 2.12 [CH₃ Mes], 19.5 [d (*J*_{CP}= 33.9 Hz), P(CH₃)₃], 18.0, 16.1 [CH₃ Mes]. ³¹P{¹H} NMR (CD₂Cl₂): -23.4.

X-ray structures of 3a, 4b, 5a, 5b and 6a.

General Description: For compounds **3a** and **4b**: data collection was performed on a Bruker APPEX II diffractometer using graphite-monochromated Mo K α radiation (λ = 0.71073 Å) from a fine-focus sealed tube source at 100 K. Computing data and reduction were made with the APPEX II software.⁴ In all cases empirical absorption corrections were applied using SADABS.⁵ For compounds **5a**, **5b** and **6a**: Crystal data were collected on an Oxford Diffraction Xcalibur Nova single crystal diffractometer, using Cu-K α radiation (λ = 1.5418 Å). Images were collected at a 65 mm fixed crystal-detector distance, using the oscillation method, with 1° oscillation and variable exposure time per image (4-16 s). Data collection strategy was calculated with the program CrysAlis^{Pro} CCD.⁶ Data reduction and cell refinement was performed with the program CrysAlis^{Pro} RED.⁶ An empirical absorption correction was applied using the SCALE3 ABSPACK.⁶ Using the program suite WINGX,⁷ the structures were solved by Patterson interpretation and phase expansion using SHELXL and refined with full-matrix least squares on F2 using SHELXL.⁸ In general, all non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were geometrically placed and refined using a riding mode. Molecular graphics were made with ORTEP 3.⁹

Computational Details

The geometry and energy of the two possible ring-opening product complexes for bipy and phen were optimized in CH₂Cl₂ solution from the outset with the Conductor-like Polarizable Continuum Model¹⁰ (CPCM) and the Universal Force Field¹¹ (UFF) radii in conjunction with the hybrid density functional B3LYP¹² and the 6-31+G(d) basis set for nonmetal atoms¹³ together with the valence double-ζ basis set LANL2DZ plus the effective core potential of Hay and Wadt for the Re atom,¹⁴ and by using a modified Schlegel algorithm.¹⁵ Electrostatic, cavitation, dispersion, and repulsion terms¹⁶ were considered in the CPCM computations, wherein a relative permittivity of 8.93 was assumed to simulate CH₂Cl₂ as the solvent experimentally used. The nature of the stationary points was confirmed by analytical computations of harmonic vibrational frequencies. Gibbs free energies in CH₂Cl₂ solution (Δ G) were also calculated within the ideal gas, rigid rotor, and harmonic oscillator approximations at a pressure of 1 atm and a temperature of 298.15 K.¹⁷ The calculation of thermodynamic magnitudes in solution starting with molecular partition functions developed for computing gas-phase thermodynamics properties is a standard procedure that has proven to be a correct and useful approach.¹⁸ For interpretation purposes a natural bond order (NBO) analysis¹⁹ in conjunction with a topological analysis of the electron density based on the Atoms-in-Molecules (AIM) theory of Bader²⁰ were performed. Besides, using the Gaugeindependent atomic orbital (GIAO) method²¹ at the above-mentioned theory level, nucleusindependent chemical shifts (NICS)²² were also calculated at the ring critical point (RCP) located at the center of relevant rings, NICS(0), as well as 1.0 Å above these RCP, NICS(1), as aromaticity indexes. The latter, NICS(1), were recommended as a better measure of the π electron delocalization as compared to the former, NICS(0).²³ Thus, in the present work, we only discuss NICS(1) values.

The computational protocol used in this work is equal or similar to those employed in related investigations on related carbonyl Re(I) complexes.²⁴ All the quantum chemical calculations were performed with the Gaussian 09 (G09) suite of programs.²⁵

Table S1. Wiberg bond index in the natural atomic orbital basis obtained for the bond distances between Re and the two carbonyl carbons, the pyridine nitrogen (N_{py}), the dimethylated nitrogen (N_{Me}), the imidazole nitrogen directly linked to Re (N_{im}) and the phosphorous atom (P) in the two-possible ring-opening products for the bipy case at the CPCM-B3LYP/6-31+G(d)-LANL2DZ level of theory.

