Supplementary Information for:

Engineering of PMo₁₂@NiCo-LDH composite via in-situ

encapsulation-reassembly strategy for highly selective photocatalytic

reduction of CO₂ to CH₄

Huaiying Zhang, Dongyuan Cui, Tianyang Shen, Tong He, Danzhong Sun, Sai An*, Bo Qi, and Yu-Fei Song*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China. *E-mail: songyf@mail.buct.edu.cn, ansai@mail.buct.edu.cn; Tel/Fax: +86 10-64431832.

List of contents

Figure S1. Topology diagram of the PMo₁₂@ZIF-67 precursor.

Figure S2. SEM images of PMo₁₂@ZIF-67; TEM images of as-prepared PMo₁₂@NiCo-LDH and recycled PMo₁₂@NiCo-LDH after CO₂PR.

Figure S3. HRTEM image of PMo₁₂@NiCo-LDH with corresponding FFT diffraction pattern inside; EDS spectrum of PMo₁₂@NiCo-LDH.

Figure S4. XRD patterns of PMo₁₂@NiCo-LDH and NiCo-LDH.

Figure S5. NLDFT pore size distribution profile of PMo₁₂@ZIF-67; BJH pore size distribution profile of PMo₁₂@NiCo-LDH.

Figure S6. XPS spectra of N 1s for PMo₁₂@ZIF-67 and PMo₁₂@NiCo-LDH.

Figure S7. The figure of the experimental set up for CO_2PR .

Figure S8. Selectivity and production rate of H_2 , CO and CH_4 in CO_2PR with various dosage of $PMo_{12}@NiCo-LDH$; selectivity and production rate of H_2 , CO and CH_4 for $PMo_{12}@NiCo-LDH$ in CO_2PR with various dosage of $Ru(bpy)_3Cl_2 \cdot 6H_2O$.

Figure S9. Selectivity and production rate of H_2 , CO and CH_4 for $PMo_{12}@NiCo-LDH$ in CO_2PR with various volume ratio of CH_3CN : TEOA : H_2O .

Figure S10. The influence of PMo_{12} loading, catalysts, reaction conditions on the production rate of H_2 , CO and CH_4 in CO_2PR .

Figure S11. GC spectrum (connected to MS) of the reaction products for $PMo_{12}@NiCo-LDH$ in CO_2PR .

Figure S12. ¹H NMR spectra of CH₃CN, TEOA, Ru(bpy)₃Cl₂· $6H_2O$ and the liquid mixture of reaction system before and after CO₂PR.

Figure S13. Production rate of H₂, CO and CH₄ in CO₂PR under irradiation of various wavelength and in various cycle numbers under $\lambda > 500$ nm.

Figure S14. XRD patterns and FT-IR spectra of as-prepared PMo₁₂@NiCo-LDH and recycled PMo₁₂@NiCo-LDH after CO₂PR.

Figure S15. XPS spectra of Mo 3*d*, Ni 2*p* and Co 2*p* for as-prepared $PMo_{12}@NiCo-LDH$ and recycled $PMo_{12}@NiCo-LDH$ after CO_2PR .

Figure S16. Electrochemical impedance spectra (EIS), photocurrent-time profiles, room-temperature photoluminescence (PL) spectra of NiCo-LDH and PMo₁₂@NiCo-LDH.

Figure S17. UV-vis spectra and bandgaps calculated from Tauc plots of PMo₁₂@NiCo-LDH and NiCo-LDH; Mott-Schottky plots of PMo₁₂@NiCo-LDH and NiCo-LDH. valance band XPS spectra of PMo₁₂@NiCo-LDH and NiCo-LDH; conduction band minimum (CBM), valence band maximum (VBM) of PMo₁₂@NiCo-LDH and NiCo-LDH.

Figure S18. XPS spectra of O 1s for $PMo_{12}@NiCo-LDH$ and recycled $PMo_{12}@NiCo-LDH$ after the CO₂PR.

Table S1.Porosity properties of PMo12@ZIF-67 and PMo12@NiCo-LDH.

Table S2.Comparison of CO_2PR performance for various photocatalytic system in this workand in previous literature.

