Electronic Supporting Information

Large Optical Anisotropy Differentiation Induced by Anion-Directed

Regulation of Structures

Xuehua Dong,^{*}a Ying Long,^b Ling Huang,^a Liling Cao,^a Daojiang Gao,^a Jian Bi,^a and Guohong Zou^{*b}

^a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu,

610066, P. R. China.

^b College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China.

Table of contents

Sections	Titles	Pages		
Section S1	Experimental section (Instrumentations and Computational Descriptions).			
Table S1	Crystal data and structure refinement for $(Gu)_2Sb_3F_3(HPO_3)_4$ and $(Gu)SbFPO_4 \cdot H_2O$.	S5		
Table S2	Atomic coordinates and equivalent isotropic displacement parameters for	S6		
	$(Gu)_2Sb_3F_3(HPO_3)_4$. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij}			
	tensor.			
Table S3	Bond lengths [Å] and angles [°] for $(Gu)_2Sb_3F_3(HPO_3)_4$.	S7		
Table S4	Atomic coordinates and equivalent isotropic displacement parameters, and calculated	S8		
	Bond Valence Sum for (Gu)SbFPO ₄ ·H ₂ O. $U_{(eq)}$ is defined as one third of the trace of			
	the orthogonalized U_{ij} tensor.			
Table S5	Bond lengths [Å] and angles [°] for (Gu)SbFPO ₄ ·H ₂ O.	S9		
Fig. S1	The bond lengths of (a) $[Sb1O_4F]^{6-}$, $[Sb2O_4F]^{6-}$ square pyramid;(c) $[C(NH_2)_3]^+$ cation			
	group, (e), [HP1O ₃] ²⁻ , [HP2O ₃] ²⁻ tetrahedron in (Gu) ₂ Sb ₃ F ₃ (HPO ₃) ₄ ; The bond lengths			
	of (b) $[SbO_4F]^{6-}$ square pyramid, (d) $[C(NH_2)_3]^+$ cation group, (f) $[PO_4]^{3-}$ tetrahedron in			
	$(Gu)SbFPO_4$ ·H ₂ O.			
Fig. S2	Calculated and experimental powder X-ray diffraction (PXRD) patterns for compounds	S10		
	$(Gu)_2Sb_3F_3(HPO_3)_4$ (a) and $(Gu)SbFPO_4 \cdot H_2O$ (b).			
Fig. S3	TGA curves of $(Gu)_2Sb_3F_3(HPO_3)_4$ (a) and $(Gu)SbFPO_4$ ·H ₂ O (b) under N ₂ atmosphere;	S11		
	(c) Powder XRD patterns of the residue of TGA for $(Gu)_2Sb_3F_3(HPO_3)_4$ and			
	(Gu)SbFPO ₄ · H_2O .			
Fig. S4	IR spectra of compounds $(Gu)_2Sb_3F_3(HPO_3)_4$ (a) and $(Gu)SbFPO_4\cdot H_2O$ (b).	S11		
Fig. S5	Orientation of lone pairs on SbO ₄ F square pyramid in 2D layer in $(Gu)_2Sb_3F_3(HPO_3)_4$	S12		
	(a) and (Gu)SbFPO ₄ · H_2O (b).			
Fig. S6	Calculated band structures of compounds $(Gu)_2Sb_3F_3(HPO_3)_4$ (a) and	S12		
	(Gu)SbFPO ₄ · H_2O (b).			
References		S13		

Section S1. Experimental section

Instrumentations.

Suitable single crystals were selected under an optical microscope. Crystal structures determination of $(Gu)_2Sb_3F_3(HPO_3)_4$ and $(Gu)SbFPO_4\cdot H_2O$ were performed on a Bruker SMART BREEZE diffractometer with graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å) at room temperature. All absorption corrections were performed by using the SADABS program. The structure was solved by direct methods and refined by full-matrix least squares on F² using the SHELX-97 program package. ^[1,2] All of the structures were verified using the ADDSYM algorithm from the program PLATON and no higher symmetries were found.^[3] Crystallographic data and structural refinements for the compound are summarized in Table S1. Atomic coordinates and isotropic displacement coefficients, and selected bond lengths for the compound are listed in Tables S2-S5.

