
Electronic Supplementary Information

Data-Driven Ligand Field Exploration of Fe(IV)-oxo Sites for 

C-H Activation

Grier M. Jones,1a Brett A. Smith,1 a Justin K. Kirkland,2 a Konstantinos D. Vogiatzis* a

a  Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States 

* Corresponding Author: kvogiatz@utk.edu 

1 These authors contributed equally to this work
2 Current address: Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, 
United States

Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers.
This journal is © the Partner Organisations 2022

mailto:kvogiatz@utk.edu


Table of Contents

Section Page

S1. Example of Persistence Diagram Used as Molecular Representations S-3

S2. Database Distribution S-5

S3. Classification Model Metrics S-25

S4. Regression Model Metrics S-28

S5. Model Comparison with Common Molecular Representations S-29

S6. Density Functional Theory Validation of Machine Learning Model S-33

S-2



S1. Example of Persistence Diagram Used as Molecular Representations

Figure S1: Example of a persistence diagram for an iron(IV)-oxo structure used in this study. 

The top blue point is a connected component at (0, 2.1) that corresponds to the axial Fe-O bond 

length of 2.097 Å. The three holes correspond to the three rings formed by the TREN ligand: 

the two Fe-O-C-C-N rings that include the methylated carbon are located at (2.0400, 2.6939) 

and (2.3130, 2.6933), while the ring without a methane is located at (2.0971, 2.7182).

 

Figure S1 shows how persistence diagrams are generated, for a given molecule, by placing a 

sphere at the center of each atom. As the radius of the sphere increases, connected components, 

which encode interatomic distances, and holes, which can encode information about functional 

groups and rings, form. The birth of a connect component occurs at 0 and the spheres are 

systematically expanded until the spheres intersect and a new connected component is formed. 

When all spheres that form a hole intersect the death of a hole occurs. Persistence is defined as 

the difference between birth and death. Figure S1 shows an example of a persistence diagram 
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from an iron(IV)-oxo species used in this study. For more details, see Ref 1 and the persistence 

image webpage: https://maroulaslab.github.io/PersistentImages_Chemistry/pages/PI.html.
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S2. Database Distribution

Distribution of Structures

Figure S2:  Distribution of structures in the DFT database (top) and the full database (bottom). 

Base structures that account for most of the structures in the full database correspond to 

structures that have more hydrogens, like structures 41-47, so there are more places to perform 

single and double substitutions. While structures were initially added evenly to the run the DFT 

calculations, the DFT database corresponds to structures that are used in the ML model.
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Distribution of Substituents

Functionalization Average Min Max
Br/Br -1.75 -10.21 4.84
F/Br -1.45 -11.46 3.41
F/F -1.45 -10.74 4.90

Cl/CH3 -1.25 -15.69 9.14
F/CH3 -0.98 -14.97 9.13

Br -0.96 -8.98 2.75
Br/CH3 -0.90 -15.64 8.47

F -0.86 -10.16 3.66
Br/Cl -0.77 -10.24 4.77
F/Cl -0.76 -11.36 4.61

CH3/CH3 -0.59 -22.54 11.05
Cl -0.32 -9.30 2.27

CH3 -0.10 -12.00 8.57
Cl/Cl -0.07 -10.24 4.67
F/NH2 0.09 -12.49 9.13
Br/NH2 0.12 -13.18 7.90

NH2 0.52 -9.67 6.71
NH2/CH3 0.76 -13.91 11.97
Cl/NH2 0.94 -13.11 7.97

NH2/NH2 1.88 -11.56 10.43
Table S1: Effects of functionalization by type. All values have been obtained by calculating 

the relative change in activation barrier for a functionalized complex in comparison to its’ 

original base complex (all values are in units of kcal/mol)

The effects of each type of functionalization can also be examined and trends extracted from 

them. The table above shows the relative change in activation barrier as a function of 

functionalization type. These values are averaged across all complexes used in the full 

database. The activation barrier appears to lower when a complex is functionalized with more 

electronegative groups (halides). Trends between halide also highlight that fluorine, the most 

electronegative and least polarizable, lowers the barrier more on average than any other 

functionalization type. On the opposing end of the spectrum, ammine functionalization raises 
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the barrier on average. The ammine groups are generally going to serve as electron donating 

groups, which in many cases will lower the ligand field strength and raise the barrier. The 

halide functionalization groups will serve as electron withdrawing groups, which may polarize 

the metal-ligand bonds, raising the energy of the iron(IV)-oxo intermediate. Additionally, these 

functionalizations are heavily dependent on positioning and the overall ligand architecture. 
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Figure S3: Distribution of the change in C-H activation energy (δΔG†) in kcal/mol, to highlight 

the range, spread and average changes in each base structure. 



