Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Electronic supporting information

Origin of the exceptional selectivity of NaA zeolite for the radioactive isotope ⁹⁰Sr²⁺

Wenfeng Hao,^{[a]+} Nana Yan,^{[b]+} Miao Xie,^{[c]+} Xiaojun Yan,^[d] Xiliang Guo,^[d] Pu Bai,^[e] Tao Cheng,^{*[c]} Peng Guo ^[b], Wenfu Yan,^{*[a]}

- ^{*a.*} State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- ^{b.} National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- ^c Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
- ^{*d.*} Division of Waste Disposal Technology, Waste Management Department, China Institute for Radiation Protection, Taiyuan 030006, Shanxi, China
- e. Luoyang Jalon Micro-Nano New Materials Co., Ltd, Luoyang 471900, China
- * Co-corresponding authors

Email: yanw@jlu.edu.cn, tcheng@suda.edu.cn

Table of contents in Supporting Information:

Fig. S1. The structure of the simulation model with the formal formula of [Na14Al24Si24O72(OH)48·20H20	C] ^{10−} .
	1
Fig. S2. The crystallographic structure of NaA-Sr-2. All Na ⁺ , Sr ²⁺ , and Ca ²⁺ cations locate in the sing	le 6-
rings (s6r) of the lta cage (highlighted in red circle)	1
Table S1. Adsorption data of NaA toward 90Sr ²⁺	2
Table S2. Crystallographic details of Rietveld refinements.	3
Table S3 Hydrated ions form energy of Na ⁺ ·(H ₂ O) ₆ and Sr ²⁺ ·(H ₂ O) ₆	4
Table S4 Adsorption data of NaA toward Sr ²⁺ at different time	5
Table S5 Adsorption data of NaA toward Sr ²⁺ at different initial concentration	6
Table S6 Adsorption data of NaA toward Sr ²⁺ at different pH values	7
Table S7 Adsorption data of NaA toward Sr ²⁺ at different adsorbent dosages	8

Fig. S1. The structure of the simulation model with the formal formula of $[Na_{14}Al_{24}Si_{24}O_{72}(OH)_{48} \cdot 20H_2O]^{10}$.

Fig. S2. The crystallographic structure of NaA-Sr-2. All Na⁺, Sr²⁺, and Ca²⁺ cations locate in the single 6-rings (*s6r*) of the *lta* cage (highlighted in red circle).

Solid/Liquid Ratio (g/mL)	Initial activity concentration (Bq/L)	Equilibrium Activity concentration (Bq/L)	^a Averag e (Bq/L)	^b Standard Deviation	Removal Efficiency (%)	Averag e (%)	Standard Deviation	Distribution Coefficient (L/g)	Averag e (L/g)	Standard Deviation
		0.51	_		99.87			15.67	_	
1/20	400	0.75	0.63	0.12	99.81	99.84	0.0300	10.65	13.07	2.51
		0.62			99.85			12.88		
		0.75			99.81	_		53.23	_	
1/100	400	0.84	0.83	0.08	99.79	99.79	0.0200	47.52	48.20	4.73
		0.91			99.77			43.86		
		1.32			99.67	_		151.02	_	
1/500	400	1.44	1.38	0.06	99.64	99.65	0.0150	138.39	144.26	6.36
		1.39			99.65			143.38		
		1.43			99.64	_		278.72	_	
1/1000	400	1.58	1.56	0.12	99.61	99.61	0.0303	252.16	256.47	20.44
		1.67			99.58			238.52		
		1.86	_		99.54	_		428.11	_	
1/2000	400	1.85	1.89	0.06	99.54	99.53	0.0076	430.43	421.57	13.39
		1.96			99.51			406.16		
		40.35	_		89.91	_		44.57	_	
1/5000	400	42.66	41.52	1.16	89.34	89.62	0.2889	41.88	43.19	1.34
		41.55			89.61			43.13		

Table S1. Adsorption data of NaA toward ⁹⁰Sr²⁺

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
a: Average:

Standard Deviation:
$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

b:

Sample	NaA-Sr-1	NaA-Sr-2	NaA
Space group	Fm-3c	Fm-3c	Fm-3c
a(Å)	24.6803(3)	24.6797(12)	24.5970(4)
V(Å ³)	15033.1(6)	15032(2)	14881.5(6)
R _p	0.03982	0.05238	0.02863
R _{wp}	0.05851	0.07557	0.04300
R _{exp}	0.01321	0.01311	0.01743
R_{bragg}	0.03307	0.03754	0.03150
GOF	4.43	5.76	2.47
Reflections	516	516	512
Parameters	52	52	49
Restraints	6	6	6
CCDC number	2163932	2163933	2163931

 Table S2. Crystallographic details of Rietveld refinements.