Powder XRD patterns were obtained using a Rigaku Smartlab powder X-ray diffractometer with CuK α radiation ($\lambda = 1.54056$ Å), in the angular range of $2\theta = 5-50^{\circ}$, and with a scan step width of 0.05° and a fixed time of 0.2 s.

Thermogravimetric analysis (TGA) was performed on a Netzsch STA 409 PC. A 10 mg crystal sample was sealed in a platinum crucible and heated from room temperature to 800 $^{\circ}$ C at a rate of 10 $^{\circ}$ C/min in a N₂ atmosphere.

An infrared spectrum in the range of 4000-400 cm⁻¹ was recorded on a Vertex 70 Fourier transform infrared (FT-IR) spectrometer with KBr as the diluent. KBr (100 mg) and solid sample (1 mg) were fully ground in an agate mortar, and a special tabletting device was used to press the sample into a transparent sheet with a diameter of 13 mm and a thickness of about 1 mm for analysis.

The UV-vis diffuse reflectance spectrum of $(Gu)_2Sb_3F_3(HPO_3)_4$ and $(Gu)SbFPO_4 H_2O$ were recorded using a Shimadzu UV-2600 spectrophotometer with BaSO₄ plate as a standard (100% reflectance). The Kubelka-Munk function is used to calculate the absorption spectrum from the reflection spectrum: $F(R) = \alpha/S = (1-R)^2/2R$, where R is the reflectance, α is the absorption coefficient, and S is the scattering coefficient.^[4]

The birefringence of (Gu)₂Sb₃F₃(HPO₃)₄ and (Gu)SbFPO₄·H₂O were characterized by using the

polarizing microscope equipped (ZEISS Axio Scope. A1) with Berek compensator. The wavelength of the light source was 546 nm. Owing to the clear boundary lines of the first-, second- and third-order interference color, the relative error was small enough. Before the scanning, the small and transparent $(Gu)_2Sb_3F_3(HPO_3)_4$ and $(Gu)SbFPO_4\cdot H_2O$ crystals were chosen to measure, in order to improve the accuracy of the birefringence. The formula for calculating the birefringence is listed below,

 $\mathbf{R} = |\mathbf{N}_{e} - \mathbf{N}_{o}| \times \mathbf{T} = \Delta n \times \mathbf{T}$

Here, R represents the optical path difference, Δn means the birefringence, and T denotes the thickness of the crystal.

Computational Descriptions.

The first-principles calculations of $(Gu)_2Sb_3F_3(HPO_3)_4$ and $(Gu)SbFPO_4 H_2O$ were carried out by using the CASTEP software package to understand the relationship between structure and properties.^[5] The band structure, density of states (DOS)/partial DOS (PDOS), birefringence and electron-density difference map of $(Gu)_2Sb_3F_3(HPO_3)_4$ and $(Gu)SbFPO_4 H_2O$ were computed. The generalized gradient approximation (GGA) with Perdew-Burke-Emzerh (PBE) functional was adopted for all calculations.^[6] Norm-conserving were employed for all the atoms.^[7] The criteria of convergences of energy are set as 1.0e-6 eV/atom. Moreover, different kinetic energy cutoffs and k-point samplings were selected for the compounds: 750 eV and $2 \times 3 \times 2$ for (Gu)₂Sb₃F₃(HPO₃)₄, 780 eV and $4 \times 4 \times 2$ for (Gu)SbFPO₄·H₂O.^[8] The rest parameters used in the calculations were set by the default values of the CASTEP. The valences of composed atoms were as follow: O $2s^22p^4$, C $2s^22p^2$, N $2s^22p^3$, F $3s^23p^5$, P $3s^23p^3$, F: $2s^22p^5$, H $1s^1$ and Sb: $5s^25p^3$.

Compound	$(Gu)_2Sb_3F_3(HPO_3)_4$	(Gu)SbFPO ₄ ·H ₂ O
Formula Mass	862.34	313.82
Crystal System	Triclinic	monoclinic
Space Group	C2/c	$P2_{1}/c$
<i>a</i> (Å)	15.9469(9)	6.6385(2)
<i>b</i> (Å)	9.2070(9)	6.6035(2)
<i>c</i> (Å)	15.4379(12)	18.0672(4)
α (°)	90	90
β (°)	110.1400	97.113(2)
γ (°)	90	90
$V(Å^3)$	2128.0(3)	785.92(4)
Ζ	4	4
ρ (calcd) (g/cm ³)	2.692	2.652
Temperature (K)	293	293
λ (Å)	0.71073	0.71073
F(000)	1624.0	600.0
$\mu (\text{mm}^{-1})$	4.172	3.725
$R_1, wR_2 (I > 2\sigma(I))^a$	0.0236/0.0525	0.0373/0.1223
GOF on F^2	0.952	0.822