Species	Re-CO	Re-CO	Re-N _{py}	Re-N _{Me}	Re-N _{im}	Re-P
I_bipy_NC _{py}	1.4811	1.4338	0.4686	0.3824	0.5019	0.8201
I_bipy_NC _{im}	1.4828	1.4638	0.4340	0.3761	0.5147	0.8144

Table S2. CPCM-B3LYP/6-31+G(d)-LANL2DZ absolute and relative energies in CH₂Cl₂ solution without and with including thermal corrections (E and G, in hartree, and Δ E and Δ G, in kcal/mol, respectively) of the two possible ring-opening products for bipy and phen.

Species	E	G	ΔE	∆G
I_bipy_NC _{py}	-1606.373371	-1605.974930	0.0	0.0
I_bipy_NC _{im}	-1606.364898	-1605.967041	5.3	5.0
I_phen_NC _{py}	-1682.609352	-1682.197761	0.0	0.0
I_phen_NC _{im}	-1682.569475	-1682.158755	-25.0	-24.5

Table S3. Electron density ($\rho(r)$, e/Å³) and its Laplacian of the electron density ($\nabla^2 \rho(r)$, e/Å⁵) at some relevant ring critical points (1-3/4) located in the two possible ring-opening products for bipy and phen.

	Rin	ig 1	Rin	ig 2	Rin	g 3	Rin	g 4
Species	ρ(<i>r</i>)	$\nabla^2 \rho(r)$	ρ <i>(r)</i>	$\nabla^2 \rho(r)$	ρ(<i>r</i>)	∇²ρ (r)	ρ <i>(r)</i>	∇²ρ (r)
I_bipy_NC _{py}	0.0220	0.1720	0.0466	0.3119	0.0519	0.4158		
I_bipy_NC _{im}	0.0219	0.1692	0.0436	0.3140	0.0527	0.4209		
I_phen_NC _{py}	0.0219	0.1708	0.0428	0.3077	0.0519	0.4162	0.0182	0.1281
I_phen_NC _{im}	0.0213	0.1615	0.0428	0.3085	0.0527	0.4207	0.0199	0.1517

Table S4. B3LYP/6-311+G(d,p)-LANL2DZ nucleus-independent chemical shifts (NICS) (in ppm) calculated at the ring critical points located at the center of the rings 1-3/4, NICS(0), and at points 1.0 Å above them, NICS(1), for the two possible ring-opening products for bipy and phen.

I_	_bipy_	NCp	y/I_	_phen_	_NC _p
----	--------	-----	------	--------	------------------

I_bipy_NC_{im}/I_phen_NC_{im}

	Rin	ig 1	Rin	ig 2	Rin	ig 3	Rin	ig 4
Species	NICS(0)	NICS(1)	NICS(0)	NICS(1)	NICS(0)	NICS(1)	NICS(0)	NICS(1)
I_bipy_NC _{py}	-6.8	-9.4	-1.1	-3.3	-11.4	-9.1		
I_bipy_NC _{im}	-6.0	-8.7	-0.8	-3.7	-11.8	-9.2		
I_phen_NC _{py}	-5.6	-9.1	1.0	-2.0	-11.1	-8.7	2.7	-0.2

 Table S5. CPCM-B3LYP/6-31+G(d)-LANL2DZ cartesian coordinates, in Å, of the

optimized structures of the two possible ring-opening products for bipy and phen in CH_2Cl_2 solution.

