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1. Experimental Section

General Procedures and Materials: All operations were performed in an Mbraun glovebox under an N2 atmosphere. 
Solvents were dried using a J. C. Meyer solvent system, degassed by free-pump-thaw method and stored over activated 
3 Å molecular sieves prior to use. The 1,2,4,5-tetrazine (tz) ligand was prepared according to the literature.[1] [Cp*2Ln][(μ-
Ph2)BPh2] (Ln = DyIII, TbIII and GdIII) starting materials were prepared according to the literature.[2] All reagents and 
solvents were purchased from TCI, Alfa Aesar, or Strem Chemicals and used without further purification. HCp* (99+%) 
was purchased from Alfa Aesar and was degassed/dried as previously described prior to use. FT-IR spectra were 
recorded on a Nicolet Nexus 550 FT-IR spectrometer in the transmission window of 400-4000 cm-1. Elemental Analysis 
was performed by Midwest Microlab. 

Synthesis of [(Cp*2Gd)2(tz•-)(THF)2][BPh4] (1): To a solution of tz (0.125 mmol, 10 mg) in THF (5 mL), one equivalent of 
KC8 (0.125 mmol, 17 mg) was added. After ~ 5 h, the dark grey colour mixture was slowly added to a solution of two 
equivalents of [(Cp*2Gd][(μ-Ph2)(BPh2)] (0.25 mmol, 187 mg) in THF (5 mL). The resulting dark red mixture was left to stir 
overnight and then filtered. Upon slow diffusion with Et2O, dark red crystals of 1 were isolated after two days in 63 % yield. 
Selected IR bands (cm-1): 3053.16 (w), 2908.83 (m), 2854.82 (m), 1580.28 (w), 1478.78 (m), 1434.07 (s), 1377.76 (m), 
1217.82 (s), 1182.55 (w), 1093.31 (m), 1066.08 (m), 1012.98 (s), 917.18 (w), 887.07 (m), 859.07 (s), 839.85 (s), 731.29 
(s), 740.85 (vs), 702.96 (vs), 648.55 (m), 614.42 (s), 604.90 (m), 585.66 (m), 568.60 (w), 536.77 (w). Elemental Analysis: 
Complex 1 was analyzed as solvent free: Calcd: C, 63.44 %; H, 7.05 %; N, 3.99%, Found: C, 62.91%; H, 7.52%; N, 
4.09%. 

Synthesis of [(Cp*2Tb)2(tz•-)(THF)2][BPh4] (2) and [(Cp*2Dy)2(tz•-)(THF)2][BPh4] (3):These complexes were prepared in 
a similar manner as 1 by simply replacing [Cp*2Gd][(μ-Ph2)BPh2] with [Cp*2Tb][(μ-Ph2)BPh2] (0.25 mmol, 187 mg) in 2 
and [Cp*2Dy][(μ-Ph2)BPh2] (0.25 mmol, 188 mg) in 3. Yields = 62-67%. Elemental Analysis: Complex 2 was analyzed as 
2·2Et2O: Calcd: C, 63.60%; H, 7.42%; N, 3.62 %, Found: C, 64.31 %; H, 7.42%; N, 3.62 %. Selected IR bands (cm-1) for 
2: 3050.14 (w), 2972.14 (m), 2857.56 (m), 1580.02 (w), 1478.67 (m), 1433.92 (s), 1378.83 (m), 1237.34 (m), 1217.45 (s), 
1182.65 (w), 1003.13 (w), 1067.36 (m), 1013.47 (s), 916.00 (w), 859.08 (s), 839.76 (s), 740.22 (s), 730.61 (s), 703.54 
(vs), 625.45 (w), 614.54 (s), 557.86 (w), 549.98 (w). Elemental Analysis: Complex 3 was analyzed as solvent free: Calcd: 
C, 62.97 %; H, 6.99 %; N, 3.96 %, Found: C, 62.68 %; H, 7.63 %; N, 4.02 %. Selected IR bands (cm-1) for 3: 3053.64 (w), 
2973.52 (m), 2858.74 (m), 1580.28 (w), 1472.82 (m), 1434.07 (s), 1378.36 (m), 1217.41 (s), 1182.33 (w), 1152.49 (w), 
1119.16 (m), 1093.43 (m), 1066.29 (s), 1013.73 (s), 916.11 (w), 888.40 (w), 859.08 (s), 840.35 (s), 740.00 (s), 730.99 (s), 
703.22 (vs), 652.32 (m), 614.37 (s), 604.73 (s), 533.74 (w).