 $\label{eq:constant} \textbf{Table S1}. Crystal data and structure refinement for (Gu)_2Sb_3F_3(HPO_3)_4 and (Gu)SbFPO_4 \cdot H_2O.$

 ${}^{a}R_{1}(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| . wR_{2}(F_{o}^{2}) = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}\right]^{1/2}$

()2 3 3(3)	= (cq)		8	- 13
atom	x	У	Ζ	$U_{\rm eq}({ m \AA}^2)$
Sb1	0.27350 (2)	0.35928 (2)	0.75190 (2)	0.02175 (7)
Sb2	0.500000	0.04235 (3)	0.750000	0.02175 (8)
P1	0.21451 (5)	0.58641 (8)	0.88886 (4)	0.01945 (14)
P2	0.38050 (5)	0.08662 (8)	0.88884 (5)	0.01953 (14)
F1	0.500000	-0.1647 (2)	0.750000	0.0259 (5)
F2	0.37722 (10)	0.46115 (17)	0.75046 (11)	0.0262 (4)
01	0.44344 (14)	-0.0091 (2)	0.85824 (14)	0.0301 (5)
O2	0.13088 (13)	0.4906 (2)	0.85712 (14)	0.0299 (5)
O3	0.28871 (13)	0.5257 (2)	0.85801 (14)	0.0305 (5)
O4	0.28533 (13)	0.0261 (2)	0.85668 (14)	0.0303 (5)
O5	0.19202 (14)	0.7433 (2)	0.85766 (14)	0.0298 (5)
O6	0.38230 (13)	0.2434 (2)	0.85809 (14)	0.0302 (5)
N1	0.44610 (17)	0.4445 (3)	0.59668 (18)	0.0315 (6)
H1A	0.491358	0.397760	0.592798	0.038*
H1B	0.399915	0.397950	0.598291	0.038*
N2	0.51866 (17)	0.6602 (3)	0.59770 (18)	0.0314 (6)
H2A	0.563975	0.613656	0.593816	0.038*
H2B	0.519480	0.753588	0.599971	0.038*
N3	0.37519 (17)	0.6601 (3)	0.60077 (18)	0.0312 (6)
НЗА	0.327979	0.613105	0.598894	0.037*
H3B	0.375728	0.753397	0.603032	0.037*
C1	0.44753 (19)	0.5882 (3)	0.60017 (18)	0.0249 (6)
H1	0.2393 (19)	0.589 (3)	0.9718 (19)	0.020 (7)*
H2	0.409 (2)	0.083 (3)	0.974 (2)	0.024 (8)*

