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Materials and General Methods:

All the reagents and solvents were purchased from commercial sources and used without
further purification, except the 2-palmitamidoterephthalic acid (H,BDC-NH-R) linker which
was prepared according to the following procedure given below and the purity of the newly
synthesized compound was examined by 'H NMR, 13C NMR, ATR-IR and mass spectrometric
analysis (Fig. S1-S4). The melamine sponge and silk sheet were purchased from Amazon India.
The Attenuated Total Reflectance Infrared (ATR-IR) spectra were recorded using PerkinElmer
UATR Two at the ambient condition in the region 400-4000 cm™!'. The notations used for
characterization of the bands are broad (br), strong (s), very strong (vs), medium (m), weak (w)
and shoulder (sh). Thermogravimetric analysis (TGA) was carried out with a PerkinElmer TGA
4000 thermal analyzer in the temperature range of 30-700 °C under N, atmosphere at the rate
of 4 °C min!. Powder X-ray diffraction (PXRD) instrument Rigaku Smartlab X-ray
diffractometer (model: TTRAX III) with Cu-Ka radiation (A = 1.54056 A), 50 kV of operating
voltage and 100 mA of operating current was used for the collection of all PXRD data. N,
sorption isotherms were recorded by using Quantachrome Quadrasorb Evo volumetric gas
adsorption equipment at —196 °C. Before the sorption analysis, the degassing of the compound
was carried out at 120 °C under a high vacuum for 12 h. FE-SEM images were collected with
a Zeiss (Sigma 300) scanning electron microscope. Gemini 500 was utilized for Energy
Dispersive X-rays spectrometer (EDX) for elemental characterization. Pawley refinement was
carried out using Materials Studio software. The DICVOL program incorporated within
STOE’s WinXPow software package was used to determine the lattice parameters. The contact
angle measurements were performed by employing a Hol-marc HO-IOD-CAN-018 equipment
at ambient temperature.

Synthesis of H,BDC-NH-R:

The organic linker was synthesized using tetrahydrofuran (THF) as a solvent and pyridine as a
base. 1 g (5.52 mmol) of 2-amino benzene-1,4-dicarboxylic acid and 1.75 mL (5.52 mmol) of
palmitoyl chloride were taken in a round bottom flask containing 3.5 equivalents of pyridine.
The mixture was refluxed for 24 h and then THF was evaporated. The resulting white powder
was washed thoroughly with slightly acidic water to remove the excess pyridine. Further, it
was washed with chloroform to remove any unreacted palmitoyl chloride to obtain the pure
product. The 'TH NMR and 3¢ NMR spectra are given below as Figure S1 and S2.

Measurement of Absorption Capacities for Various Oils by SH-UiO-66'@sponge
Composite:

For the absorption of various heavy and light oils, fully dry pre-weighed (~250-300 mg) SH-
UiO-66'@sponge composite was placed in various heavy oils (CHCl;, CH,Cl, and CCly) and
light oils (hexane, ethyl acetate, petrol, diesel, crude oil, toluene, cyclohexane and kerosene).
The composites were kept in oil for 1 min to reach absorption equilibrium and then removed
and weighed. All the experiments were performed at room temperature. Absorption capacities
for various oils were calculated using the following formula:

Absorption capacity (g/g) = (W+W;)/W;



where W; is the initial weight of SH-UiO-66'@sponge and Wy is the weight of oil-absorbed
SH-UiO-66'@sponge. Five measurements were performed for each oil sample and the average
value was plotted.

Absorption-Based Separation of Oil and Water by SH-UiO-66"@sponge Composite:

A single piece of dry pre-weighed SH-UiO-66’@sponge composite (~250-300 mg) was placed
in several oil/water combinations containing 3 mL of oil and 20 mL of water to separate the
light oils (hexane, EtOAc, toluene, motor oil, gasoline and kerosene) from the surface of the
water. For heavy oils (CH,Cl,, CHCl; and CCly), a piece of SH-UiO-66'@sponge composite
was brought into contact with the sediment oil for the separation of heavy oils from the
oil/water combination from the bottom of the water. For each case, the SH-UiO-66'@sponge
composite selectively soaked the oils when it came into contact and the separated oil was
recovered by physically squeezing the material. All the tests were performed at room
temperature. Separation efficiency (%) for various oils was calculated using the following
formula:

Separation efficiency (%) = V¢/V; x 100%

where V;was the amount of oil used (mL) and V¢ was the absorbed volume of water (mL). Five
measurements were performed for each oil sample and the average value was plotted.