Single Crystal X-ray Diffraction: Suitable crystals for single-crystal X-ray diffraction (SCXRD) analysis were covered in 
parabar oil and mounted on a thin glass fiber. Full data (Table S1) were collected on a Bruker KAPPA APEX-II CCD 
single-crystal diffractometer (graphite monochromated Mo-Kα radiation, λ = 0.71073 Å), at 203 K temperature. Absorption 
corrections were applied by using multi-scan of the SADABS3 program. Structures were solved using direct methods with 
SHELXT4 and refined by the full-matrix least-squares methods on F2 with SHELXL-2018/35 in anisotropic approximation 
for all non-hydrogen atoms. Carbon-bound hydrogen atoms were included in calculated positions (see details in the CIF 
files). The crystal structures of 1, 2 and 3 contain an area of highly disordered solvent molecules (mostly diethyl ether 
molecules with partial occupancies) resulting in a smeared-out electron density. Attempts to model the disordered areas 
with chemically and crystallographic reasonable geometries were unsuccessful and therefore, the SQUEEZE6 function of 
PLATON7 was used to remove the contribution of the electron density associated with those molecules from the intensity 
data. All geometric/crystallographic calculations were carried out using WINGX8 package while the molecular/packing 
graphics were prepared with DIAMOND9 and MERCURY.10 For comparison purposes, a similar labelling scheme was 
applied in all structures.

Magnetic Measurements: Magnetic susceptibility measurements were obtained using a Quantum Design SQUID 
magnetometer MPMS-XL7 operating between 1.8 and 300 K. Direct current (dc) measurements were performed on 15.3 
mg (1), 15.5 mg (2) and 17.3 mg (3) of crushed polycrystalline samples, which were restrained with silicon grease and 
sealed in a polyethylene membrane under an inert atmosphere for which diamagnetic corrections were applied. The 
samples were subjected to dc fields of 7 to -7 T while alternating current (ac) measurements took place under zero field. 
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2. Single-crystal X-ray data and molecular features 

Table S1. Crystallographic data and details for 1, 2 and 3.

Compound reference 1 2 3
Chemical formula C74H98BGd2N4O2 C74H98BN4O2Tb2 C74H98BDy2N4O2

Formula mass 1400.87 1404.21 1411.37
Crystal system Monoclinic Monoclinic Monoclinic

a/Å 15.3219(5) 15.2603(8) 15.2675(6)
b/Å 20.3671(6) 20.2689(11) 20.2943(8)
c/Å 25.4887(8) 25.5427(14) 25.5113(12)
α/° 90 90 90
β/° 96.429(2) 96.330(3) 96.393(3)

γ/° 90 90 90
Unit cell volume/Å3 7904.0(4) 7852.4(7) 7855.3(6)

Temperature/K 203(2) 203(2) 203(2)
Space group I2/a I2/a I2/a

No. of formula units/unit cell, Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα

Absorption coefficient, μ/mm-1 1.704 1.827 1.928

No. of reflections measured 66087 70044 52187
No. of independent reflections 7774 8587 8592

Rint 0.0367 0.0315 0.0539
Final R1 values (all data) 0.0461 0.0362 0.0415

Final wR2(F2) values (all data) 0.0792 0.0634 0.0642
Final R1 values (I > 2σ(I)) 0.0354 0.0265 0.0268

Final wR2(F2) values (I > 2σ(I)) 0.0722 0.0578 0.0597
Goodness of fit on F2 1.046 1.029 1.014

CCDC number 2202463 2202464 2202465



S4

Table S2. Selected distances (Å) and angles (⁰) for 1, 2 and 3. Symmetry related atoms are indicated (‘).

Distance/angle Distance/angle

1

Gd-Gd’ 7.132(5) Gd-O 2.403(2)

Gd-N1 2.467(3) Gd-N2’ 2.503(3)

Gd-Cpcent*A 2.428(5) Gd-Cpcent*B 2.427(4)

Gd-tzcent 3.566(4) N1-N2’ 1.392(4)

O-Gd-Cpcent*A 103.1(6) O-Gd-Cpcent*B 101.9(6)

N1-Gd-Cpcent*A 99.9(8) N1-Gd-N2’ 32.5(9)

N2-Gd-Cpcent*A 107.7(8) N1-Gd-Cpcent*B 102.0(7)

Cpcent*A-Gd-Cpcent*B 136.3(2) N2-Gd-Cpcent*B 111.1(7)

2

Tb-Tb’ 7.088(6) Tb-O 2.388(2)

Tb-N1 2.453(2) Tb-N2’ 2.485(2)

Tb-Cpcent*A 2.408(5) Tb-Cpcent*B 2.402(4)

Tb-tzcent 3.544(4) N1-N2’ 1.394(3)

O-Tb-Cpcent*A 103.1(5) O-Tb-Cpcent*B 101.7(5)

N1-Tb-Cpcent*A 99.8(6) N1-Tb-N2’ 32.8(7)

N2-Tb-Cpcent*A 107.7(6) N1-Tb-Cpcent*B 102.0(5)

Cpcent*A-Tb-Cpcent*B 136.4(2) N2-Tb-Cpcent*B 111.1(5)