The following plots show a graph containing the kernel density estimate and bar plots of the 

activation energies, in kcal/mol, for the DFT and full database. The right side of the plot show 

a table containing the count, mean, standard deviation, minimum, 25% percentile, 50% 

percentile, 75% percentile, and maximum of the DFT and full database, along with the 

difference between them. This shows how well the model is predicting the spread of the 

activation energies for each base structure. We used this model evaluation to select structures 

from the full database data to perform DFT on. In the manuscript we showed that his is a valid 

assumption for the validation of the DFT data.
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S3. Classification Model Metrics

Figure S4: A true negative is a quintet that was predicted correctly, a false positive is a quintet 

predicted to be a triplet, a false negative is a triplet that was predicted to be a quintet, and a true 

positive was a triplet that was predicted correctly.

The classification model was evaluated in several ways. First, we looked at the confusion 

matrices (Figure S4) which show the percentage and number of values correctly or incorrectly 

predicted for quintets (negative values) and triplets (positive values). Second, we looked at the 

classification reports (Table S2) that include information about the precision, recall, -score, 𝐹1

accuracy, macro-average, and weighed average of each class.
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Train precision recall f1-score support

quintet 0.97 0.98 0.97 233

triplet 0.95 0.93 0.94 107

accuracy 0.96

macro avg 0.96 0.96 0.96 340

weighted avg 0.96 0.96 0.96 340

Test precision recall f1-score support

quintet 0.95 0.93 0.94 113

triplet 0.78 0.85 0.81 33

accuracy 0.91

macro avg 0.87 0.89 0.88 146

weighted avg 0.91 0.91 0.91 146

Table S2: Classification reports for the training and test set.

The accuracy is defined as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

The precision is the accuracy of positive predictions:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

The recall is the ability of a classifier to predict positive outcomes:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

The -score is the weighted harmonic mean of precision and recall:𝐹1

𝐹1 = 2 ∗ ( 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

23



The support column is the amount of data in each class. The macro average is the average 

without considering the proportion of each label in the dataset. The weighted average 

considers the proportion of each label in the dataset. 
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S4. Regression Model Metrics

To find the best possible model in a systematic fashion, we used GridSearchCV in Scikit-

Learn to perform a three-fold cross-validation over a set of parameters defined below. For the 

sake of reproducibility, the three lines of code are listed verbatim below:

parameters={'kernel': ['laplacian','rbf'], 'alpha':np.logspace(-3,3,7), 

'gamma':np.logspace(-3,3,7)}

GridSearch=GridSearchCV(KernelRidge(), param_grid=parameters, cv=3, 

verbose=0, scoring='r2')

model=GridSearch.fit(X_train, reg_y_train).best_estimator_

To evaluate our regression model, we train and tested our model using a 70%/30% split along 

with 10-fold cross-validation (CV). For our 70%/30% split, we use the coefficient of 

determination (R2), root-mean-squared error (RMSE), and mean absolute error (MAE) 

evaluation metrics. To get the average RMSE and R2 over the complete dataset, we used 10-

fold CV.
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S5. Model Comparison with Common Molecular Representations

We benchmarked the PIs method against two common molecular representations, Coulomb 

matrices (CMs) and smooth overlap of atomic positions (SOAP), that were generated using 

DScribe.2 We generated the CMs using the default parameters that use the L2-norm for 

producing sorted CMs and n_atoms_max equal to 55. To generate SOAPs we used a species 

list containing [O, Br, F, P, Cl, H, Fe, C, N], a cutoff value for the local region (rcut) of 8.0 Å, 

the number of radial basis functions (nmax) of 4, the maximum degree of the spherical 

harmonics (lmax) of 4, and a standard deviation of the Gaussians used to expand the atomic 

densities (sigma) of 1.5. All other parameters were set to the default parameters. We found that 

normalizing the SOAPs, using the normalize function in Scikit-Learn, before passing the 

SOAPs to the regularized entropy match (REMatch) kernel provided improved performance of 

the method. For the REMatch kernel, we used the Gaussian (“rbf”) metric with a gamma of 2, 

alpha of 1.2, convergence threshold of 1e-8, and kernel normalization set to false. 

The classification models for CMs and SOAPs were performed using linear ridge 

classification. We used five-fold cross-validation using GridSearchCV in Sci-kit Learn3 to find 

the optimal alpha parameters of 1 and 0.001 for CMs and SOAPs, respectively. For the 

regression step using kernel ridge regression, we also used three-fold cross-validation using 

GridSearchCV to find the optimal kernel, alpha, and gamma parameters for CMs and SOAPs. 

Both CMs and SOAPs use linear kernels and gammas of 1e-3, whereas CMs has an alpha of 

1e3 and SOAPs has an alpha of 1e-3. Like we did with PIs in the main text, we performed 10-

fold cross-validation get average RMSEs and R2 setting the parameters: n_splits=10, 

random_state=12, and shuffle=True. 