Filtration-based separation of oils from the oil-water mixture by SH-UiO-66'@silk
Membrane:

To separate different oils using the filtration-based method of separation, a round shaped piece
of SH-UiO-66'@silk was bound with a round shaped solid circle and a mixture of different
oils and water was allowed to pass through the membrane. The time needed for each step of
the separation process was noted for each water-oil mixtures.

Separation efficiency (%) for various oil-water mixtures was calculated using the following
formula:

Separation efficiency (%) = V¢/V; x 100%

where V; was the amount of oil used (mL) and V; was the obtained volume of oil (mL) after
the separation experiment.

The fluxes for the oil-water separation were determined using the formula: Flux = V/A x T
(where V = volume of separated oil, A = area of the membrane and T = time required for the
separation of oil from the oil-water mixture).

Separation of Emulsions Using SH-UiO-66'@silk Membrane:

All the water-in-oil emulsions were prepared (water/CHCls, water/toluene, water/ kerosene and
water/gasoline) by sonicating the water-oil mixtures for 60 min. To make the emulsion stable,
50 pL of surfactant (Triton X-100) was added to the oil-water mixture before sonication. Then,
4 mL (3.5 mL of oils + 0.5 mL of water) of different water-in-oil emulsions were allowed to



pass through the SH-UiO-66'@silk membrane. The time required for all the separation
processes were recorded.

Separation efficiency (%) for various water-in-oil emulsion were calculated using the
following formula:

Separation efficiency (%) = V¢/V; x 100%

where V;was the amount of oil used (mL) for the preparation of the water in oil emulsion and
V¢ was the obtained volume of oil (mL) after the separation experiment.

The flux for various emulsions was calculated using a similar way (used in case of oil-water
separation): Flux = V/A x T (where V = volume of separated oil, A = area of the membrane
and T = time required for the separation of oil from water-in-oil emulsion).
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Fig. S1. '"H NMR spectrum of H,BDC-NH-R in DMSO-dg.
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Fig. S2. 3C NMR spectrum of H,BDC-NH-R in DMSO-dg.
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Fig. S3. ESI-MS spectrum of H,BDC-NH-R measured in methanol. The spectrum shows m/z
peak at 418.1183, which corresponds to (M-H)™ ion (M = mass of H,BDC-NH-R linker).
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Fig. S4. PXRD patterns of (a) Zr-UiO-66 (simulated), (b) SH-UiO-66 and (c) SH-UiO-66’.
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Fig. S5. FE-SEM images of SH-UiO-66.
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Fig. S6. EDX spectrum of SH-UiO-66.



Table S1. Unit cell parameters of SH-UiO-66 obtained by indexing its PXRD data. The
obtained values have been compared with parent UiO-66 MOF.

Compound Name SH-UiO-66 Ui0-66
Crystal System cubic cubic
a=b=c(A) 20.753 (4) 20.790(3)
V (A3) 8938.3 (29) 8985.9(9)
(c) SH-UiO-66'
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Fig. S7. ATR-IR spectra of (a) H,BDC-NH-R linker, (b) SH-UiO-66 and (c) SH-UiO-66’.
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Fig. S8. Water contact angle (WCA) measurement image of SH-UiO-66'.