	bipy NC _{pv}		
N	-3.354720	-1.914551	0.625209
C	-2.434383	-1.012252	0.155370
N	-1.190933	-1.482762	0.379874
С	-1.333447	-2.709353	0.986479
С	-2.664957	-2.982937	1.144563
c	-2.719264	0.215453	-0.540806
С	-1.617882	1.265845	-0.828865
С	-2.384572	2.307866	-1.632334
С	-3.673394	1.940558	-1.749082
С	-3.886942	0.660405	-1.078514
С	-1.115855	1.829856	0.508300
Ν	-0.093360	1.165584	1.095502
С	0.341520	1.576496	2.306754
С	-0.216811	2.654746	2.979556
С	-1.269035	3.344521	2.376969
С	-1.720923	2.925398	1.127326
Re	0.773462	-0.557032	0.004152
С	1.513892	-1.469800	1.476992
0	1.935929	-2.037419	2.417433
N	-0.437997	0.664693	-1.581921
C	-0.901944	-0.215375	-2.693925
C	-4.810597	-1.804216	0.629631
P	2.948037	0.531611	-0.2/0111
c	3.105357	2.343545	0.067720
C O	1.30149/	-1.952970	-1.140524
C C	1./110/1	1 76460323	-1.000000
c	3 708375	0 361232	-2.198110
c	1 256250	-0 13191/	0 850997
н	1 157371	1 007157	2 733770
н	0 170625	2 939598	3 950268
н	-1 729531	4 194049	2 868821
н	-2.536131	3.439019	0.632887
Н	-1.938577	3.223873	-1.993165
н	-4.455273	2.497394	-2.251113
н	-4.842997	0.158285	-1.052537
н	0.601129	2.514552	-1.445902
Н	-0.196718	2.237656	-3.014360
н	1.273947	1.340325	-2.603189
н	-1.610914	0.317347	-3.337334
н	-1.363606	-1.115458	-2.294357
Н	-0.028296	-0.500436	-3.280428
Н	-0.481032	-3.303498	1.271716
н	-3.177790	-3.826145	1.579684
н	-5.214366	-1.945633	-0.375076
н	-5.112242	-0.829442	1.015917
н	-5.202858	-2.582675	1.282154
н	3.255356	0.880566	-2.695815
н	3.85/560	-0.699018	-2.163379
н	4.809926	0.774858	-1.8428/9
	5.970520	0.03/050	1.895869
	7.211405	0.302907	0.05000/
п	4.300030	-1.200104 2 577107	0.090021
н	2.087874	2.377107	-0 683100
н	1 161663	2.552117	0.000100
	4.101005	2.020203	0.000071
	hiny NC.		
<u>'</u> _'			
Re	-0.796843	-0.493802	-0.295481
Р	-2.//7444	0.297121	0.892083
N	1.091521	-1.066304	-1.150007
N	0./04463	-0.640291	1.511388
N	0.053/43	1.045885	-0.499661

Ν	3.283474	-1.318808	-1.094419
С	1.485077	-1.619197	-2.346320
н	0.774503	-1.859660	-3.120942
0	-1.829704	-3.364201	-0.018178
С	-1.737424	-0.409468	-1.925350
С	1.265892	2.117205	-0.084326
С	4.690959	-1.281589	-0.689495
Н	4.861281	-1.937347	0.165125
н	4.982254	-0.263217	-0.432862
Н	5.286215	-1.626833	-1.533685
C	2.185360	-0.902/45	-0.408221
c	2.151593	1.294195	0.744973
L L	0.300035	0.214800	2.0/9/30
п U	0.100902	1.233827	2.336003
п	-0 536955	-0 105182	3.41/399
п С	2 844830	-0.195182	-2 322/81
н	3 534748	-2 170240	-3 051315
c	-1.434010	-2.261275	-0.123207
c	-0.387745	3.785120	-1.552524
Ĥ	-1.077639	4,391609	-2.126648
c	2.063073	-0.234220	0.943224
c	1.682586	3,422410	-0.419727
C	0.756554	-2.055019	1.990120
н	1.102116	-2.706353	1.187315
н	-0.248712	-2.355716	2.282139
н	1.418396	-2.149492	2.856059
С	-4.285579	0.444073	-0.160328
н	-4.110398	1.164260	-0.964878
Н	-5.140866	0.772469	0.438050
н	-4.510509	-0.525155	-0.613028
С	3.867541	0.637309	2.160071
н	4.737913	0.749837	2.794008
C	3.225290	-0.512519	1.885503
Н	3.481105	-1.499928	2.243603
C	-3.402321	-0./80910	2.254472
н	-2.682454	-0.822899	3.0/5834
п	-3.350/08	-1.794462	2 638837
Ċ	3 222339	1 7/0795	1 //52031
c	-0 735066	2 488033	-1 213227
н	-1.689598	2.086592	-1.525871
c	0.861176	4,263827	-1.150677
H	1.188410	5.265239	-1.407296
С	-2.742882	1.955657	1.708603
н	-1.998935	1.975979	2.508644
Н	-3.725367	2.175952	2.137493
н	-2.490548	2.731884	0.981954
0	-2.289630	-0.377412	-2.964037
н	2.662386	3.762343	-0.110554
Н	3.562953	2.766035	1.517419
Ιp	hen NC	ov.	
Re	0.870154	-0.661522	-0.034305
Р	2.862112	0.736388	-0.379870
Ν	-0.881632	-1.873108	0.388076

