Cotton textile inspires MoS2@reduced graphene oxide anodes towards high-rate capability or long-cycle stability sodium/lithium-ion batteries

Xue Liu,^{a,b‡*} Haicong Ji,^{a‡} Bin Peng,^a Zhaoning Cui,^a Qiongzhen Liu,^a Qinghua Zhao,^a

Liyan Yang^a and Dong Wang^{a,c*}

^aKey Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China ^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China

^cCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China

***Corresponding author**

Email: [xueliu@wtu.edu.cn;](mailto:xueliu@wtu.edu.cn) wangdon08@126.com

‡These authors contribute equally to this work

Figure S1. SEM images of cotton textile (a,c,e) before and (b,d,f) after annealing at 900 °C.

Figure S2. TGA curves of $CC/MoS_2-1.5$ and $PCC/MoS_2-1.5$.

Figure S3. Low-magnification SEM images of CC/MoS₂-1.5.

Figure S4. (a-c) SEM images of CC/MoS₂@RGO-700 textile at different magnifications. (d, e) TEM images of CC/MoS₂@RGO-700 textile. (f) The SAED pattern of $CC/MoS_2@RGO-700$ textile.

Figure S5. Digital images of (a) Cotton, (b) Cotton/MoS₂, and (c) CC/MoS₂@RGO-700 textile.

Figure S6. AFM results of CC/MoS₂@RGO-700 textile.

Figure S7. XRD patterns of PCC/MoS₂ samples.

Figure S8. Electric conductivity of CC/MoS₂-700.

Figure S9. Cycling performances of CC/MoS₂-800, CC/MoS₂@RGO-600, CC/MoS₂@RGO-800 and CC/MoS₂@RGO-900 at 100 mA g^{-1} .

Figure S10. Cycling performance and CE profiles of PCC/ M oS₂-900 at 100 mA g⁻¹.

Figure S11. Cycling performance of CC/MoS₂@RGO-700 electrode at 50 mA g⁻¹ for SIBs.

Figure S12. Discharge/charge profiles of CC/MoS₂@RGO-700 at various current densities in Na half cells.

Figure S13. Comparison of rate capabilities for the MoS₂-based materials.

Figure S14. Rate capabilities of PCC at various current densities for sodium storage.

Figure S15. EIS curves of CC/MoS₂-700, CC/MoS₂-900 and CC/MoS₂@RGO-700 electrodes in Na half cells after 10 cycles, and the inset is the equivalent circuit.

Figure S16. GITT curve and Na⁺ diffusion coefficient for CC/MoS₂@RGO-700 electrode.

Figure S17. Contribution ratio of capacitive and diffusion-controlled capacities in Na half cells at various scan rates of $CC/MoS_2@RGO-700$.

Figure S18. Ex situ XRD patterns of CC/MoS₂@RGO-700 electrode in Na half cells during the first cycle.

Figure S19. Rate capabilities of PCC at various current densities for lithium storage.

Material	Capacity (mAh/g)					
	0.1 A/g	0.2 A/g	0.5 A/g	1 A/g	1.5 A/g	2 A/g
PCC-600	174.5	136	93.2	56.1	32.5	21.7
PCC-700	160.3	137.8	114.2	94.2	79.6	66.1
PCC-800	181.6	133.6	108.6	84.2	67.9	48.3
PCC-900	128.4	97.6	75.7	56.1	20.8	12.8

Table S2. Rate capabilities of PCC for lithium storage.

Figure S20. Cycling performance of CC/MoS₂@RGO-700 electrode at 50 mA g⁻¹ for LIBs.

Figure S21. Morphology characterization of CC/MoS₂@RGO-700 electrode after

cycling.

Figure S22. Structural characterization of CC/MoS₂@RGO-700 electrode after cycling.

Figure S23. Nyquist plots of CC/MoS₂@RGO-700 electrodes in Li half cells after different cycles, and the equivalent circuit used for analysis.

Figure S24. SEM images of LiFePO₄.

Figure S25. XRD pattern of LiFePO₄.

Figure S26. CV curves of L iFePO₄ electrode at 0.1 mV s^{-1} .

Figure S27. Charge/discharge profiles of LiFePO₄ electrode at different rates.

Supporting References

- [1] Xu, J.; Liu, Q.; Dong Z.; Wang, L.; Xie, X.; Jiang, Y.; Wei, Z.; Gao, Y.; Zhang, Y.; Huang, K. Interconnected $MoS₂$ on 2D graphdiyne for reversible sodium storage. *ACS Appl. Mater. Interfaces* 2021, *13*, 54974-54980.
- [2] Li, J.; Gao, W.; Huang, L.; Jiang, Y.; Chang, X.; Sun, S.; Pan, L. In situ formation of few-layered $MoS₂(a)N-doped carbon network as high performance anode$ materials for sodium-ion batteries. *Appl. Surf. Sci*. 2022, *571*, 151307.
- [3] Wang, T.; Xi, Q.; Wang, K.; Zeng, Z.; Du, Z.; Xu, Z.; Xie, L.; Ai, W.; Huang, W. Covalently binding ultrafine $MoS₂$ particles to N, S co-doped carbon renders excellent Na storage performances. *Carbon* 2021, *184*, 177-185.
- [4] Geng, X.; Jiao, Y.; Han, Y.; [Mukhopadhyay,](https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Mukhopadhyay%2C+Alolika) A.; Yang, L.; Zhu, H. Freestanding metallic 1T $MoS₂$ with dual ion diffusion paths as high rate anode for sodium-ion batteries. *Adv. [Funct.](https://onlinelibrary.wiley.com/journal/16163028) Mater.* 2017, *27(40)*, 1702998.
- [5] Xiang, J.; Dong, D.; Wen, F.; [Zhao,](https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Mukhopadhyay%2C+Alolika) J.; Zhang, X.; Wang, L.; Liu, Z. Microwave synthesized self-standing electrode of $MoS₂$ nanosheets assembled on graphene

foam for high-performance Li-Ion and Na-Ion batteries. *J. Alloys Compd*. 2016, *660*, 11-16.

- [6] Zhang, Y.; Tao, H.; Li, T.; [Du](https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Mukhopadhyay%2C+Alolika), S.; Li, J.; Zhang, Y.; Yang, X. Vertically oxygenincorporated $MoS₂$ nanosheets coated on carbon fibers for sodium-ion batteries. *ACS Appl. Mater. Interfaces* 2018, *10*, 35206-35215.
- [7] Tu, F.; Han, Y.; Du, Y.; [Ge,](https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Mukhopadhyay%2C+Alolika) X.; Weng, W.; Zhou, X.; Bao, J. Hierarchical nanospheres constructed by ultrathin MoS₂ nanosheets braced on nitrogen-doped carbon polyhedra for efficient lithium and sodium storage. *ACS Appl. Mater. Interfaces* 2019, *11*, 2112-2119.