Fig. S9. Self-floating ability of SH-UiO-66' in water (a) and oil (hexane) (b).
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Fig. S10. TGA curves of as-synthesized SH-UiO-66 (black) and activated SH-UiO-66’ (red)
recorded in N, atmosphere in temperature range of 30-700 °C at a heating rate of 4 °C min-!.
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Fig. S11. Nitrogen adsorption and desorption isotherms of SH-UiQ-66' recorded at —196 °C.
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Fig. S12. The 'H NMR spectra of SH-UiO-66 in DMSO-d, after digestion by HF.
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Fig. S13. PXRD patterns of (a) SH-UiO-66’, SH-UiO-66" after stirring in (b) CCly, (c) CH,Cl,,
(d) CHCI;, (e) cyclohexane, (f) hexane, (g) EtOAc and (h) toluene.
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Fig. S14. PXRD patterns of (a) SH-UiO-66’, SH-UiO-66' after stirring in (b) diesel, (¢)
kerosene, (d) petrol and (g) crude oil for 24 h.
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Fig. S15. PXRD patterns of (a) SH-UiO-66’, SH-UiO-66' after stirring in (b) tap water, (c) sea
water, (d) pH = 2 and (e) pH = 12 for 24 h.
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Table S2. Water Contact angle (WCA) of SH-UiO-66' after treatment with different types of
water and oil specimens.

Liquids Average WCA of SH-UiO-
66’ (°)
Fresh SH-UiO-66' 168 £ 1
CCly 169 +£2
CHCl; 167 +£2
CH,CIl, 168 £1
Hexane 167 £1
Cyclohexane 168 +2
EtOAc 166 +2
Toluene 168 +3
kerosene 167+ 1
Diesel 167 £2
Petrol 166 £ 1
Crude oil 165+3
Tap water 168 +1
pH=2 167 £1
pH=12 165+2
Sea water 166 + 1

e i -
Fig. S16. Digital images of (a) polymer-coated sponge, (b) SH-UiO-66'@sponge composite,
(c) polymer-coated silk membrane and (d) SH-UiO-66'@silk membrane.
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Fig. S17. PXRD patterns of (a) activated SH-UiO-66' (b) SH-UiO-66' polymer-coated sponge
(c) SH-UiO-66'@sponge composite and (d) polymer-coated silk membrane and (e) SH-UiO-
66’ @silk membrane.
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Fig. S18. ATR-IR spectra of (a) activated SH-UiO-66’, (b) polymer-coated sponge, (c)
polymer-coated membrane, (d) SH-UiO-66'@sponge composite and (e) SH-UiO-66'@silk
membrane.
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Fig. S19. EDX spectrum of (a) melamine sponge and (b) sheet of silk.
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Fig. SZO. EDX spectrum of (a) SH-UiO-66'@sp0nge composite and (b) SH-UiO-66'@silk
membrane.
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Fig. S22. Digital image of beaded water droplets on the surface of (a) polymer-coated sponge,
(b) SH-UiO-66'@sponge composite, (c) polymer-coated membrane and (c) SH-UiO-
66’ @silk membrane.
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Fig. S23. The contact angle image of beaded water droplets on the surface of (a) SH-UiO-66’,
(b) SH-UiO-66' @sponge composite and (b) SH-UiO-66'@silk membrane.
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Fig. S24. (a) Digital images of floating SH-UiO-66"'@sponge composite and immersion of
polymer-coated melamine sponge. (b) Digital images of floating SH-UiO-66'@silk membrane
on water and immersion of polymer-coated silk fabric in water.
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Fig. S25. Nitrogen adsorption and desorption isotherms of (a) SH-UiO-66' sponge and (b)
SH-UiO-66'silk recorded at —196 °C.
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Fig. S26. PXRD patterns of (a) SH-UiO-66'@sponge composite after treatment with different
types of oil specimens.
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Fig. S27. PXRD patterns of (a) SH-UiO-66'@sponge composite after treatment with different
types of water specimens.
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Fig. S28. PXRD patterns of (a) SH-UiO-66'@silk membrane after treatment with different
types of oil specimens.
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Fig. S29. PXRD patterns of (a) SH-UiO-66'@silk membrane after treatment with different
types of water specimens.
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Fig. S30. ATR-IR spectra of (a) SH-UiO-66'@sponge composite after treatment with different
types of oil specimens.
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Fig. S31. ATR-IR spectra of (a) SH-UiO-66'@sponge composite after treatment with different
types of water specimens.