(C	0.0/0104	0.001522	0.054505
Ρ	2.862112	0.736388	-0.379870
Ν	-0.881632	-1.873108	0.388076
Ν	-0.622840	0.566649	-1.436410
Ν	-0.098467	0.836664	1.320290
Ν	-2.959207	-2.583252	0.703027
С	-0.839695	-3.161496	0.868296
Н	0.093746	-3.671510	1.040561
0	1.904626	-2.559119	-2.213641
С	1.856796	-1.606954	1.260438
С	-1.056098	1.584309	0.734170
С	-4.414201	-2.640942	0.820632

	-4.875094	-2.867860	-0.143935
Н	-4.792574	-1.688855	1.194395
н	-4.666737	-3.428759	1.529735
C	-2.179403	-1.535115	0.280427
C	-1.762334	0.96/418	-0.4/010/
L L	-0.025661	2 503670	-2.030440
п	-0.735270	2.303079	-1.231097
н	0 859879	1 501/02	-2.590206
Ċ	-2 117548	-3 606053	1 071606
н	-2 498134	-4 539421	1 455268
c	1.526768	-1.829303	-1.374035
c	0.190750	2,526896	2.995022
Н	0.667317	2.841885	3.915432
С	-2.654355	-0.290532	-0.260221
С	-1.273767	2.926629	1.110780
С	-1.084253	-0.267342	-2.584550
Н	-1.383911	-1.257288	-2.249103
Н	-0.241133	-0.370875	-3.268828
Н	-1.914689	0.217293	-3.110225
С	4.346603	0.129590	0.535101
Н	4.160213	0.142210	1.612100
н	5.209269	0.764671	0.311171
н	4.569075	-0.8986/0	0.23814/
C	-3.93/2/1	1.301892	-1.341241
п С	-4.65/45/	1./5605/	-1./35/10
L L	-3.858/04	-0.059901	-0.054/05
Ċ	3 556045	0.820782	-2 092673
н	2 885084	1 3/7/77	-2 77/337
н	3,705009	-0.193944	-2.471616
Н	4.517682	1.343711	-2.075795
С	-2.677525	3.385842	-0.848249
Н	-3.260348	4.058362	-1.470405
С	-2.784021	1.959210	-1.052144
С	-2.019984	3.835952	0.245575
Н	-2.026394	4.887184	0.514002
C	0.480411	1.276681	2.456848
Н	1.216046	0.619288	2.903556
C II	-0.643170	3.380548	2.2813/8
н С	-0.800935	4.403804	2.000530
L L	2.004129	3 080017	-0 1124280
н	3 857526	2 941955	-0 049761
	51057520	210 .2000	1 186305
н	2.621316	2.607804	T. TOODOD
H O	2.621316 2.436266	2.607804 -2.207935	2.088789
Н О	2.621316 2.436266	2.607804 -2.207935	2.088789
а I	2.621316 2.436266 hen NC:	2.607804 -2.207935	2.088789
в в_р	2.621316 2.436266 hen_NCi	2.607804 -2.207935 m 3.798589	-1.451214
н I_р	2.621316 2.436266 hen_NC _i 1.526927 0.267676	2.607804 -2.207935 m 3.798589 3.510878	-1.451214 -1.926349
н I_р ссс	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888	2.607804 -2.207935 m 3.798589 3.510878 2.303830	-1.451214 -1.926349 -1.543773
но I_р ссск	2.621316 2.436266 hen_NC; 1.526927 0.267676 -0.342888 0.223296	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985	-1.451214 -1.926349 -1.543773 -0.761454
н 0 I_р 0 0 0 0 0 0	2.621316 2.436266 hen_NC; 1.526927 0.267676 -0.342888 0.223296 1.508435	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845
н о I_р ссс с с с	2.621316 2.436266 hen_NC; 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210
H 0 I_p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.621316 2.436266 hen_NC; 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376
н о I_р ссс сс сс сс сс сс сс сс	2.621316 2.436266 hen_NC; 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403
н о I_р ссс сс сс сс сс сс сс	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.873621 -2.113194 -2.768910	2.667804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 -2.926790	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076
но I_р сссхсс сс сс сс	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.920328	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.706389	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 9.802444
н I_р ссс N сс с Re сосс с	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.99254	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -0.726388 -1.100046	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1 804994
но I_р ссспссесоссс	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.992110	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.132013	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.433403 0.430076 0.485577 0.892444 1.804994 1.804511
но I_р ссспссесосссс	2.621316 2.436266 hen_NC; 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376
но I_ сссхсс _к соссссх	2.621316 2.436266 hen_NC; 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270
но I_ ссслссесосссслс	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969 -2.108385	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051
но I_р ссс N ссесоссс N сс	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769369 -2.108385 -1.572831	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466
но I_р ссспссесоссопосп	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620	2.607804 -2.207935 m 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969 -2.108385 -1.578728	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945
но I_ состовности с с с с с с с с с с с с с с с с с с	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620 0.773127	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969 -2.108385 -1.572831 -1.5728728 -2.346315	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.166408
но I_р 	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620 0.773127 2.065409	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969 -2.108385 -1.572831 -1.572831 -1.5728728 -2.346315 -2.797322	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.166408 -2.165645
HO RUOUUUUNUUNUUNUUNU	2.621316 2.436266 hen_NC; 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620 0.773127 2.065409 2.666593	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969 -2.108385 -1.5778281 -1.5787283 -2.346315 -2.797322 -2.302858	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.165645 -1.023708
	2.621316 2.436266 hen_NC; 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620 0.773127 2.065409 2.666593 4.077000	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969 -2.108385 -1.5772831 -1.5787283 -2.346315 -2.797322 -2.302858 -2.523404 -0.0222	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.864994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.165645 -1.023708 -0.690579 0.89272