3

Dy-Dy’ 7.077(5) Dy-O 2.376(2)

Dy-N1 2.445(2) Dy-N2’ 2.475(2)

Dy-Cpcent*A 2.396(5) Dy-Cpcent*B 2.394(4)

Dy-tzcent 3.538(4) N1-N2’ 1.391(3)

O-Dy-Cpcent*A 102.9(5) O-Dy-Cpcent*B 101.8(5)

N1-Dy-Cpcent*A 100.0(6) N1-Dy-N2’ 32.8(7)

N2-Dy-Cpcent*A 107.7(6) N1-Dy-Cpcent*B 101.8(5)

Cpcent*A-Dy-Cpcent*B 136.6(2) N2-Dy-Cpcent*B 111.0(5)
Cpcent*A: C6-C15, Cpcent*B: C16-C25
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Fig. S1: Molecular structures of complexes 1 (top), 2 (middle) and 3 (bottom). For clarity reasons BPh4
- moieties as well as H-

atoms have been omitted. 

Fig. S2: Top (left) and side view (right) of the molecular overlay of the isomorphic complexes 1 (green), 2 (red) and 3 (orange). 
The fit was performed over the metal centers; r.m.s. deviation: 0.0258 Å. 
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Fig. S3: Packing diagrams along a-, b- and c-axis of [(Cp*2Gd)2(tz•-)(THF)2](BPh4) (green), [(Cp*2Tb)2(tz•-)(THF)2](BPh4) (red) 
and [(Cp*2Dy)2(tz•-)(THF)2](BPh4) (orange) forming layers separated by BPh4

- (blue) counterions.
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3. Hirshfeld surface analysis and supramolecular organization 

On the supramolecular level, the absence of strong hydrogen bonding donors or acceptors in both the main residue and 
solvent area of 1, 2 and 3 leads mostly to close packing interactions such as C···H/H···C and H···H interactions.11 This 
can be further supported by the Hirshfeld surface (HS) analysis,12 using the Crystal Explorer software,13 which shows that 
the main source of the supramolecular interactions on the dnorm surfaces (red spots) are the H-atoms of the coordinated 
THF molecules and the Cp* ligands (Fig. S3). When the shape index function is applied to the HS, no “bow-tie” patterns 
or red/blue triangles observed indicating the complete absence of π···π stacking interactions (Fig. S3). The 2D fingerprint 
plots14 of interatomic interactions (Fig. S4) show the percentages of all the contacts contributing to the total HS area of 
the molecules revealing that the H···H and C···H/H···C interactions dominating the surfaces with total percentages of 
88% and 12%, as expected. 

Fig. S3: Hirshfeld surface (HS) for [(Cp*2Gd)2(tz•-)(THF)2](BPh4) (top), [(Cp*2Tb)2(tz•-)(THF)2](BPh4) (middle) and [(Cp*2Dy)2(tz•-

)(THF)2](BPh4) (bottom) mapped over dnorm and shape index, S. In the dnorm HS a red–blue–white colour scheme used where red 
regions represent closer contacts, blue regions represent longer contacts and white regions represent the distance of contacts 
which is exactly equal to the vdW separation.
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Fig. S4: The 2D fingerprint plots of interatomic interactions of [(Cp*2Gd)2(tz•-)(THF)2](BPh4) (top), [(Cp*2Tb)2(tz•-)(THF)2](BPh4) 
(middle) and [(Cp*2Dy)2(tz•-)(THF)2](BPh4) (bottom), showing the percentages of contacts contributed to the total Hirshfeld 
surface area of the molecules.

Fig. S5: Intramolecular and intermolecular Ln···Ln distances for 1-3. For clarity reasons, partial transparency has been employed 
and BPh4

- as well as H-atoms have been omitted. Each Ln···Ln distance is colour coded.



S9

4. Additional magnetic data

DC Magnetism Plots for Complexes 2 and 3:

Fig. S7: Zero-field-cooled and field-cooled (ZFC/FC) curves for 2 (A) and 3 (B) under an applied static field of 1000 Oe. Data 
were collected at an average sweep rate of 0.2 K min-1. ZFC and FC susceptibilities bifurcate at 3.4 K for 2 and 2.2 K for 3, as 
indicated by the respective black arrows. 

Fig. S8: Field dependence of the magnetization (top) and the reduced magnetization (bottom) for 1-3 at the indicated 
temperatures. 
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Fig. S9: Magnetic hysteresis data for 2 (A) and 3 (B) in the respective temperature ranges performed with an average sweep 
rate of 31 Oe/s. 

AC Magnetism Plots for Complexes 2 and 3:

Fig. S10: Frequency dependence of χ’ as a function of temperature in the 1.8-8 K temperature range, in the absence of an 
applied field (Hdc = 0 Oe) for 2. Solid lines represent best fits to the generalized Debye model. 
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Table S3. Fitting parameters obtained from CCFit-215 using a generalized Debye model for the ac data of 2 in the absence of a 
static dc field (Hdc = 0 Oe) in the temperature region of 1.8 to 8 K (Fig. 3A, B, S10). 