(1) in Crude oil
2 AT VY
(k) in Kerosene
() in Petrol = ey
= (i) in Toluene
b YWV N
A
@
= (g) in EtOAC
= demog—an nen Uy 008 o gl
_3':‘ (f) in Hexane
E WW
"
= WY T AV
h 2
~ Sl
(c) in CHCI,
(b) in CCl, ey W T
(a) SH-UiO-66'@silk vy
D ) G . G

) ) I ! ) I L)
4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm'l)

Fig. S32. ATR-IR spectra of (a) SH-UiO-66'@silk composite after treatment with different
types of oil specimens.
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Fig. S33. ATR-IR spectra of (a) SH-UiO-66'@silk composite after treatment with different
types of water specimens.



Table S3. Water Contact angle (WCA) of SH-UiO-66'@sponge and SH-UiO-66' @silk after
treatment with different types of water and oil specimens.

Liquids Average WCA of SH-UiO-
66'@sponge and SH-UiO-
66'@silk (°) after stirring in

different liquids
Fresh SH-UiO-66'@sponge 169 + 1
and SH-UiO-66'@silk (°) and 169 + 1
CCly 167 +1
and 168 +2
CHCl, 169 +2
and 168 = 1
CH,(Cl, 167 £2
and 168 + 1

Hexane 167 £2

and 167 £2
Cyclohexane 166 + 2
and 168 + 1

EtOAc 167 +1

and 168 =2
Toluene 169 £2
and 167 + 2

kerosene 167 +2
and 167 + 1

Diesel 167 £2
and 168 + 1

Petrol 167 1
and 169 + 2

Crude oil 169 £2
and 167 £ 2

Tap water 169 +2




and 169 £ 1
pH=2 166 £ 1
and 167 £2
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and 165+ 3
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and 167 £2
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Fig. S34. EDX spectrum of (a) SH-UiO-66'@sponge composite and (b) SH-UiO-66'@silk
after 70! and 60 cycle of oil-water separation experiments, respectively.
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Fig. S35. High-resolution FE-SEM images of (a) SH-UiO-66'@sponge composite and (b) SH-
Ui0-66'@silk after 70 and 60t cycle of oil-water separation experiments, respectively.
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Fig. S36. PXRD patterns of SH-UiO-66'@sponge composite (a) before and (b) after oil
absorption experiments and SH-UiO-66'@silk membrane (c) before and (d) after oil-water
separation experiments.
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Fig. S37. ART-IR of SH-UiO-66'@sponge composite (a) before and (b) after oil absorption
experiments and SH-UiO-66'@silk membrane (a) before and (d) after oil-water separation
experiments.



(a) WCA = 168 + 2 (b) WCA = 167 + 2

Fig. S38. WCA of SH-UiO-66'@sponge composite (a) after oil absorption experiments and
SH-UiO-66' @silk membrane (b) after oil-water separation experiments.
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Fig. S39. PXRD patterns of SH-UiO-66'@sponge (a) before and (b) after self-cleaning and
SH-UiO-66'@silk (c) before and (d) after self-cleaning.
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Fig. S40. ART-IR of SH-UiO-66'@sponge (a) before and (b) after self-cleaning and SH-UiO-
66'@silk (c) before and (d) after self-cleaning.
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Fig. S41. High-resolution FE-SEM images of SH-UiO-66'@sponge (a) before and (b) after
self-cleaning and SH-UiO-66'@silk (c) before and (d) after self-cleaning.



a7s 539 : 347 517

53 7.0
218 133
121 23

[ 405 481 200K 342

260 232

Fig. S42. EDX spectrum of SH-UiO-66'@sponge (a) before and (b) after self-cleaning and
SH-UiO-66' @silk (c) before and (d) after self-cleaning.
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Fig. S43. WCA of SH-UiO-66'@sponge (a) after self-cleaning and SH-UiO-66'@silk (b)
after self-cleaning.

Table S4. Comparison of important parameters of superhydrophobic absorbents or membranes
materials for oil water separation.