HO 	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 0.456710 0.231599 1.727790 0.581620 0.773127 2.665409 2.665409 2.665409 2.665593 4.077000 -2.730571 -2.29676	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769369 -2.108385 -1.572831 -1.578728 -2.346315 -2.797322 -2.302858 -2.523404 0.940022 2.619472	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.165645 -1.023708 -0.690579 0.878923 1.467354
	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620 0.773127 2.065409 2.666593 4.077000 -2.730571 -2.228676	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.763985 -1.572831 -1.578728 -2.346315 -2.797322 -2.302858 -2.523404 0.940022 2.618472 -0.332785	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.165645 -1.023708 -0.690579 0.878923 1.467254 -1.82962
HO L CCCNCCRCOCCCCNCCNCCNCCNCCNCC	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.456710 0.231599 1.727790 0.581620 0.773127 2.0654092 6.665593 4.077000 -2.730571 -2.228676 -2.048766 -2.628717	2.607804 -2.207935 m 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969 -2.108385 -1.5778728 -2.346315 -2.797322 -2.302858 -2.523404 0.940022 2.618472 -0.336785 -0.282970	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.166408 -2.165645 -1.023708 -0.690579 0.878923 1.467254 -1.842062 -2.864823
	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620 0.773127 2.065409 2.665593 4.077000 -2.730571 -2.228676 -2.048766 -2.628717 -4.211975	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969 -2.108385 -1.5772831 -1.5772831 -1.5772831 -1.578728 -2.346315 -2.797322 -2.302858 2.523404 0.940022 2.618472 -0.336785 -0.282070 1.344228	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.165645 -1.023708 -0.690579 0.878923 1.467254 -1.842062 -2.864823 -0.142289
HO 	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620 0.773127 2.666593 4.677000 -2.730571 -2.228676 -2.048766 -2.628717 -4.211975 -3.527709	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969 -2.108385 -1.572831 -1.572831 -1.572831 -2.346315 -2.797322 -2.302858 -2.523404 0.940022 2.618472 -0.336785 -0.282070 1.344228 0.242797	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.1656408 -2.165645 -1.023708 -0.690579 0.878923 1.467254 -1.842062 -2.864823 -0.142289 2.391825
HO 	2.621316 2.436266 hen_NC i 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620 0.773127 2.666593 4.077000 -2.730571 -2.228676 -2.648766 -2.628717 -4.211975 -3.527709 0.367399	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.76969 -2.108385 -1.572831 -1.572831 -1.572831 -2.574728 -2.346315 -2.797322 -2.302858 -2.523404 0.940022 2.618472 -0.336785 -0.282070 1.344228 0.242797 0.250525	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.166408 -2.165645 -1.023708 -0.690579 0.878923 1.467254 -1.842062 -2.864823 -0.142289 2.391825 2.627084
но р 	2.621316 2.436266 hen_NC ; 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620 0.773127 2.065409 2.666593 4.077000 -2.730571 -2.228676 -2.048766 -2.628717 -4.211975 -3.527709 0.367399 -0.018883	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969 -2.108385 -1.572831 -1.578728 -2.346315 -2.797322 -2.340515 -2.797322 -2.340515 -2.797322 -2.340515 -2.523404 0.940022 2.618472 -0.336785 -0.282070 1.344228 0.242797 0.250525 -2.518633	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.165645 -1.023708 -0.690579 0.878923 1.467254 -1.842062 -2.864823 -0.142289 2.391825 2.627084 -2.877420
но р 	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620 0.773127 2.665409 2.665409 2.665593 4.077000 -2.730571 -2.228676 -2.048766 -2.628717 -4.211975 -3.527709 0.367399 -0.018883 4.168893	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769382 -2.302858 -1.572831 -1.578728 -2.346315 -2.797322 -2.302858 -2.523404 0.940022 2.618472 -0.336785 -0.282070 1.344228 0.242797 0.25525 -2.518633 -3.042641	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.165645 -1.023708 -0.690579 0.878923 1.467254 -1.842062 -2.864823 -0.142289 2.391825 2.627084 -2.877420 0.263579 -2.65379
но р 	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.456710 0.456710 0.231599 1.727790 0.581620 0.773127 2.065409 2.666593 4.077000 -2.730571 -2.228676 -2.048766 -2.628717 -4.211975 -3.527709 0.367399 -0.018883 4.168893 4.668932	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.763989 -2.108385 -1.572831 -1.572831 -1.578728 -2.346315 -2.797322 -2.302858 -2.523404 0.940022 2.618472 -0.336785 -0.282070 1.344228 0.242797 0.250525 -2.518633 -3.042641 -1.572684	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.165645 -1.023708 -0.690579 0.878923 1.467254 -1.822062 -2.864823 -0.142289 2.391825 2.627084 -2.877420 0.263579 -0.642120
но р иссовосососовососовосовососостини:	2.621316 2.436266 hen_NCi 1.526927 0.267676 -0.342888 0.223296 1.508435 2.182432 -1.073621 -2.113194 -2.768910 2.208433 1.830328 2.992854 3.905110 3.460910 0.456710 0.231599 1.727790 0.581620 0.773127 2.065409 2.666593 4.077000 -2.730571 -2.228676 -2.048766 -2.628717 -4.211975 -3.527709 0.367399 -0.018883 4.168893 4.608932 4.508268	2.607804 -2.207935 m 3.798589 3.510878 2.303830 1.381985 1.627275 2.863354 -0.463048 -1.981563 -2.926790 0.700582 -0.726388 -1.109046 -0.123013 1.002516 -0.769969 -2.108385 -1.572831 -1.577283 -2.346315 -2.797322 -2.302858 -2.523404 0.940022 2.618472 -0.336785 -0.282070 1.344228 0.242797 0.250525 -2.518633 -3.042641 -1.572684 -3.1386422	-1.451214 -1.926349 -1.543773 -0.761454 -0.313845 -0.618210 -0.237376 0.183403 0.430076 0.485577 0.892444 1.804994 1.845511 1.014376 1.548270 2.170051 -0.362466 -1.041945 -2.165645 -1.023708 -0.690579 0.878923 1.467254 -1.842062 -2.864823 -0.142289 2.391825 2.627084 -2.877420 0.263579 -0.642120 -1.479010 -2.75720

