Supplementary Information

The Synthesis of Zeolitic Imidazolate Frameworks/Prussian Blue Analogues Heterostructure Composites and Their

Application in Supercapacitors

Xinyue Wu,^a Qingling Jing,^a Fancheng Sun,^{a,b} Huan Pang^{*a}

^{a.} School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China.

^{b.} Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, P.R. China.

*Corresponding authors: huanpangchem@hotmail.com; panghuan@yzu.edu.cn

1. Experimental section

1.1. Synthesis of ZIF-67@PBA nanoparticles

Typically, $Co(NO_3)_2 \cdot 6H_2O(0.58 \text{ g})$, and 2-methylimidazole (0.65 g) were dissolved in 20 mL of methanol, respectively. The methanolic solution of $Co(NO_3)_2$ was quickly injected into the solution of 2-methylimidazole at room temperature. After reacting for 20 minutes, the product ZIF-67 was collected by centrifugation and washed by methanol. 20 mg K₃[Fe(CN)₆] and 40 mg ZIF-67 were dispersed into ethanol and water mixed solvent with stirring for 4 h at room temperature. The volume ratio of ethanol and water in the mixed solvent was 9:1, 1:1, 1:2, corresponding to the products ZP1, ZP2, ZP3.

To modulate its microstructure, we calcined ZP composites at different target temperatures (150, 250, 350 °C under N_2 atmosphere for 2 h, obtaining ZP-X (X denoted temperature).

1.2 Electrochemical measurements

The electrochemical measurements were carried out with CHI760e working station in 3.0 M KOH solution at room temperature. Galvanostatic charge-discharge (GCD), Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to evaluate the capacitive properties of the ZIF-67@PBAs. The EIS measurements were conducted in the frequency range of 100 kHz to 0.01 Hz at the open circuit voltage.

For the three-electrode cell, the working electrodes were fabricated by mixing the active materials MOF, acetylene black, and polytetrafluoroethylene in a mass ratio of 80 : 15 : 5. The mixture was ground adequately to form a slurry and coated on nickel foam ($\approx 1 \text{ cm}^2$), then pressed into a thin foil at a pressure of 10 MPa. A platinum electrode and a Hg/HgO electrode were served as the counter and reference electrode, respectively.

For the hybrid supercapacitor cells, the electrochemical measurements were conducted in a two-electrode electrochemical cell with MOF materials as positive electrode and activated carbon (AC) as negative electrode in 3.0 M KOH solution at room temperature. The positive electrode and negative electrode were fabricated by mixing the as-prepared MOF/activated carbon, acetylene black and polytetrauoroethylene at a weight ratio of 80: 15: 5. The mixture was ground adequately to form a slurry and coated on nickel foam ($\approx 1 \text{ cm}^2$), then pressed into a thin foil at a pressure of 10 MPa.

1.3 Calculation

The specific capacitance of the electrode material can be calculated from the charge-discharge curves according to the equation:

C=Q / (m × Δ V) = \int I dt / (m × Δ V) = I × tdischarge / (m × Δ V)

Where C is specific capacitance in F g⁻¹, t tdischarge is the discharging time in s, ΔV is the potential window in V.

Sample	Electrolyte	Scan rate (mV s ⁻¹)	Current density (A g ⁻¹)	Capacitance (F g ⁻¹)	Ref.
ZIF-67/PEDOT composite	PVA/1 M H ₂ SO ₄		1.0	106.8	1
ZIF-67/GO-2 composite	6 М КОН	0.5		100.4	2
P-ZIF-67	6 М КОН		1.0	120.0	3
ZIF-67 microflowers	1 M KOH		1.0	188.7	4
ZP2-250	3 М КОН		0.5	190.7	This work

Table S1 Comparisons of other ZIF-based materials for SCs Sample

Sample	S _{BET} [m ² /g]	V _{micro} [cm ³ /g]
ZP2	511.444	0.250
ZP2-150	676.417	0.313
ZP2-250	835.843	0.395
ZP2-350	627.057	0.303

Table S2 The BET properties of the ZP2-X composites

Figure S1 TGA curves of the ZP2 composites under $N_{\rm 2}$ atmosphere.

Figure S2 The SEM images of ZP1-150, ZP1-250, ZP1-350, ZP3-150, ZP3-250, ZP3-350 composites.