T (K) τ (s) α χs (cm3 mol-1) χt(cm3 mol-1)

1.8 0.27 0.32 0.26 22.2
2 0.26 0.31 0.26 20.6

2.2 0.24 0.30 0.26 18.9
2.4 0.23 0.30 0.27 17.2
2.6 0.21 0.29 0.27 15.8
2.8 0.20 0.28 0.26 14.7
3 0.19 0.28 0.26 13.7

3.2 0.18 0.27 0.26 12.8
3.4 0.18 0.27 0.26 12.0
3.6 0.17 0.27 0.26 11.3
3.8 0.16 0.26 0.27 10.1
4 0.14 0.26 0.28 10.0

4.2 0.12 0.26 0.30 9.66
4.4 9.20 x 10-2 0.25 0.33 9.17
4.6 6.64 x 10-2 0.24 0.36 8.70
4.8 4.47 x 10-2 0.23 0.38 8.26
5 2.89 x 10-2 0.22 0.40 7.87

5.2 1.83 x 10-2 0.20 0.42 7.52
5.4 1.15 x 10-2 0.20 0.44 7.21
5.6 7.35 x 10-3 0.19 0.47 6.92
5.8 4.78 x 10-3 0.17 0.50 6.66
6 3.18 x 10-3 0.16 0.53 6.43

6.2 2.16 x 10-3 0.15 0.55 6.21
6.4 1.51 x 10-3 0.14 0.60 6.01
6.6 1.07 x 10-3 0.13 0.62 5.83
6.8 7.80 x 10-4 0.12 0.67 5.65
7 5.74 x 10-4 0.10 0.70 5.48

7.2 4.32 x 10-4 0.10 0.74 5.33
7.4 3.30 x 10-4 0.09 0.78 5.19
7.6 2.57 x 10-4 0.07 0.82 5.05
7.8 2.02 x 10-4 0.06 0.87 4.91
8 1.61 x 10-4 0.05 0.90 4.80

Fig. S11: Field dependence of the in-phase (χ’) (A) and out-of-phase (χ’’) (B) magnetic susceptibility of 2 at 4.5 K in the field 
range of 0 to 3000 Oe. For the χ’ the solid lines serve as a guide to the eye, while for the χ’’ the solid lines represent the best fit 
to the generalized Debye model.
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Table S4. Best-fit parameters to the generalized Debye model for the frequency dependence of the out-of-phase-magnetic 
susceptibility (χ΄΄) as a function of field for 2 collected at T = 4.5 K (Figure S11).

H (Oe) τ (s) α χs (cm3 mol-1) χt (cm3 mol-1)

0 7.85 x 10-2 0.24 0.34 8.92
100 8.00 x 10-2 0.25 0.34 8.93
200 8.52 x 10-2 0.25 0.33 8.95
300 9.49 x 10-2 0.27 0.31 8.98
400 1.09 x 10-1 0.28 0.30 9.02
600 1.49 x 10-1 0.31 0.28 9.11
800 1.88 x 10-1 0.32 0.28 9.13

1000 2.16 x 10-1 0.32 0.28 9.08
1200 2.33 x 10-1 0.32 0.28 8.99

1400 2.42 x 10-1 0.32 0.27 8.84

1600 2.47 x 10-1 0.32 0.27 8.66
1800 2.49 x 10-1 0.32 0.27 8.47
2000 2.49 x 10-1 0.32 0.26 8.25
2200 2.49 x 10-1 0.32 0.26 8.03
2400 2.50 x 10-1 0.33 0.26 7.81
2600 2.48 x 10-1 0.32 0.26 7.55
2800 2.47 x 10-1 0.33 0.25 7.31
3000 2.44 x 10-1 0.33 0.25 7.04

Fig. S12: Field-dependence of the relaxation times (τ) for 2 at a fixed temperature of 4.5 K. The relaxation times were obtained 
from the generalized Debye model (see, Table S4). The optimal static field for which the relaxation times of both processes are 
longest and quantum tunneling of the magnetization is reduced, is highlighted with a light-purple line. This is the field at which 
temperature dependent relaxation studies for 2 were completed at (vide infra). 
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Fig. S13 Frequency dependence of χ’ as a function of temperature in the 4.2-8 K temperature range, under an applied static field 
of 1400 Oe for 2. Solid lines represent best fits to the generalized Debye model. 

Table S5. Fitting parameters obtained from CCFit-215 using a generalized Debye model for the ac data of 2 in the presence of a 
static dc field (Hdc = 1400 Oe) in the temperature region of 4.2 to 8 K (Fig. 3D, E, S13). 