Н	1.180797	0.127955	3.351430
Н	-0.583082	0.113395	3.141285
н	2.608608	-3.422016	-2.856467
н	-0.271847	4.193918	-2.570896
н	0.359033	-2.891158	1.422496
н	-0.788606	-2.143141	2.549528
Н	0.923564	-2.275389	3.001646
Н	-3.909051	1.894463	-1.037124
Н	-4.916642	1.953048	0.432259
Н	-4.703003	0.420006	-0.458201
Н	4.839985	-0.139808	2.392939
Н	3.062755	-2.066700	2.303493
Н	-2.801217	0.129590	3.200314
Н	-3.943127	-0.741879	2.161976
Н	-4.329515	0.904868	2.733414
Н	-1.346762	2.085181	-1.885432
Н	2.024604	4.729716	-1.703368
Н	-1.488483	2.540594	2.267726
Н	-3.106622	3.148555	1.849271
Н	-1.793164	3.196029	0.648076
С	4.111552	2.223344	0.732725
С	3.475564	3.128808	-0.087163
н	5.090757	2.435656	1.147008
н	3.947396	4.072708	-0.341376

Figure S1. CPCM-B3LYP/6-31+G(d)-LANL2DZ optimized geometry of the two possible ring-opening products for bipy and phen. Some relevant distances and bond angles are given in Å and degrees, respectively.