S. Absorbents Absorption Absorpti | Oil-water | Flux of Oil- | Ref.
No. substances on separation | water
capacity | efficiency | separation
(g/g) (%) (Lm?h)
1 SH-UiO- diesel oil, petrol oil, | 43.8- >99 58263- this
66'@sponge and | kerosene, crude oil, | 97.2 47416 work
SH-UiO- dichloromethane,




66'@membrane

chloroform, carbon
tetrachloride, ethyl
acetate, hexane,
toluene

2 PDMS-TiO,-PU | diesel oil, pump oil, | 16.7- NA NA 1
sponge silicone oil, edible 43.5
oil, kerosene,
dichloromethane,
chloroform
3 SH-Ui0O- motor oil, silicone 27.1- 95-98 NA 2
66@CFs oil, gasoline, 49.2
kerosene, toluene,
hexane, ethyl
acetate, carbon
tetrachloride,
chloroform,
dichlomrthane
4 superhydrophobi | crude oil, n-hexane, | 10.0- NA NA 3
c/superoleophili | gasoline, diesel oil, 17.5
¢ sawdust engine oil
5 cotton fiber diesel oil, lubrication | 25.6- 98.5 NA 4
modified via the | oil, crude oil, peanut | 57.0
sol-gel method | oil
6 modified jute crude oil, diesel oil, | 7.4-10.2 | NA NA 5
fiber via the sol- | lubricatiom oil,
gel method peanut oil
7 mesoporous petrol oil, diesel oil, | 19.1- NA NA 6
silica aerogel toluene 18.6
8 ultralight pump oil, diesel oil, | 18.0- NA NA 7
cellulose-based | chloroform, 41.8
aerogel dodecane, hexane,
soybean oil, pump
oil, diseal oil, motor
oil, heptane, tolune,
DMSO, isopropanol
9 cellulose-based | crude oil, diesel oil, | 60.4- NA NA 8
aerogel lubrication oil 152.3
silicone oil,
soyabean oil,
toluene, n-hexane,
trichloromethane,
acetone, ethanol
10 polystyrene hexane, heptane, | 11.0- NA NA 9
branched 9- nonane, decane, | 27.0
octadecenoic hexadecane
acid grafted
graphene
11 MOF-PU n-hexane, paraffin, | 29.0- >96 NA 10
sponge ethanol, edible oil, | 56.0

DMF, carbon




tetrachloride

12

Ui0-66-
FA@rGO/MS

n-hexane, isooctane,
dichloromethane,
1,3,5-
trimethylbenzene,
silicone oil

diesel oil

light diesel oil

crude oil

26.0-
61.0

99.73

NA

11

13

MOF@Rgo
composites

chloroform, n-
hexane, silicone oil,
bump oil, bean oil,
toluene, acetone,
butanone

14.0-
37.0

>98

NA

12

14

MOFs-copper
foam

soybean  oil, n-
hexane, isooctane,
gasoline,
dichloromethane,
chloroform

1.5-3.5

>96

NA

13

15

FGO@MOG

crude oil, decane,
heptane, hexane,
octadecane, octane,
petrolether, pentane,
toluene, veg oil,

carbon tetrachloride

2.0-5.0

NA

NA

14

16

Macroporous
silicone sponges

crude oil, sunflower
oil, kerosene, diesel,
alcohol, acetic acid,
chloroform, acetone,
diethyl ether, n-
hexane, isooctane,
dichloromethane

9.7-27.0

>99

NA

15

17

GO/PDA coated
fabric

formamide, engine
oil, ethylene glycol,
liquide paraffin,
propylene carbonate,
rapeseed oil

NA

>99.50

1452 - 308

16

18

CBM-CuO-SA

n-hexane, toluene,
trichloromethane

NA

>96

141

17

19

PVDF
membrane

water-in-petroleum
ether, water-in-
toluene, water-in-
1sooctane, and water-
in-dichloromethane

NA

NA

NA

18

20

Cu(OH),@ZIF-
8
membrane

heptane,
cychlohexane,
toluene,
trichloromethane
diesel,
dichloromethane,

NA

>97

90 000

19




petroleum
21 Ui0-66-NH- Diesel, hexane, ethyl | 32.3 - >99 NA 20
C18-PSM acetate, acetone, | 66.1
toluene, decane,
dichloromethane
22 SMIL-101(Cr)- | Petrol, chloroform, | 1.18- >99 NA 21
PSM hexane, toluene 2.81
23 OctA/rGA DCM, Chloroform, | 4.70- NA Very less 22
composite Toluene, Benzene, | 16.12
chloroform,
dichloromethane,
hexadecane, p-
xylene, ethylbenzene
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