T (K) τ (s) α χs (cm3 mol-1) χt(cm3 mol-1)

4.2 1.18 0.40 0.20 10.8
4.4 0.38 0.35 0.25 9.29
4.6 0.16 0.30 0.30 8.43
4.8 7.60 x 10-2 0.27 0.33 7.88
5 3.97 x 10-2 0.25 0.36 7.47

5.2 2.19 x 10-2 0.23 0.38 7.13
5.4 1.28 x 10-2 0.20 0.41 6.84
5.6 7.75 x 10-3 0.19 0.43 6.59
5.8 4.88 x 10-3 0.18 0.46 6.36
6 3.20 x 10-3 0.17 0.50 6.16

6.2 2.15 x 10-3 0.16 0.53 5.96
6.4 1.48 x 10-3 0.13 0.60 5.72
6.6 1.06 x 10-3 0.13 0.60 5.62
6.8 7.66 x 10-4 0.12 0.63 5.46
7 5.63 x 10-4 0.11 0.67 5.31

7.2 4.25 x 10-4 0.10 0.72 5.17
7.4 3.23 x 10-4 0.09 0.75 5.03
7.6 2.52 x 10-4 0.08 0.80 4.91
7.8 1.97 x 10-4 0.07 0.82 4.79
8 1.60 x 10-4 0.05 0.90 4.67
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Fig. S14: The Arrhenius plot of the ln of the relaxation time, τ, of the magnetization vs. the inverse temperature for 2 under and 
applied field of 1400 Oe. The red line represents the linear fit to the Arrhenius equation that affords a Ueff = 53.3 cm-1. Parameters 
are summarized in Table S5.

Fig. S15: Frequency dependence of χ’ as a function of temperature in the 2.4-6.6 K temperature range, in the absence of an 
applied field (Hdc = 0 Oe) for 3. Solid lines represent best fits to the generalized Debye model. 
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Table S6. Fitting parameters obtained from CCFit-215 using a generalized Debye model for the ac data of 3 in the absence of a 
static dc field (Hdc = 0 Oe) in the temperature region of 2.4 to 6.6 K (Fig. 3G, H, S15). 

T (K) τ (s) α χs (cm3 mol-1) χt(cm3 mol-1)

2.4 1.23 0.30 9.95 x 10-2 22.5
2.6 0.54 0.29 5.88 x 10-2 20.6
2.8 0.22 0.27 5.30 x 10-2 18.7
3 9.58 x 10-2 0.24 6.50 x 10-2 17.1

3.2 4.51 x 10-2 0.21 7.10 x 10-2 15.7
3.4 2.31 x 10-2 0.19 7.26 x 10-2 14.7
3.6 1.27 x 10-2 0.18 7.64 x 10-2 13.8
3.8 7.41 x 10-3 0.17 7.85 x 10-2 13.0
4 4.55 x 10-3 0.16 8.77 x 10-2 12.3

4.2 2.94 x 10-3 0.15 0.10 11.8
4.4 1.98 x 10-3 0.14 0.12 11.2
4.6 1.37 x 10-3 0.13 0.14 10.7

4.78 9.87 x 10-4 0.13 0.17 10.3
5 7.27 x 10-4 0.12 0.20 9.84

5.2 5.51 x 10-4 0.12 0.25 9.45
5.4 4.25 x 10-4 0.11 0.28 9.08
5.6 3.35 x 10-4 0.11 0.31 8.75
5.8 2.71 x 10-4 0.10 0.39 8.47
6 2.21 x 10-4 0.10 0.42 8.19

6.2 1.84 x 10-4 0.09 0.46 7.94
6.4 1.53 x 10-4 0.09 0.47 7.70
6.6 1.28 x 10-4 0.09 0.44 7.48

Fig. S16: The Arrhenius plot of the ln of the relaxation time, τ, of the magnetization vs. the inverse temperature for 3 in the 
absence of a static dc field (Hdc = 0 Oe). The red line represents the linear fit to the Arrhenius equation that affords a Ueff = 24.8 
cm-1. Parameters are summarized in Table S6.
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Fig. S17: Field dependence of the in-phase (χ’) (A) and out-of-phase (χ’’) (B) magnetic susceptibility of 3 at 3 K in the field range 
of 0 to 3000 Oe. For the χ’ the solid lines serve as a guide to the eye, while for the χ’’ the solid lines represent the best fit to the 
generalized Debye model.

Table S7. Best-fit parameters to the generalized Debye model for the frequency dependence of the out-of-phase-magnetic 
susceptibility (χ΄΄) as a function of field for 3 collected at T = 3 K (Figure S17).