Table S2. Atomic coordinates and equivalent isotropic displacement parameters for $(Gu)_2Sb_3F_3(HPO_3)_4$. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	U ()		•,	
Sb1—O3	2.195 (2)	P1—O3	1.525 (2)	
Sb1—O4 ⁱ	2.229 (2)	P1—O5	1.526 (2)	
Sb1—O5 ⁱⁱ	2.223 (2)	P2—O1	1.527 (2)	
Sb1—O6	2.208 (2)	P2—O4	1.530 (2)	
Sb2—O1	2.206 (2)	Sb2—F1	1.906 (2)	
P1—O2	1.532 (2)	Sb1—F2	1.9082 (15)	
F2—Sb1—O3	77.99 (7)	O1—Sb2—O2 ^{iv}	85.10 (8)	
$F2$ — $Sb1$ — $O4^i$	78.14 (7)	O2 ⁱⁱ —Sb2—O2 ^{iv}	155.24 (11)	
$O3$ — $Sb1$ — $O4^i$	89.41 (8)	O1 ⁱⁱⁱ —Sb2—O2 ^{iv}	89.62 (8)	
O3—Sb1—O5 ⁱⁱ	155.55 (8)	O1 ⁱⁱⁱ —Sb2—O2 ⁱⁱ	85.10 (8)	
O3—Sb1—O6	85.79 (8)	O5—P1—O2	111.11 (12)	
$O5^{ii}\!\!-\!\!Sb1\!-\!\!O4^i$	84.79 (8)	O1—P2—O4	111.94 (12)	
$O6$ — $Sb1$ — $O4^i$	155.64 (8)	O6—P2—O1	111.44 (12)	
O6—Sb1—O5 ⁱⁱ	89.77 (8)	O6—P2—O4	111.52 (12)	
F1—Sb2—O1 ⁱⁱⁱ	77.61 (6)	P2—O1—Sb2	126.43 (12)	
F1—Sb2—O1	77.61 (6)	P1—O2—Sb2 ^v	127.26 (12)	
$F1$ — $Sb2$ — $O2^{iv}$	77.62 (5)	P1—O3—Sb1	126.19 (12)	
F1—Sb2—O2 ⁱⁱ	77.62 (6)	P2—O4—Sb1 ⁱⁱ	127.49 (12)	
$O1 \\ - \\ Sb2 \\ - \\ O1^{iii}$	155.21 (11)	P1—O5—Sb1 ⁱ	127.00 (12)	
O1—Sb2—O2 ⁱⁱ	89.62 (8)	P2—O6—Sb1	126.52 (12)	
Symmetry codes	: (i) $-x+1/2$, $y+1/2$, $-z+3/2$	2; (ii) -x+1/2, y-1/2, -z+3/2	; (iii) $-x+1$, y , $-z+3/2$;	(iv)
<i>x</i> +1/2,	<i>y</i> -1/2, <i>z</i> ;	(v) $x-1/2$,	<i>y</i> +1/2,	Ζ.

Table S3. Selected Bond lengths (Å) and angles (deg) for (Gu)₂Sb₃F₃(HPO₃)₄.

atom	x	У	Ζ	$U_{\rm eq}({\rm \AA}^2)$	BVS
Sb1	0.74604 (5)	0.73984 (4)	0.47499 (2)	0.01532 (17)	3.09
P1	0.7464 (2)	0.25211 (15)	0.50158 (9)	0.0145 (3)	4.81
F1	0.7088 (5)	0.7571 (3)	0.36751 (18)	0.0200 (7)	0.93
O1	0.5806 (5)	0.3125 (5)	0.54944 (18)	0.0194 (7)	1.78
O2	0.6791 (5)	0.0691 (5)	0.45270 (19)	0.0232 (7)	1.72
O3	0.9408 (6)	0.2055 (5)	0.5542 (2)	0.0218 (7)	1.70
O4	0.7869 (5)	0.4277 (5)	0.44890 (18)	0.0206 (7)	1.82
O5	0.8745 (7)	0.1567 (7)	0.3232 (2)	0.0445 (11)	2.50
H5A	0.861100	0.059760	0.353089	0.067*	/
H5B	0.846501	0.262190	0.346870	0.067*	/
N1	0.1585 (7)	0.5881 (8)	0.1747 (2)	0.0370 (11)	3.50
H1A	0.266304	0.574494	0.153272	0.044*	/
H1B	0.041199	0.589701	0.148522	0.044*	/
N2	0.0073 (6)	0.6249 (9)	0.2819 (3)	0.0422 (13)	3.50
H2A	0.017459	0.635071	0.329708	0.051*	/
H2B	-0.110272	0.626532	0.255936	0.051*	/
C1	0.1731 (8)	0.6067 (8)	0.2484 (3)	0.0276 (11)	4.13
N3	0.3517 (7)	0.6045 (8)	0.2892 (2)	0.0373 (12)	3.51
H3A	0.359646	0.614804	0.336888	0.045*	/
H3B	0.460396	0.592775	0.268102	0.045*	/