Experimental section

Chemicals and materials. Phosphomolybdic acid (PMo_{12}), methanol, ethanol, and acetonitrile were obtained from Fuchen (Tianjin) Chemical Reagent Co., Ltd. 2-methylimidazole (2-MIM), terpyridine ruthenium chloride ($Ru(bpy)_3Cl_2 \cdot 6H_2O$, 98%), and triethanolamine (TEOA, 99%) were purchased from Energy chemical. Cobalt (II) nitrate hexahydrate ($Co(NO_3)_2 \cdot 6H_2O$, 99%) and nickel (II) nitrate hexahydrate ($Co(NO_3)_2 \cdot 6H_2O$, 99%) and nickel (II) nitrate hexahydrate ($Co(NO_3)_2 \cdot 6H_2O$, 99%) were purchased from Sigma-Aldrich trading Co., Ltd. High purity CO_2 (99.999%) and ¹³CO₂ (99%) were obtained from Linde Gas Co., Ltd. All the chemicals were used directly without any further purification.

*Synthesis of PMo*₁₂@*ZIF-67.* The synthesis of PMo₁₂@*Z*IF-67 referenced to the literature with tiny modification^[1]. Typically, the mixture of 2.5 mmol Co(NO₃)₂·6H₂O in 25 mL methanol and 10 mL aqueous solution contained certain amount of Keggin-type POMs H₃PMo₁₂O₄₀ (1.2×10^{-2} mmol, 25 mg) was stirred continuously at room temperature for 30 min. Subsequently, 40.0 mmol 2-methylimidazole in 25 mL methanol was dropwise added, and a purple suspension was produced. After stirring for 2.5 h, the bluish violet precipitate was collected *via* centrifugation, washing with methanol for several times, and drying at 60 °C in vacuum overnight. The obtained solid was denoted as PMo₁₂@*Z*IF-67. For comparison, *Z*IF-67 was prepared by the same method except for the absence of H₃PMo₁₂O₄₀.

Synthesis of $PMo_{12}@NiCo-LDH$. Firstly, Ni(NO₃)₂·6H₂O (0.42 mmol, 120 mg) was dissolved in 25 mL ethanol with vigorous stirring for 30 min. Subsequently, 40 mg $PMo_{12}@ZIF-67$ was added into the above solution. After continuous stirring at room temperature for another 2 h, the precipitation was collected *via* centrifugation, washing with ethanol for several times, and drying at 60 °C in vacuum overnight. The resultant solid was denoted as $PMo_{12}@NiCo-LDH$.

Synthesis of NiCo-LDH. NiCo-LDH was prepared by the same method as PMo₁₂@NiCo-LDH, except for the replacement of PMo₁₂@ZIF-67 to ZIF-67.

Characterizations. High-resolution transmission electron microscopy (HRTEM) images were performed on a JEOL JEM-2200FS operating at 200 kV. Elemental mapping EDS spectra were recorded using energy dispersive spectroscopy attached to

JEOL JEM-2200FS. Scanning electron microscopy (SEM) images were performed on a Zeiss Supra55. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was carried out on a Shimadzu ICPS-7500 instrument. Fourier transform infrared (FT-IR) spectra were collected on a Bruker Vector 22 infrared spectrometer using the KBr pellet method at wavenumbers ranging from 4000 to 400 cm⁻¹. X-ray diffraction (XRD) patterns were collected by a Rigaku XRD-6000 diffractometer equipped with a Cu K α radiation ($\lambda = 1.5405$ Å). N₂ adsorption-desorption measurements were determined on a Micromeritics ASAP 2020 M surface area and porosity analyzer, with samples pre- degassing under vacuum at 100 °C for 6 h. X-ray photoelectron spectroscopy (XPS) spectra were performed on a monochromatized ALK exciting X-radiation (PHI Quantera SXM), which were calibrated against C 1*s* at 284.8 eV. Solid-state ultraviolet-visible (UV-vis) diffuse reflectance spectra were collected on a Beijing PGENERAL TU-1901 spectrometer, with wavelength ranging from 200 to 800 nm. *In-situ* diffuse reflectance infrared Fourier transform spectroscopy (*in-situ* DRIFT) was performed on a Bruker TENSOR II spectrometer.