H (Oe) τ (s) α χs (cm3 mol-1) χt (cm3 mol-1)

0 9.63 x 10-2 0.24 6.27 x 10-2 17.1
100 9.65 x 10-2 0.24 6.45 x 10-2 17.1
200 9.76 x 10-2 0.24 6.27 x 10-2 17.1
300 9.95 x 10-2 0.23 6.04 x 10-2 17.0
400 1.01 x 10-1 0.23 5.60 x 10-2 17.0
600 1.06 x 10-1 0.24 4.33 x 10-2 16.6
800 1.09 x 10-1 0.25 2.54 x 10-2 16.2

1000 1.12 x 10-1 0.26 1.26 x 10-2 15.7
1200 1.16 x 10-1 0.27 6.46 x 10-3 15.2
1400 1.18 x 10-1 0.28 5.64 x 10-3 14.5
1600 1.22 x 10-1 0.29 6.32 x 10-3 13.8
1800 1.25 x 10-1 0.31 1.37 x 10-3 13.1
2000 1.29 x 10-1 0.32 1.51 x 10-3 12.3
2200 1.32 x 10-1 0.33 1.02 x 10-4 11.6
2400 1.34 x 10-1 0.34 5.72 x 10-3 10.8
2600 1.37 x 10-1 0.35 7.02 x 10-3 10.1
2800 1.39 x 10-1 0.36 7.05 x 10-3 9.38
3000 1.41 x 10-1 0.37 4.92 x 10-3 8.78
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Fig. S18: Field-dependence of the relaxation times (τ) for 3 at a fixed temperature of 3 K. The relaxation times were obtained 
from the generalized Debye model (see, Table S7). 

Table S8. Best-fit parameters of the relaxation times of the magnetization for 2 and 3 in the absence and presence of a dc field 
(1400 Oe).

2 3
Hdc = 0 Oe Hdc = 1400 Oe Hdc = 0 Oe

QTM τQTM (s) 0.20
Orbach τ0 (s) 2.51 x 10-8 1.26 x 10-8 5.01 x 10-7

Ueff (cm-1) 49.3 52.1 25.0

5. Computational details
The geometries used in the calculations were extracted from the crystal structure. The non-coordinated [BPh4]– anions 
were removed from the structure. The positions of the hydrogen atoms were optimized using density functional theory 
(DFT) while the positions of the heavier atoms were kept frozen to their crystal-structure coordinates. The geometry 
optimizations were carried out using the Amsterdam Density Functional (ADF) code16 of the Amsterdam Modeling Suite 
(AMS) version 2020.101.17 The pure GGA exchange-correlation (XC) functional PBE18 was used along with the empirical 
DFT-D3 dispersion correction19 utilizing the Becke–Johnson (BJ) damping function.20 Scalar relativistic effects were 
accounted for using the zeroth-order regular approximation (ZORA) as implemented in ADF.21 A polarized double-ζ quality 
basis (DZP) specifically designed for ZORA calculations was used for all atoms.22 In order to avoid convergence issues 
and to simulate static correlation effects in the density, the unpaired 4f electrons were equally distributed over the seven 
4f orbitals of the two ions resulting into fractional orbital occupation numbers for 2 and 3. In practice, this means fixing the 
occupations of the fourteen highest-lying β orbitals as 0.14286 for 2 and 0.28571 for 3. 

Broken-symmetry (BS) DFT calculations23,24 on 1 were carried out using the Orca code version 4.2.1.25 The range-
separated hybrid XC functional CAM-B3LYP26 was used in the BS-DFT calculations. The scalar relativistic effects were 
treated with ZORA as implemented in Orca.21,27 A double-polarized triple-ζ quality SARC-ZORA-TZVPP was used for the 
Gd ions.28 For the remaining atoms, ZORA-def2 basis sets were used that are re-contractions of the def2 basis sets for 
ZORA calculations.29 Polarized triple-ζ quality basis sets (ZORA-def2-TZVP) were used for C, N and O whereas a 
polarized double-ζ basis (ZORA-def2-SVP) was used for the H atoms. Nature of the BS states was confirmed by visual 
examination of the spin densities.

State-averaged complete active space self-consistent field (SA-CASSCF) type multireference calculations30 were carried 
out using the Orca code version 5.0.1.25,31 In the multireference calculations, one of the Ln(III) ions was replaced by a 
diamagnetic Y(III) ion so the calculations could be carried out only on a single interacting Ln(III)–radical pair. The active 
space consisted of the seven metal 4f orbitals and all six ligand π-orbitals. Inclusion of all six ligand orbitals into the active 
space was necessary to introduce sufficient amount of electron correlation effects into the CASSCF wave function. The 
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states included in the state-averaged treatment included all states that could be constructed by coupling the two lowest-
lying spin-doublet ligand states with the highest-spin multiplicity terms of the free respective free Ln(III) ion. The first 
excited ligand state lies at about 22,000 cm–1 which is lower than the 6P free-ion term of the Dy(III) ion in 3. Thus, the 
excited ligand state needs to be included in the calculations on 3. For the sake of consistency, it was also included in the 
calculation on 1 and 2. Overall the states solved in the SA-CASSCF procedure consisted of the two nonet and two septet 
states arising from the coupling of the 8S term to the two radical doublets for 1, 14 octet and 14 sextet states arising from 
coupling of the 7F term to the two radical doublets for 2, and 42 septet and 42 pentet states arising from coupling of the 
6H, 6F and 6P terms to the two radical doublets for 3. Further electron correlation effects were accounted for using the N-
electron valence state perturbation theory at second order (NEVPT2) in its strongly correlated formulation.32 To reduce 
the computational costs, a single set of orbitals were used for all states in the NEVPT2 procedure. The spin state 
energetics of 1 were also calculated using the quasi-degenerate (QD) formulation of NEVPT233 but the results did not 
lead to significant improvement over the conventional NEVPT2 (see Table S10).

