Electronic Supplementary Information (ESI)

γ-P₄S₃I₂: A New Metal-free Infrared Second-order Nonlinear Optical Crystal Designed by Polymorphism Strategy

Xin Zhao ^{a, b}, Chensheng Lin ^a, Shunda Yang ^a, Haotian Tian ^{a, b}, Chao Wang ^{a, b}, Tao Yan ^{*a, d}, Jian Zhang ^d, Bingxuan Li ^a, Ning Ye ^c and Min Luo ^{*a}

^{*a} Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute*</sup>

of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian

350002, China

E-mail: lm8901@fjirsm.ac.cn; yantao@fjirsm.ac.cn; yantao@fjirsm.ac.cn; mailto:yantaowfjirsm.ac.cn; yantao@fjirsm.ac.cn; yantao@fjirsm.ac.cn; yantao@fjirsm.ac.cn; yantao@fjirsm.ac.cn; yantaowfjirsm.ac.cn; yantaowfjirsm.ac.cn"/>yantaowfjirsm.ac.cn; <a href="mailto:yantaowf

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal,

Tianjin University of Technology, Tianjin 300384, China

^d State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100,

China

Table of Contents

Sections	Title	Page
Figure S1	Calculated and experimental powder X-ray diffraction patterns of $\gamma\text{-}P_4S_3I_2$	S3
Figure S2	Energy-dispersive X-ray Spectroscopy analysis of of γ -P ₄ S ₃ I ₂	S3
Figure S3	The experimental I···P distance in the $(P_4S_3I_2)_n$ (n=4) molecular cluster of γ -P ₄ S ₃ I ₂ (a) and α -P ₄ S ₃ I ₂ (b)	S4
Figure S4	Powder X-ray diffraction patterns of γ -P ₄ S ₃ I ₂ before annealed and γ -P ₄ S ₃ I ₂ annealed at 125°C and recrystallized in CS ₂	S4
Figure S5	TG-DTA curves of γ -P ₄ S ₃ I ₂	S5
Figure S6	UV-vis-NIR diffuse reflectance spectra of γ -P ₄ S ₃ I ₂ . Inset shows the derivation of band gap.	S5
Figure S7	FT-IR transmittance spectra of γ -P ₄ S ₃ I ₂	S6
Figure S8	Calculated band structure of γ -P ₄ S ₃ I ₂	S6
Figure S9	Partial density of states (PDOS) of γ -P ₄ S ₃ I ₂	S7
Figure S10	Calculated frequency-dependent coefficients of γ -P ₄ S ₃ I ₂	S7
Figure S11	The calculated refractive index dispersion curves of γ -P ₄ S ₃ I ₂	S8
Table S1	Crystal Data and Structure Refinement Details of γ -P ₄ S ₃ I ₂	S8
Table S2	Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters (Å 2 x 10 ³) for $\gamma\text{-}P_4S_3I_2$	S9
Table S3	Selected bond lengths [Å] and angles [deg.] for $\gamma\text{-}P_4S_3I_2$	S10
Table S4	Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for γ -P ₄ S ₃ I ₂	S10
Table S5	Powder Laser Damage Threshold (LDT) Measurements	S11

Figure S1 Calculated and experimental powder X-ray diffraction patterns of γ -P₄S₃I₂.

Figure S2 Energy-dispersive X-ray Spectroscopy analysis of γ -P₄S₃I₂.

Figure S3 The experimental I···P distance in the $(P_4S_3I_2)_n$ (n=4) molecular cluster of γ -

 $P_4S_3I_2$ (a) and α - $P_4S_3I_2$ (b).

Figure S4 Powder X-ray diffraction patterns of γ -P₄S₃I₂ before annealed and γ -P₄S₃I₂

annealed at 125°C and recrystallized in CS₂.

Figure S5 TG-DTA curves of γ -P₄S₃I₂.

Figure S6 UV-vis-NIR diffuse reflectance spectra of γ -P₄S₃I₂. Inset shows the

derivation of band gap.

Figure S8 Calculated band structure of γ -P₄S₃I₂.

Figure S9 Partial density of states (PDOS) of γ -P₄S₃I₂.