*CO*₂ *photocatalytic reduction (CO*₂*PR)*. The CO₂PR was carried out in a sealed stainless reactor (40 mL) with a quartz top window for light irradiation. In a typical run, 10 mg PMo₁₂@NiCo-LDH powder was dispersed in 10 mL solution with CH₃CN : H₂O : TEOA = 6 : 2 : 2 (v/v/v), following by addition of 4.4 ×10⁻³ mmol (3.3 mg) Ru(bpy)₃Cl₂·6H₂O. The reactor was then sealed and evacuated by a vacuum pump to remove the residual air completely. High purity CO₂ was filled into the reactor, with the pressure of 0.18 MPa. Under the irradiation of visible light (400–800 nm) with continuous stirring for 1 h, the gaseous products were collected and analyzed qualitatively and quantitatively by Shimadzu GC-2014 gas chromatography equipped with both flame ionization detector (FID) and thermal conductivity detector (TCD). ¹H NMR spectra were collected on a Bruker AV400 NMR spectrometer at 400 MHz to detected the possible liquid products. The isotopic-labeled experiments were carried out with ¹³CO₂ instead of high purity ¹²CO₂ under the same condition. After irradiation for 1 h, the resultant products were collected and analyzed through gas chromatography-mass spectrometry (GC-MS, QP2020 equipped with Micropacked

column).

Electrochemical measurements. Electrochemical measurements were all performed on a CHI760A electrochemical workstation (Shanghai Chenhua, China) in a standard three-electrode quartz cell with 0.1 M Na₂SO₄ aqueous solution as the electrolyte. Electrochemical impedance spectroscopy (EIS) was recorded with carbon paper coated by PMo₁₂@NiCo-LDH or NiCo-LDH as a working electrode, Pt foil as a counter electrode, and Ag/AgCl (in saturated KCl) as a reference electrode. Transient photocurrent measurements and Mott-Schottky tests were measured with indium tin oxide (ITO) coated by PMo₁₂@NiCo-LDH or NiCo-LDH as a working electrode, Pt foil as a counter electrode, and Ag/AgCl (in saturated KCl) as a reference electrode, Pt foil as a working electrode.

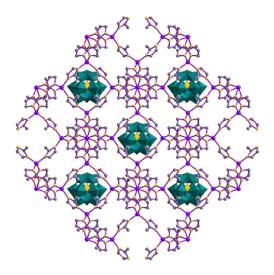
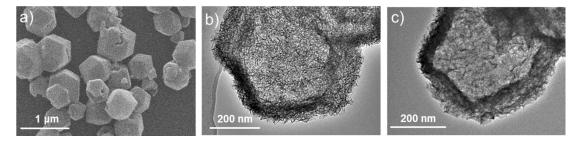



Figure S1. Topology diagram of the PMo₁₂@ZIF-67 precursor.

Figure S2. a) SEM images of PMo₁₂@ZIF-67; TEM images of **b)** as-prepared PMo₁₂@NiCo-LDH and **c)** recycled PMo₁₂@NiCo-LDH after CO₂PR.

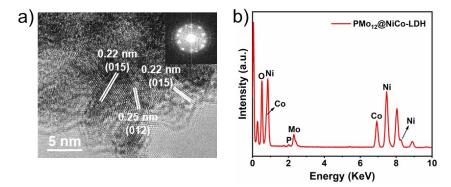


Figure S3. a) HRTEM image of $PMo_{12}@NiCo-LDH$ with corresponding FFT diffraction pattern inside; b) EDS spectrum of $PMo_{12}@NiCo-LDH$.

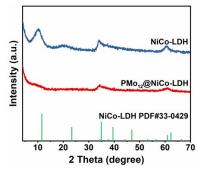
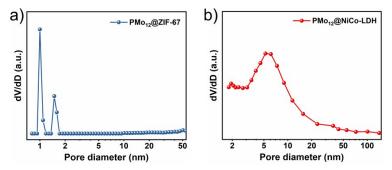



Figure S4. XRD patterns of PMo₁₂@NiCo-LDH and NiCo-LDH.

Figure S5. a) NLDFT pore size distribution profile of PMo₁₂@ZIF-67; **b)** BJH pore size distribution profile of PMo₁₂@NiCo-LDH.

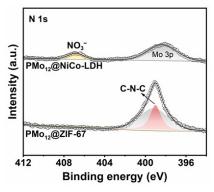


Figure S6. XPS spectra of N 1s for $PMo_{12}@ZIF-67$ and $PMo_{12}@NiCo-LDH$.