Figure S3 XRD patterns of the ZP1, ZP1-150, ZP1-250, ZP1-350 composites.

Figure S4 XRD patterns of the ZP3, ZP3-150, ZP3-250, ZP3-350 composites.

Figure S5 FT-IR spectra of the ZP1, ZP1-150, ZP1-250, ZP1-350 composites.

Figure S6 FT-IR spectra of the ZP3, ZP3-150, ZP3-250, ZP3-350 composites.

Figure S7 High-resolution Co 2p XPS spectra of (a) ZP2-150, (b) ZP2-350 composites.

Figure S8 The electrochemical performance of the (a) ZP1, (b) ZP1-150, (c) ZP1-250, (d) ZP1-350 in a three-electrode cell: the CV curves at different current densities.

Figure S9 The electrochemical performance of the (a) ZP1, (b) ZP1-150, (c) ZP1-250, (d) ZP1-350 in a three-electrode cell: the CV curves with a scan rate at 30 mV s⁻¹ at different potentials.

Figure S10 The electrochemical performance of the (a) ZP1, (b) ZP1-150, (c) ZP1-250, (d) ZP1-350 in a three-electrode cell: the GCD curves at different current densities.

Figure S11 The electrochemical performance of the (a) ZP2, (b) ZP2-150, (c) ZP2-250, (d) ZP2-350 in a three-electrode cell: the CV curves at different current densities.

Figure S12 The electrochemical performance of the (a) ZP2, (b) ZP2-150, (c) ZP2-250, (d) ZP2-350 in a three-electrode cell: the CV curves with a scan rate at 30 mV s⁻¹ at different potentials.

Figure S13 The electrochemical performance of the (a) ZP2, (b) ZP2-150, (c) ZP2-250, (d) ZP2-350 in a three-electrode cell: the GCD curves at different current densities.

Figure S14 The electrochemical performance of the (a) ZP3, (b) ZP3-150, (c) ZP3-250, (d) ZP3-350 in a three-electrode cell: the CV curves at different current densities.

Figure S15 The electrochemical performance of the (a) ZP3, (b) ZP3-150, (c) ZP3-250, (d) ZP3-350 in a three-electrode cell: the CV curves with a scan rate at 30 mV s⁻¹ at different potentials.

Figure S16 The electrochemical performance of the (a) ZP3, (b) ZP3-150, (c) ZP3-250, (d) ZP3-350 in a three-electrode cell: the GCD curves at different current densities.

Figure S17 The EIS of the ZP2, ZP2-150, ZP2-250, ZP2-350 composites in three-electrode system.

Figure S18 The EIS of the ZP1, ZP2, ZP3 composites in three-electrode system.

Figure S19 The electrochemical performance of the ZIF-67 :(a) the CV curves at different current densities; (b) the CV curves with a scan rate at 30 mV s⁻¹ at different potentials; (c) the GCD curves at different current densities.

Figure S20 The SEM images of ZP2-250 electrode after long cycles.

Reference

- V. Shrivastav, S. Sundriyal, A. Kaur, U. K. Tiwari, S. Mishra and A. Deep, Conductive and Porous ZIF-67/PEDOT Hybrid Composite as Superior Electrode for All-Solid-State Symmetrical Supercapacitors. J. Alloys Compd., 2020, 843, 155992.
- W. Cao, M. Han, L. Qin, Q. Jiang, J. Xu, Z. Lu and Y. Wang, Synthesis of Zeolitic Imidazolate
 Framework-67 Nanocube Wrapped by Graphene Oxide and Its Application for Supercapacitors.
 J. Solid State Electrochem., 2019, 23, 325–334.
- Z. Ma, J. Li, R. Ma, J. He, X. Song, Y. Yu, Y. Quan and G. Wang, The Methodologically Obtained Derivative of ZIF-67 Metal-Organic Frameworks Present Impressive Supercapacitor Performance. *New J. Chem.*, 2022, 46, 7230–7241.
- D. Zhang, H. Shi, R. Zhang, Z. Zhang, N. Wang, J. Li, B. Yuan, H. Bai and J. Zhang, Quick
 Synthesis of Zeolitic Imidazolate Framework Microflowers with Enhanced Supercapacitor and
 Electrocatalytic Performances. *RSC Adv.*, 2015, 5, 58772–58776.