Scalar relativistic effects were treated in the multireference calculations using the standard second-order Douglas–Kroll–
Heß (DKH) transformation.34 Spin-orbit coupling (SOC) was introduced using the quasi-degenerate perturbation theory 
(QDPT) approach,35 where the SOC operator is constructed in a basis of the SA-CASSCF eigenstates and diagonalized 
to yield the final spin-orbit coupled states and their eigenvalues. The SOC operator was constructed using the spin-orbit 
mean-field (SOMF) approximation.36 Polarized quadruple-ζ quality SARC2-DKH-QZVP basis sets37 were used for the 
lanthanide ions and DKH-def2-TZVP basis sets29 were used for the remaining atoms. The auxiliary basis sets used in the 
integral transformations were generated using the”AutoAux” feature in Orca.38

The matrix representations of the Hamiltonian and components of the magnetic moment operators were extracted from 
the Orca calculation using the file produces as a part of the SINGLE_ANISO interface of Orca. Further extraction of the 
parameters and calculation of the magnetic susceptibility was carried out using our own code. The magnetic susceptibility 

 was calculated as a linear susceptibility from the powder magnetization as , where  is the magnetic 
field strength taken as 0.1 T. The powder magnetization was integrated over a Lebedev–Laikov grid39 using 86 grid points. 
The g tensors of the low-lying Kramers’ doublets (KDs) were calculated following the well-established methodology.40 The 
magnetic properties of 2 and 3 were calculated using the approximate Zeeman Hamiltonian:

(1)

Where  is the Bohr magneton,  and  are the Landé and free-electron g factors, respectively,  is the magnetic 

field, and ,  and  are effective spin operators acting on the lanthanide and radical sites. While the Zeeman 
Hamiltonian was approximate, the matrix elements were taken over the full ab initio states.

Extraction of parameters

In the case of 1, the lack of first-order orbital angular momentum contribution allows the exchange interaction to be 
described using a Heisenberg–Dirac–van Vleck (HDvV) type Hamiltonian41

(2)

where  and  are exchange coupling parameters for the metal–radical and metal–metal interactions, 

respectively, and  is an effective spin operator acting on metal site 1. Due to the inversion symmetry of the complex 
both metal–radical interactions are identical. The isotropic exchange parameters  and  for 1 were calculated 
using both BS-DFT and multireference calculations. Following the common approach, the BS-DFT states were interpreted 
as expectation values of an Ising type Hamiltonian24 of the type

(3)

where  is an effective spin operator acting on the projection of the local spin at metal site 1. In order to extract the 
parameters, three different spin configurations were considered to produce two unique energy differences. The exchange 
coupling parameters can be extracted from the energies as
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and  
(4)

where  is an energy of a spin configuration with the spins ordered as metal–radical–metal.

The multireference calculations on 1 were carried out only on a single metal–ligand pair. The exchange parameter was 
extracted directly from the energy difference between the lowest nonet and lowest septet states using the well-established 
formula:

(5)

In case of 2 and 3 the strong magnetic anisotropy arising from first-order orbital contributions to the magnetic moment, 
requires a much more complicated form of the exchange coupling Hamiltonian. The metal–radical exchange interaction 
can be described using a pseudospin operator constructed from equivalent operators in the form42

(6)

where  is a generalized exchange parameter and  is an equivalent operator of rank  and component  
constructed from a pseudospin operator  acting on the lanthanide. The pseudospin operator has the same dimension 

as the ground multiplet of the free lanthanide ion. The equivalent operator  acts on the radical site. The 

summation over the ranks is carried out so that  and . We use equivalent operators as defined by 
Iwahara and Chibotaru.42,43 Note that we have included the denominator used by Iwahara and Chibotaru into the definition 

of the operator; thus, the notation of Iwahara and Chibotaru simplifies as .