E = -1606.324311 hartree $\Delta E = 25.5 \text{ kcal/mol}$

 $\label{eq:G} \begin{array}{l} \mathsf{G} = \texttt{-1605.929130} \ \text{hartree} \\ \Delta \mathsf{G} = \texttt{23.7} \ \text{kcal/mol} \end{array}$

TS_IIIa'_IIIa

Re	-0.636643	-0.589068	-0.033940	С	1.501874	-2.423915	-1.435010
С	-1.472427	-1.320314	-1.656590	С	2.845807	-2.624578	-1.549686
0	-1.971791	-1.781012	-2.597559	Ν	3.463729	-1.587716	-0.884511
С	-0.969264	-2.310114	0.747167	С	4.910797	-1.397069	-0.820835
0	-1.131599	-3.369205	1.204809	Н	5.317707	-1.824847	0.098287
P	-2.925756	0.265762	0.510532	Н	5.138987	-0.331732	-0.853162
С	-3.255633	2.080993	0.608943	Н	5.359734	-1.896356	-1.679154
С	-3.611659	-0.368417	2.099190	Н	3.413049	-3.393327	-2.049953
С	-4.218105	-0.267446	-0.690702	Н	0.692515	-3.021596	-1.821180
Н	-2.791021	2.516006	1.494954	С	2.493985	-0.765900	-0.378604
Н	-2.867371	2.588343	-0.277735	С	2.726482	0.374126	0.453393
Н	-4.336148	2.243994	0.667226	С	3.751411	0.508058	1.392426
Н	-3.010736	-0.031444	2.947035	С	3.622397	1.778873	2.007979
Н	-4.637731	-0.010402	2.226279	С	2.561706	2.475577	1.404656
Н	-3.608568	-1.460958	2.082572	С	1.951477	1.634196	0.456518
Н	-5.193935	0.106102	-0.367891	С	0.993451	2.115028	-0.535130
Н	-3.998315	0.125685	-1.687022	С	1.167821	3.424724	-1.037942
Н	-4.251444	-1.357862	-0.746934	Ν	-0.052209	1.348709	-0.980535
Ν	0.101958	0.146916	1.724389	С	-0.845018	1.853271	-1.960603
С	0.816987	-0.672974	2.697390	С	-0.699869	3.118432	-2.500434
С	-0.328569	1.387701	2.366111	С	0.324672	3.935060	-2.010074
Н	-1.144520	1.158230	3.065905	Н	-1.640076	1.204846	-2.306614
Н	-0.676152	2.108772	1.629499	Н	-1.377473	3.451552	-3.277082
Н	0.490935	1.827726	2.942460	Н	0.474644	4.936390	-2.397949
Н	0.162571	-0.893419	3.552241	Н	4.476193	-0.250043	1.655643
Н	1.161536	-1.602507	2.246955	Н	4.243331	2.150866	2.813902
Н	1.683796	-0.112146	3.077153	Н	2.239499	3.479448	1.647344
Ν	1.276127	-1.269986	-0.706557	Н	2.003503	4.006721	-0.671756

Figure S2. CPCM-B3LYP/6-31+G(d)-LANL2DZ optimized structure including only some relevant bond distances (in Å), absolute and relative electronic energy (E and Δ E, respectively), absolute and relative Gibbs free energy (G and Δ G, respectively), and cartesian coordinates (in Å) of the transition state **TS_IIIa'_IIIa** connecting isomers **IIIa'** and **IIIa**. Relative electronic and Gibbs free energies refer to **IIIa'**.

References

1. Hevia, E.; Pérez, J. ; Riera, L.; Riera, V.; del Río, I.; García-Granda, S.; Miguel, D. *Chem. Eur. J.* **2002**, *8*, 4510.

2. The method used herein is a variation of the previously reported in: R. Arévalo, R. López, L. Falvello, L. Riera, J. Pérez, *Chem. Eur. J.* 2021, 27, 379;

3. The method used herein is a variation of the previously reported in: R. Arévalo, M. I. Menéndez, R. López, I. Merino, L. Riera, J. Pérez, *Chem. Eur. J.*, **2016**, *22*, 17972.

4. APPEX II; Bruker AXS Inc.; Madison, WI, USA, 2004.

5. G. M. Sheldrick. *SHELX-97* (*SHELXS 97 and SHELXL 97*), *Programs for Crystal Structure Analyses;* University of Göttingen: Göttingen (Germany), 1996.

6. CrysAlis^{Pro} CCD, CrysAlis^{Pro} RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, UK.

7. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.