Table S4. Atomic coordinates and equivalent isotropic displacement parameters, and calculated Bond Valence Sum for (Gu)SbFPO₄·H₂O. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	0 () 0		
Sb1—F1	1.930 (3)	P1—O2	1.530 (3)
Sb1—O1 ⁱ	2.186 (3)	P1—O3	1.536 (4)
Sb1—O2 ⁱⁱ	2.246 (3)	P104	1.545 (3)
Sb1—O3 ⁱⁱⁱ	2.236 (4)	N1—C1	1.327 (6)
Sb1—O4	2.139 (3)	N2—C1	1.326 (6)
P1—O1	1.534 (4)	C1—N3	1.316 (6)
F1—Sb1—O1 ⁱ	78.82 (14)	O2—P1—O1	110.62 (19)
F1—Sb1—O2 ⁱⁱ	76.39 (11)	O2—P1—O3	111.20 (19)
F1—Sb1—O3 ⁱⁱⁱ	76.13 (14)	O2—P1—O4	107.3 (2)
F1—Sb1—O4	80.74 (11)	O3—P1—O4	109.55 (19)
O1 ⁱ —Sb1—O2 ⁱⁱ	87.00 (12)	$P1-O1-Sb1^i$	127.44 (19)
O1 ⁱ —Sb1—O3 ⁱⁱⁱ	154.92 (13)	$P1-O2-Sb1^{iv}$	128.61 (19)
O3 ⁱⁱⁱ —Sb1—O2 ⁱⁱ	88.31 (12)	P1—O3—Sb1 ⁱⁱⁱ	123.8 (2)
O4—Sb1—O1 ⁱ	87.29 (13)	P1-04-Sb1	123.44 (19)
O4—Sb1—O2 ⁱⁱ	157.09 (13)	N2-C1-N1	120.3 (5)
O4—Sb1—O3 ⁱⁱⁱ	87.52 (12)	N3—C1—N1	120.6 (5)
O1—P1—O3	108.0 (2)	N3—C1—N2	119.1 (5)
O1—P1—O4	110.11 (19)		
Symmetry codes: (i) -r-	+1 -v+1 -z+1 (ii) r v+	1 z: (iii) - r + 2 - v + 1 - 7 + 1	1: (iv) r v - 1 z

Table S5. Selected Bond lengths (Å) and angles (deg) for (Gu)SbFPO₄·H₂O.

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) -x+2, -y+1, -z+1; (iv) x, y-1, z.

Fig. S1 The bond lengths of (a) [Sb1O₄F]⁶⁻, [Sb2O₄F]⁶⁻ square pyramid;(c) [C(NH₂)₃]⁺ cation group, (e), [HP1O₃]²⁻,]HP2O₃]²⁻ tetrahedron in (Gu₂Sb₃F₃(HPO₃)₄; The bond lengths of (b) [SbO₄F]⁶⁻ square pyramid, (d) [C(NH₂)₃]⁺ cation group, (f) [PO₄]³⁻ tetrahedron in (Gu₂SbFPO₄·H₂O.

Fig. S2 Calculated and experimental powder X-ray diffraction (PXRD) patterns for compounds $(Gu)_2Sb_3F_3(HPO_3)_4$ (a) and $(Gu)SbFPO_4$ ·H₂O (b).

Fig. S3 TGA curves of (Gu)₂Sb₃F₃(HPO₃)₄ (a) and (Gu)SbFPO₄·H₂O (b) under N₂ atmosphere; (c) Powder XRD patterns of the residue of TGA for (Gu)₂Sb₃F₃(HPO₃)₄ and (Gu)SbFPO₄·H₂O.

Fig. S4 IR spectra of compounds (Gu)₂Sb₃F₃(HPO₃)₄ (a) and (Gu)SbFPO₄·H₂O (b).

Fig. S5 Orientation of lone pairs on SbO₄F square pyramid in 2D layer in $(Gu)_2Sb_3F_3(HPO_3)_4$ (a) and $(Gu)SbFPO_4 \cdot H_2O$ (b).

References

[1] Sheldrick, G. M. A short history of SHELX, Acta Crystallogr A. 2008, 64, 112-122.

[2] Sheldrick, G. M. SHELXTL-97, Program for crystal structure solution. University of Göttingen, Germany, **1997**.

[3] A. Spek, Single-crystal structure validation with the program PLATON, *J. Appl. Cryst.* 2003, 36, 7-13.

[4] (a) Kubelka, P.; Munk, F. An Article on Optics of Paint Layers. Z. Technol. Phys. 1931, 12,

593-601; (b) Tauc, J. Absorption edge and internal electric fields in amorphous semiconductors. *Mater. Res. Bull.* **1970**, *5*, 721-729.

[5] Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C.First principles methods using CASTEP. *Z. Kristall.* 2005, 220, 567-570.

[6] Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. *Phys. Rev. B.* **1990**, 41, 7892-7895.

[7] Kobayashi, K. Norm-conserving pseudopotential database (NCPS97). *Computational Materials Science*. **1999**, 14, 72-76.

[8] Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. *Phys. Rev. B.* 1976, 13, 5188-5192.