The exchange parameters  can be extracted using the orthogonality of the equivalent operators:42

(7)

where  and  are Clebsch–Gordan coefficients within the Condon–Shortley phase convention44 and is 

a matrix representation of the electronic Hamiltonian downfolded onto a basis of pseudospin states . 
The trace is taken over the pseudospin basis. The matrix can be obtained from a matrix representation of the ab initio 

electronic Hamiltonian once the ab initio eigenstates have been mapped to the pseudospin states . 
This is a non-trivial task. Following the approximate definition of pseudospin established by Chibotaru45 and applied by 
Ungur and Chibotaru in the ab initio crystal-field approach,46 the pseudospin state can be approximately mapped, up to a 
phase, to the eigenstates of the component of magnetic moment along the quantization axis. The quantization axis is 
chosen as the principal magnetic axis of the ground Kramers’ doublet (KD). This axis can be unambiguously 
determined.40,45 The approximation is valid when the higher-rank contributions to the magnetic moment can be neglected. 
This is true when the pseudospin closely resembles the true angular momentum of the system as is the case in a system 
of a lanthanide ion described by a  multiplet that is reasonably well described within LS coupling and an isotropic radical 
spin. The mapping of individual states can be achieved by comparing the ab initio eigenvalue of the magnetic moment 
operator along the quantization axis with a theoretical value calculated using the usual operator form

(8)

where the operators are physical operators not pseudospin operators. In the case of Tb(III) and Dy(III) (but not Gd(III)), 
there are no accidental degeneracies in the eigenvalues, and the mapping can be carried out unambiguously. The 
differences between the ab initio and theoretical eigenvalues in 2 and 3 are always less than  whereas the spacing 
between the eigenvalues is always more than . Thus, the mapping is unambiguous in practice as well.
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The mapping can, however, only be carried out up to a phase that is specific to both the ab intio state  and the 

pseudospin states  and . Thus, the total phase problem has the form

(9)

which cannot be trivially solved as the ab initio eigenstates cannot be trivially decomposed into the components of the 
direct product. The lack of available phase factors means that the time-reversal operator will have a non-trivial phase 
factor when applied on the pseudospin operators, and this means that the resulting equivalent operator expansion does 
not have a trivial behavior under time reversal. In practice this means that both equivalent operators of odd and even 
ranks enter expansion of both time-even and time-odd operators. This makes the interpretation of the individual exchange 
parameters rather useless. The approach does, however, allow the construction of matrix representations of pseudospin 
operators and the resulting eigenvalues are correct. Solving the phase issue will be considered in future work.

Properties that depend on the eigenvalues of the Hamiltonian, such as the magnetic susceptibility, can be constructed 
using the full pseudospin Hamiltonian including both metal–radical interactions and the parameters extracted from the 
metal–radical pair calculations:

.
(10)

Inclusion of the metal–metal interaction using a point-dipole approximation was also considered, but the dipolar coupling 
two to three order of magnitude weaker than the metal–radical exchange interaction, and it can be safely neglected.

Data tables and figures

Table S9. Energies of the broken-symmetry states used in the calculation of the exchange coupling parameters for 1.

Spin configurationa Energy / Hartree

↑↑↑ –25369.7844046123

↑↓↑ –25369.7847470053

↑↑↓ –25369.7850735380
a Ordered as Gd–radical–Gd.

Table S10. Energies of the multireference spin states used in the calculation of the exchange coupling parameters for 1.

Method E(↑↑)a / Hartree E(↑↓)a / Hartree

CASSCF –16949.9740073782 –16949.9739909339

NEVPT2 –16961.81916070030275 –16961.81938487140360

QD-NEVPT2 –16961.81609961352660 –16961.81633244668410
a Ordered as Gd–radical. The other Gd ion is replaced by Y.

Table S11. Energies and properties of the g tensors calculated for the four lowest-lying Kramers doublets calculated for 2. 

E / cm–1 gX gY gZ θa

0 0.000 0.543 33.777

38 0.000 0.000 3.803 90.5°

42 0.000 0.000 2.213 90.3°

65 0.000 2.862 30.775 2.8°
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a The angle between the principal magnetic axes of this KD and the ground KD.

Table S12. Energies and properties of the g tensors calculated for the four lowest-lying Kramers doublets calculated for 3. 

E / cm–1 gX gY gZ θa

0 0.000 0.152 37.331

21 0.000 0.000 1.954 27.9°

21 0.000 0.000 1.970 29.2°

42 0.000 0.043 41.342 0.2°
a The angle between the principal magnetic axes of this KD and the ground KD.

Figure S19. Top: the measured (circles) and calculated (solid lines) magnetic susceptibilities of 2 (A) and 3 (B). Bottom: Measured 
(circles) and calculated (solid lines) field-dependent low-temperature magnetization of 2 (C) and 3 (D).
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Figure S20. Qualitative barrier for the relaxation of magnetization in 2. Stronger arrows indicate stronger magnitudes of transition 
magnetic moment matrix elements between the respective states.
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