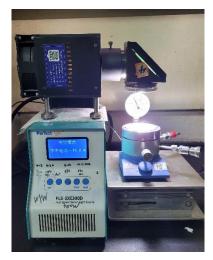
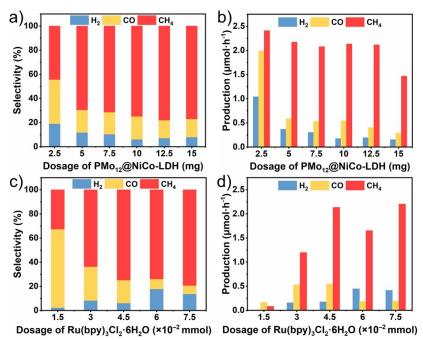
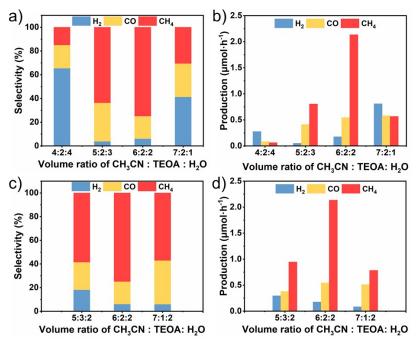




Figure S7. The figure of the experimental set up for CO_2PR .

Figure S8. a) Selectivity and **b)** production rate of H_2 , CO and CH₄ in CO₂PR with various dosage of PMo₁₂@NiCo-LDH; **c)** selectivity and **d)** production rate of H_2 , CO and CH₄ for PMo₁₂@NiCo-LDH in CO₂PR with various dosage of Ru(bpy)₃Cl₂·6H₂O.

Figure S9. a), c) Selectivity and **b), d)** production rate of H_2 , CO and CH₄ for PMo₁₂@NiCo-LDH in CO₂PR with various volume ratio of CH₃CN : TEOA : H_2O .

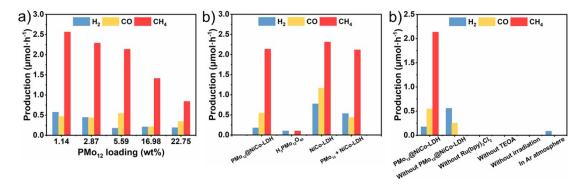


Figure S10. The influence of a) PMo_{12} loading, b) catalysts, c) reaction conditions on the production rate of H_2 , CO and CH_4 in CO_2PR .

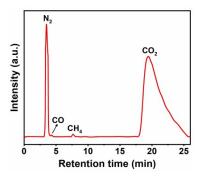
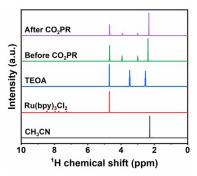
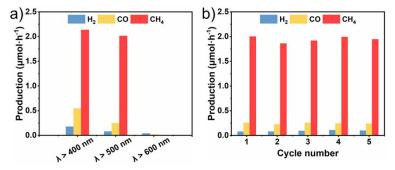
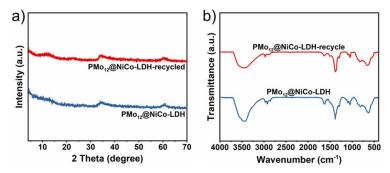
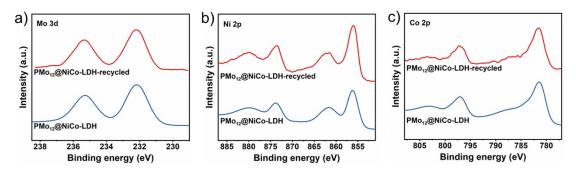
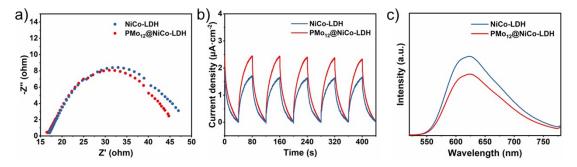



Figure S11. GC spectrum (connected to MS) of the reaction products for $PMo_{12}@NiCo-LDH$ in CO_2PR .

Figure S12. ¹H NMR spectra of CH₃CN, TEOA, Ru(bpy)₃Cl₂· $6H_2O$ and the liquid mixture of reaction system before and after CO₂PR.


Figure S13. Production rate of H₂, CO and CH₄ in CO₂PR a) under irradiation of various wavelength and b) in various cycle numbers under $\lambda > 500$ nm.