Figure S10 Calculated frequency-dependent coefficients of γ -P₄S₃I₂.

Figure S11 The calculated refractive index dispersion curves of γ -P₄S₃I₂.

Table S1. Cry	ystal Data and	Structure	Refinement	Details of	$\gamma P_4 S_3 I_2$	2 ^{a,b} .
---------------	----------------	-----------	------------	------------	----------------------	--------------------

Formula	$P_4S_3I_2$
Formula weight (amu)	473.86
Temperature (K)	293(2)
λ (Å)	0.71073
Crystal system	Tetragonal
Space group	P 4 ₃
a (Å)	7.3415(2)
<i>b</i> (Å)	7.3415(2)
<i>c</i> (Å)	39.1942(19)
α/°	90
6 /°	90
γ /°	90
<i>V</i> (Å ³)	2112.47(15)
Ζ	8

ρ _{calc} (Mg/m³)	2.980
μ (mm ⁻¹)	7.080
Crystal size (mm ³)	0.01 x 0.01 x 0.01
θ range (deg)	2.078 to 30.739
Index ranges	-9<=h<=7
	-8<=k<=8
	-42<=I<=54
F(000)	1712
Reflections collected/unique	8811 / 4583
R _{int}	0.0293
R/wR (I>2 σ(I))	R ₁ = 0.0381, wR ₂ = 0.0808
R/wR (all data)	R ₁ = 0.0553, wR ₂ = 0.0851
GOF on <i>F</i> ²	1.003

 ${}^{a}R_{1}=\sum ||F_{o}|-|F_{c}||/\sum |F_{o}|. \ {}^{b}wR_{2}(F_{o}^{2})=[\sum wF_{o}^{2}-F_{c}^{2})^{2}/\sum w(F_{o}^{2})^{2}]^{1/2}.$

for γ-P ₄ S ₃ I ₂						
Atom	x	У	Z	U(eq)		
l(1)	-491(1)	-3776(1)	5758(1)	50(1)		
I(2)	5192(1)	11550(1)	4246(1)	50(1)		
I(3)	6683(1)	3001(1)	5247(1)	51(1)		
I(4)	12046(2)	4485(2)	4787(1)	60(1)		
S(1)	6330(5)	6853(5)	4098(1)	45(1)		
S(2)	4199(5)	-2732(5)	5911(1)	45(1)		
S(3)	8466(5)	8469(5)	4770(1)	47(1)		
S(4)	2690(5)	-502(5)	5237(1)	48(1)		
S(5)	11235(5)	7751(6)	4123(1)	55(1)		
S(6)	3410(6)	2182(5)	5900(1)	55(1)		
P(1)	7368(5)	9449(5)	3968(1)	39(1)		
P(2)	5109(5)	-1361(5)	5462(1)	42(1)		
P(3)	1638(5)	-1622(5)	6036(1)	42(1)		
P(4)	5936(5)	1096(5)	5750(1)	42(1)		
P(5)	9557(5)	9806(5)	4346(1)	45(1)		
P(6)	1350(5)	587(5)	5660(1)	48(1)		
P(7)	7686(5)	6003(5)	4549(1)	45(1)		
P(8)	10207(5)	5213(5)	4277(1)	46(1)		