Table S3 Hydrated ions form energy of $Na^{+} \cdot (H_2O)_6$ and $Sr^{2+} \cdot (H_2O)_6$

Reaction	$\Delta E (eV)$
$Na^+ + 6 H_2O \rightarrow Na^+ \cdot (H_2O)_6$	-7.31
$\mathrm{Sr}^{2+} + 6 \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{Sr}^{2+} \cdot (\mathrm{H}_2\mathrm{O})_6$	-4.04

Table S4	Adsorption	data of NaA	toward Sr ²⁺	at different time
----------	------------	-------------	-------------------------	-------------------

Contact Time (min)	Initial concentration (ppm)	Equilibrium concentration (ppm)	Averag e (ppm)	Standard Deviation	Removal Efficiency (%)	Averag e (%)	Standard Deviation
0.25	100	12.384 12.089 11.926	12.133	3.734	87.616 87.911 88.074	87.867	0.190
0.5	100	10.756 10.804 10.762	10.774	0.026	89.244 89.196 89.239	89.226	0.022
1	100	4.894 4.885 4.885	4.888	0.005	95.106 95.115 95.115	95.112	0.004
2	100	0.089 0.093 0.090	0.091	0.002	99.911 99.907 99.910	99.909	0.002
3	100	0.068 0.069 0.049	0.062	0.011	99.932 99.931 99.951	99.938	0.009
4	100	0.058 0.057 0.057	0.057	0.001	99.943 99.944 99.944	99.943	0.000
5	100	0.044 0.037 0.061	0.047	0.012	99.957 99.963 99.939	99.953	0.010
6	100	0.035 0.037 0.035	0.035	0.001	99.965 99.963 99.965	99.965	0.001
7	100	0.041 0.052 0.033	0.042	0.010	99.960 99.948 99.967	99.958	0.008
8	100	0.028 0.054 0.032	0.038	0.014	99.973 99.946 99.968	99.962	0.012
9	100	0.030 0.049 0.059	0.046	0.014	99.970 99.952 99.941	99.954	0.012
10	100	0.040 0.046 0.028	0.038	0.009	99.960 99.954 99.972	99.962	0.008

Initial concentration (ppm)	Equilibrium concentration (ppm)	Average (ppm)	Standard Deviation	Adsorption capacity (mg/g)	Averag e (mg/g)	Standard Deviation	
	0.0376			61.153			
50	0.0241	0.0241	0.0135	61.170	61.170	0.017	
	0.0106	_		61.187	•		
	0.0303	_		122.362	_		
100	0.0314	0.0379	0.0123	122.361	122.353	0.015	
	0.0521			122.335	-		
	0.0893			183.489			
150	0.0732	0.0796	0.0085	183.509	183.501	0.010	
-	0.0764	_		183.505	-		
200	3.5094		0.0155	240.503			
	3.4920	3.4933		240.524	240.522	0.019	
	3.4785	_		240.540	-		
	40.237		1.4901	256.747	254.665		
250	42.567	41.9388		253.896		1.824	
	43.012	_		253.351	-		
	76.053		0.5086	274.109			
300	76.934	76.3467		273.031	273.749	0.623	
	76.053	_		274.109	-		
	115.817			286.638			
350	116.885	116.8080	0.9548	285.330	285.425	1.169	
	117.722	_		284.306	-		
	164.152			288.676		1.365	
400	164.152	163.5083	1.1149	288.676	289.463		
	162.221	_		291.039	-		

Table S5 Adsorption data of NaA toward Sr²⁺at different initial concentration

Table S6 Adsorption data of NaA toward Sr ²⁺ at different pH v	values
---	--------

Initial pH	Initial concentration (ppm)	Equilibrium concentration (ppm)	Averag e (ppm)	Standard Deviation	Removal Efficiency (%)	Averag e (%)	Standard Deviation
3	100	43.01 42.68 44.03	43.240	0.7038	57.32 55.97 56.76	56.683	0.678
4	100	0.037 0.035 0.036	0.036	0.0010	99.965 99.964 99.964	99.964	0.095
5	100	0.027 0.041 0.038	0.035	0.0072	99.959 99.963 99.965	99.962	0.716
6	100	0.031 0.046 0.043	0.040	0.0077	99.954 99.958 99.960	99.957	0.770
7	100	0.073 0.022 0.051	0.049	0.0255	99.978 99.949 99.951	99.959	0.255
8	100	0.021 0.039 0.043	0.035	0.0118	99.961 99.957 99.965	99.961	1.178
9	100	0.069 0.036 0.032	0.045	0.0201	99.964 99.969 99.955	99.962	0.201
10	100	0.044 0.044 0.034	0.041	0.0056	99.956 99.966 99.959	99.960	0.561
11	100	0.031 0.026 0.047	0.035	0.0111	99.974 99.953 99.965	99.964	1.112
12	100	0.030 0.048 0.059	0.046	0.0144	99.952 99.941 99.954	99.949	0.014

Solid/Liquid Ratio (g/mL)	Initial concentration (ppm)	Equilibrium concentration (ppm)	Averag e (ppm)	Standard Deviation	Removal Efficiency (%)	Averag e (%)	Standard Deviation	Adsorption capacity (mg/g)	Averag e (mg/g)	Standard Deviation
		0.043	_		99.9566	_		12.235	_	
1/100	100	0.044	0.038	0.009	99.9562	99.962	0.009	12.235	12.235	0.001
		0.028	_		99.9719			12.236		
		0.042	_		99.9581			24.470	_	
1/200	100	0.030	0.035	0.006	99.9696	99.965	0.006	24.472	24.471	0.001
		0.034			99.9665			24.472		
		0.028	_		99.9722	_		61.182	_	
1/500	100	0.038	0.036	0.008	99.9621	99.964	0.008	61.176	61.177	0.005
		0.044			99.9563			61.173		
		0.040			99.9599			122.350		
1/1000	100	0.046	0.038	0.009	99.9538	99.962	0.009	122.342	122.352	0.011
	-	0.028	_		99.9722			122.365	_	
		1.342	_		98.6581			241.513	_	
1/2000	100	1.335	1.337	0.004	98.6651	98.663	0.004	241.530	241.526	0.011
		1.334			98.6664			241.533		

Table S7 Adsorption data of NaA toward Sr²⁺at different adsorbent dosages