Representation Average train 
RMSE 

(kcal/mol)

Average test 
RMSE 

(kcal/mol)

Average train R2 Average test R2

CMs 1.77 ± 0.05 3.85 ± 1.39 0.97 ± 0.00 0.86 ± 0.05
SOAPs 1.83 ± 0.03 2.09 ± 0.30 0.97 ± 0.00 0.96 ± 0.01
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PIs 1.07 ± 0.04 2.24 ± 0.40 0.99 ± 0.00 0.95 ± 0.02
Table S3: Results from the 10-fold cross-validation of the regression data using the CMs, 

SOAPs, and PIs molecular representations. PIs offer a competitive representation to SOAPs 

with respect to accuracy. Despite overfitting in the method, PIs are less computationally 

expensive.

Representation Size Timing 
(s)

CMs 3025 0.59
SOAPs 486 106.00

PIs 400 7.82
Table S4: Size and timings of each molecular representation over the full DFT dataset. The 

increased cost of SOAPs is due to the computation of the REKernel.

Figure S5: The PI (top), SOAP (middle), and CM (bottom) molecular representations were 

used to predict the spin-states of each molecule in the DFT data. The CM model performs the 

worst since it overfits data severely. SOAPs and PIs show very similar performance, but PIs 

outperform SOAPs.
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Figure S6: The prediction of the activation barriers using PIs (top), SOAPs (middle), and CMs 

(bottom) shows that CMs is the least accurate method for predicting barriers, whereas the 

SOAPs and PIs method perform very similarly.

  

PIs precision recall f1-score support PIs precision recall f1-score support
quintet 0.97 0.98 0.97 233 quintet 0.95 0.93 0.94 113
triplet 0.95 0.93 0.94 107 triplet 0.78 0.85 0.81 33

accuracy 0.96 accuracy 0.91
macro avg 0.96 0.96 0.96 340 macro avg 0.87 0.89 0.88 146

weighted avg 0.96 0.96 0.96 340 weighted avg 0.91 0.91 0.91 146
SOAPs precision recall f1-score support SOAPs precision recall f1-score support
quintet 0.93 0.96 0.94 228 quintet 0.95 0.94 0.95 112
triplet 0.90 0.85 0.88 112 triplet 0.81 0.85 0.83 34

accuracy 0.92 accuracy 0.92
macro avg 0.92 0.90 0.91 340 macro avg 0.88 0.90 0.89 146

weighted avg 0.92 0.92 0.92 340 weighted avg 0.92 0.92 0.92 146
CMs precision recall f1-score support CMs precision recall f1-score support

quintet 1.00 1.00 1.00 235 quintet 0.87 0.86 0.86 112
triplet 1.00 1.00 1.00 105 triplet 0.56 0.59 0.57 34

accuracy 1.00 accuracy 0.79
macro avg 1.00 1.00 1.00 340 macro avg 0.71 0.72 0.72 146

weighted avg 1.00 1.00 1.00 340 weighted avg 0.80 0.79 0.80 146

TRAIN TEST

Table S5: A classification report for PIs, SOAPs, and CMs where the evaluations metrics 

include those mentioned above.

Table S5 shows the accuracy, macro and weighted average of the precision, recall, and F1-

scores for the classification of the spin states using PIs, SOAPs, and CMs. As expected, CMs 

is more prone to overfitting than SOAPs and PIs and exhibits lower accuracies on the test set. 

While similar results can be achieved with SOAPs, the parameters we use for the PIs offer a 

faster method than SOAPs as seen in Table S5. Overall, while the SOAP molecular 

representation offers a competitive representation with respect to accuracy, due to the speed of 

which a PI can be generated, PIs offer a favorable representation for high throughput ML 

studies, as we have demonstrated herein.

29



S6. Density Functional Theory Validation of Machine Learning Model 

Figure S7: (a) Structures of the four outliers. (b) Values of the true and predicted barriers, in 

kcal/mol.
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Label

DFT

(kcal/mol)

ML

(kcal/mol)

Absolute Error

(kcal/mol)

985-(1) 7.5 8.1 0.6

2768-(1) 9.6 10.8 1.2

338-(1) 6.6 8.1 1.5

515-(2) 11.3 11.1 0.2

1075-(2) 10.8 11.1 0.3

1178-(2) 11.4 11.1 0.3

530-(2) 11.5 11.1 0.4

2003-(2) 11.6 11.1 0.5

525-(2) 12 11.1 0.9

732-(4) 8.6 9.1 0.5

447-(4) 8.6 11.2 2.6

727-(4) 8.6 11.2 2.6

110-(27) 12 16.7 4.7

3494-(30) 7.3 15.2 7.9

5234-(30) 6.6 15.2 8.6

Table S6: Data used in validation of the machine learning model. Labels indicate a unique 

structure given name within the database. All reaction barriers in kcal/mol.
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