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å $^2x 10^3$)
for v-PaSala	

I(1)-P(3)	2.477(4)	P(4)-S(6)-P(6)	107.08(19)
I(2)-P(1)	2.473(3)	S(1)-P(1)-I(2)	102.94(16)
I(3)-P(4)	2.480(3)	S(1)-P(1)-P(5)	102.06(18)
I(4)-P(8)	2.471(3)	P(5)-P(1)-I(2)	95.79(16)
S(1)-P(1)	2.114(5)	S(2)-P(2)-P(4)	92.85(18)
S(1)-P(7)	2.123(5)	S(4)-P(2)-S(2)	103.06(19)
S(2)-P(2)	2.135(5)	S(4)-P(2)-P(4)	101.8(2)
S(2)-P(3)	2.106(5)	S(2)-P(3)-I(1)	102.37(17)
S(3)-P(5)	2.089(5)	S(2)-P(3)-P(6)	102.45(19)
S(3)-P(7)	2.088(5)	P(6)-P(3)-I(1)	96.60(16)
S(4)-P(2)	2.082(5)	S(6)-P(4)-I(3)	101.75(17)
S(4)-P(6)	2.087(5)	S(6)-P(4)-P(2)	102.12(19)
S(5)-P(5)	2.136(5)	P(2)-P(4)-I(3)	96.58(15)
S(5)-P(8)	2.100(5)	S(3)-P(5)-S(5)	102.4(2)
S(6)-P(4)	2.102(5)	S(3)-P(5)-P(1)	101.5(2)
S(6)-P(6)	2.132(6)	S(5)-P(5)-P(1)	93.4(2)
P(1)-P(5)	2.202(5)	S(4)-P(6)-S(6)	103.1(2)
P(2)-P(4)	2.212(5)	S(4)-P(6)-P(3)	101.8(2)
P(3)-P(6)	2.202(5)	S(6)-P(6)-P(3)	92.30(19)
P(7)-P(8)	2.211(5)	S(1)-P(7)-P(8)	93.98(19)
P(1)-S(1)-P(7)	107.19(19)	S(3)-P(7)-S(1)	102.7(2)
P(3)-S(2)-P(2)	106.73(19)	S(3)-P(7)-P(8)	101.4(2)
P(7)-S(3)-P(5)	100.45(19)	S(5)-P(8)-I(4)	103.25(18)
P(2)-S(4)-P(6)	100.41(19)	S(5)-P(8)-P(7)	101.9(2)
P(8)-S(5)-P(5)	107.5(2)	P(7)-P(8)-I(4)	97.19(15)

Table S3. Selected bond lengths [Å] and angles [deg.] for γ -P₄S₃I₂

Table S4. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for γ -P₄S₃I₂.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
l(1)	43(1)	51(1)	56(1)	2(1)	-4(1)	-12(1)	
I(2)	49(1)	45(1)	58(1)	-7(1)	-4(1)	11(1)	
I(3)	55(1)	50(1)	49(1)	8(1)	-2(1)	-16(1)	
I(4)	60(1)	57(1)	61(1)	1(1)	-9(1)	21(1)	
S(1)	38(2)	42(2)	56(2)	-3(1)	-5(1)	-3(2)	
S(2)	37(2)	40(2)	60(2)	14(1)	1(1)	2(2)	
S(3)	51(2)	57(2)	34(2)	-4(1)	0(1)	9(2)	

The Anisotropic displacement factor exponent takes the form: -2 π^2 [h² a^{*2}U₁₁ +2hka*b*U₁₂ +...].

S(5) S(6)	39(2) 61(2) 42(2)	60(2) 41(2) 27(2)	66(2) 63(2)	16(2) -13(2)	17(2) 12(2)	6(2)
S(6)	61(2) 42(2)	41(2) 27(2)	63(2)	-13(2)	12(2)	c(2)
D(1)	42(2)	27/2)			(-)	-0(2)
P(1)		57(2)	38(2)	3(1)	2(1)	6(2)
P(2)	39(2)	39(2)	47(2)	-2(1)	8(1)	3(2)
P(3)	38(2)	40(2)	48(2)	-4(1)	3(1)	-4(2)
P(4)	43(2)	43(2)	39(2)	4(1)	-4(1)	-6(2)
P(5)	39(2)	38(2)	60(2)	3(2)	-3(2)	-5(2)
P(6)	35(2)	42(2)	67(2)	5(2)	-2(2)	6(2)
P(7)	41(2)	41(2)	53(2)	11(1)	6(1)	-1(2)
P(8)	50(2)	41(2)	47(2)	-4(1)	-2(2)	11(2)

 Table S5. Powder Laser Damage Threshold (LDT) Measurements

-

Compounds	Energy (mJ)	Spot area (cm ²)	Pulse width (ns)	LDT (MW/cm ²)
γ -P ₄ S ₃ I ₂	1.7	0.0153938	10	11.97286
AgGaS ₂	0.6	0.0153938	10	4.25241