8. a) Sheldrick, G. M. Acta Cryst. **2008**, A64, 112-122; b) Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. **2015**, 71, 3.

9. L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.

10. a) Barone, V.; Cossi, *J. Phys. Chem. A* **1998**, *102*, 1995-2001; b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. *J. Comp. Chem.*, **2003**, *24*, 669-681.

11. Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III; Skiff, W. M. UFF, *J. Am. Chem. Soc.* **1992**, *114*, 10024-10039.

12. a) Becke, A. D. *Phys. Rev. A: At., Mol., Opt. Phys.* **1988**, *38*, 3098-3100; b) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1988**, *37*, 785-789; c) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648-5652.

13. Hehre, W. J.; Radom, L.; Pople, J. A.; Schleyer, P. v. R. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.

14. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283.

15. a) Schlegel, H. B. *J. Comput. Chem.* **1982**, *3*, 214-218; b) Schlegel, H. B. *Theor. Chem. Acc.* **1984**, *66*, 333-340; c) Li, X.; Frisch, M. J. *J. Chem. Theory Comput.* **2006**, *2*, 835-839.

16. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027-2094.

17. McQuarrie, D. A. Statistical Mechanics; Harper and Row: New York, 1976.

18. Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B **2011**, *115*, 14556-14562.

19. a) Weinhold, F.; Landis, C. R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: Cambridge, England, **2005**; b) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO, Version 3.1; University of Wisconsin: Madison, WI, 2012.

20. a) Bader, R. F. W. Atoms in Molecules. A Quantum Theory; University Press: Oxford, England, **1990**; b) Biegler-Konig, F. W.; Bader, R. F. W.; Tang, T.-H. *J. Comput. Chem.* **1982**, *3*, 317-328; c) Bader, R. F. W.; Popelier, P. L. A.; Keith, T. A. Angew. Chem., Int. Ed. Engl. **1994**, *33*, 620-631.

21. a) London, F. J. Phys. Radium 1937, 8, 397-409; b) McWeeny, Phys. Rev. 1962, 126, 1028; c) Ditchfield,
R. Mol. Phys. 1974, 27, 789-807; d) Wolinski, K.; Hilton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 82518260; e) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497-509.

22. a) Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H. J.; Hommes, N. J. R. V. *J. Am. Chem. Soc.* 1996, *118*, 6317-6318; b) Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. *Chem. Rev.* 2005, *105*, 3842-3888.

23. a) Schleyer, P. v. R.; Jiao, H.; Hommes, N. J. R. v. E.; Malkin, V. G.; Malkina, O. *J. Am. Chem. Soc.* **1997**, *119*, 12669-12670; b) Schleyer, P. v. R.; Manoharan, M.; Wang, Z. X.; Kiran, B.; Jiao, H.; Puchta, R.; Hommes, N. J. R. v. E. *Org. Lett.* **2001**, *3*, 2465-2468.

24. a) Fombona, S.; Espinal-Viguri, M.; Huertos, M. A.; Díaz, J.; López, R.; Menéndez, M. I.; Pérez, J.; Riera, L. Chem. Eur. J. 2016, 22, 17160-17164; b) Arévalo, R.; Menéndez, M. I.; López, R.; Merino, I.; Riera, L.; Pérez, J. Chem. Eur. J. 2016, 22, 17972-17975; c) Álvarez, D.; Mera-Adasme, R.; Riera, L.; Cárdenas-Jirón, G. I.; Pérez, J.; Díaz, J.; Menéndez, M. I.; López, R. Inorg. Chem. 2017, 56, 6652-6661; d) Espinal-Viguri, M.; Fombona, S.; Álvarez, D.; Díaz, J.; Menéndez, M. I.; López, R.; Pérez, J.; Riera, L. Chem. Eur. J. 2019, 25, 9253-9265; e) Arévalo, R.; López, R.; Falvello, L. R.; Riera, L.; Pérez, L. Chem. Eur. J. 2021, 27, 379-389. 25 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian 09, Revision D.01. Wallingford CT, 2009.

f1 (ppm)

								1 1 1 1	1 1 1 1									
160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 f2 (ppm)

f2 (ppm)

f1 (ppm)

f1 (ppm)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 f2 (ppm)

130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 f1 (ppm)

50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f2 (ppm)

^{9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0} f2 (ppm)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 f2 (ppm)

110 100 90 80 70 60 50 40 30 20 10 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 0 f1 (ppm)

f2 (ppm)

f2 (ppm)

f2 (ppm)