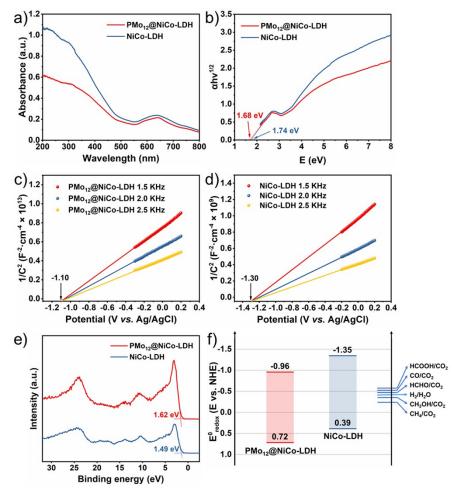

Figure S14. a) XRD patterns and **b)** FT-IR spectra of as-prepared PMo₁₂@NiCo-LDH and recycled PMo₁₂@NiCo-LDH after CO₂PR.

Figure S15. XPS spectra of **a**) Mo 3*d* **b**) Ni 2*p* and **c**) Co 2*p* for as-prepared PMo₁₂@NiCo-LDH and recycled PMo₁₂@NiCo-LDH after CO₂PR.

Figure S16. a) Electrochemical impedance spectra (EIS), **b)** photocurrent–time profiles, **c)** room-temperature photoluminescence (PL) spectra of NiCo-LDH and PMo₁₂@NiCo-LDH.

Figure S17. a) UV-vis spectra and **b)** bandgaps calculated from Tauc plots of PMo₁₂@NiCo-LDH and NiCo-LDH; Mott-Schottky plots of **c)** PMo₁₂@NiCo-LDH and **d)** NiCo-LDH. **e)** valance band XPS spectra of PMo₁₂@NiCo-LDH and NiCo-LDH; **f)** conduction band minimum (CBM), valence band maximum (VBM) of PMo₁₂@NiCo-LDH and NiCo-LDH.

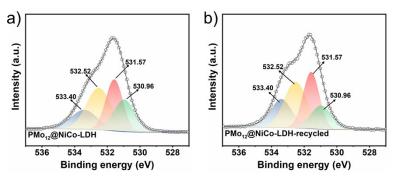


Figure S18. XPS spectra of O 1s for a) $PMo_{12}@NiCo-LDH$ and b) recycled $PMo_{12}@NiCo-LDH$ after the CO₂PR.

	S _{BET}	V _{meso}	D _p	
Catalyst	$(m^2 \cdot g^{-1})$	(cm ³ ·g ⁻¹)	(cm ³ ·g ⁻¹)	(nm)
PMo ₁₂ @ZIF-67	1187	0.15	0.55	1.0, 1.5
PMo ₁₂ @NiCo-LDH	190	0.54	_	6

Table S1. Porosity properties of PMo₁₂@ZIF-67 and PMo₁₂@NiCo-LDH.

Table S2. Comparison of CO₂PR performance for various photocatalytic system in this work and in previous literature.

Catalyst	Photosensitizer co- catalyst	Sacrificial agent	Solvent	Light source	Major product selectivity	Production rate (μmol·g ⁻¹ ·h ⁻¹)	Reference
NENU-606	$[Ru(bpy)_3]Cl_2 \cdot 6H_2O$	TEOA	H ₂ O	300 W Xe (λ > 420 nm)	CH ₄ : 85.5% CO: 14.5%	1.7478 0.2957	[2]
3D Fe-Mn POM structures	$[Ru(bpy)_3]Cl_2{\cdot}6H_2O$	TEOA	H ₂ O	280 W Xe $(\lambda = 415 \text{ nm})$	CH ₄ : 92.6% CO: 7.4%	1.440 0.115	[3]
TiO ₂ /NiAl-LDH	_	_	H ₂ O	300 W Xe Simulated- solar-light	CH ₄ : 81.8% CO: 9.9% H ₂ : 8.3%	20.56 2.48 2.08	[4]
Cu _{2-x} S/Ni-Al-LDH	_	_	H ₂ O	300 W Xe Simulated- solar-light	CH ₄ : 72.8% CO: 27.2 %	14.2 5.3	[5]

ZnCr-LDH/Ti ₃ C ₂ T _x	_	_	H ₂ O	300 W Xe $(\lambda = 385 \text{ nm})$	CH ₄ : 14% CO: 86%	19.95 μ mol g ⁻¹ 122.45 μ mol g ⁻¹	[6]
Monolayer NiAl-LDH	$[Ru(bpy)_3]Cl_2 \cdot 6H_2O$	TEOA	MeCN-H ₂ O (3 : 1 v/v)	300 W Xe (λ > 600 nm)	CH ₄ : 70.3% CO: 29.7%	103 43	[7]
HC-NiCo-LDH	[Ru(bpy) ₃]Cl ₂ ·6H ₂ O	TEOA	MeCN-H ₂ O (2 : 1 v/v)	300 W Xe $(\lambda > 400 \text{ nm})$	CH ₄ : 62.7% CO: 35.6 % H ₂ : 1.7%	560 311 29	[8]
Monolayer NiFe-LDH	[Ru(bpy) ₃]Cl ₂ ·6H ₂ O	TEOA	MeCN-H ₂ O (3 : 1 v/v)	300 W Xe $(\lambda > 400 \text{ nm})$	CH ₄ : 81.75% CO: 15.68% H ₂ : 2.57%	1.52 μmol·h ⁻¹ 0.29 μmol·h ⁻¹ 0.05 μmol·h ⁻¹	[9]
PMo ₁₂ @NiCo-LDH	[Ru(bpy) ₃]Cl ₂ ·6H ₂ O	TEOA	MeCN-H ₂ O (3 : 1 v/v)	300 W Xe (λ > 400 nm)	CH ₄ : 74.8% CO: 19.0% H ₂ : 6.2%	2.13 μmol·h ⁻¹ 0.54 μmol·h ⁻¹ 0.18 μmol·h ⁻¹	This work
PMo ₁₂ @NiCo-LDH	[Ru(bpy) ₃]Cl ₂ ·6H ₂ O	TEOA	MeCN-H ₂ O (3 : 1 v/v)	300 W Xe (λ > 500 nm)	CH ₄ : 86.2% CO: 10.5% H ₂ : 3.3%	2.01 μmol·h ⁻¹ 0.24 μmol·h ⁻¹ 0.08 μmol·h ⁻¹	This work

Reference

- L. Zhang, T. Mi, M. A. Ziaee, L. Liang and R. Wang, Hollow POM@MOF hybridderived porous Co₃O₄/CoMoO₄ nanocages for enhanced electrocatalytic water oxidation, *J. Mater. Chem. A*, 2018, 6, 1639-1647.
- [2] S.-L. Xie, J. Liu, L.-Z. Dong, S.-L. Li, Y.-Q. Lan and Z.-M. Su, Hetero-metallic active sites coupled with strongly reductive polyoxometalate for selective photocatalytic CO₂to-CH₄ conversion in water, *Chem. Sci.*, 2019, **10**, 185-190.
- [3] Y. Benseghir, A. Solé-Daura, P. Mialane, J. m. Marrot, L. Dalecky, S. Béchu, M. Frégnaux, M. Gomez-Mingot, M. Fontecave, C. Mellot-Draznieks and A. Dolbecq, Understanding the photocatalytic reduction of CO₂ with heterometallic molybdenum(V) phosphate polyoxometalates in aqueous media, *ACS Catal.*, 2022, 23, 453-464.
- [4] W.-K. Jo, S. Moru and S. Tonda, A green approach to the fabrication of a TiO₂/NiAl-LDH core–shell hybrid photocatalyst for efficient and selective solar-powered reduction of CO₂ into value-added fuels, *J. Mater. Chem. A*, 2020, **8**, 8020-8032.
- [5] X.-Y. Ji, R.-T. Guo, J.-Y. Tang, Y.-F. Miao, Z.-D. Lin, L.-F. Hong, Y. Yuan, Z.-S. Li and W.-G. Pan, Construction of full solar-spectrum-driven Cu_{2-x}S/Ni-Al-LDH heterostructures for efficient photocatalytic CO₂ reduction, *ACS Appl. Energy Mater.*, 2022, 5, 2862-2872.
- [6] B. Zhou, Y. Yang, Z. Liu, N. Wu, Y. Yan, Z. Wenhua, H. He, J. Du, Y. Zhang, Y. Zhou and Z. Zou, Boosting photocatalytic CO₂ reduction via Schottky junction with ZnCr layered double hydroxide nanoflakes aggregated on 2D Ti₃C₂T_x cocatalyst, *Nanoscale*, 2022, 14, 7538-7546.
- [7] L. Tan, S.-M. Xu, Z. Wang, Y. Xu, X. Wang, X. Hao, S. Bai, C. Ning, Y. Wang, W. Zhang, Y. K. Jo, S.-J. Hwang, X. Cao, X. Zheng, H. Yan, Y. Zhao, H. Duan and Y.-F. Song, Highly selective photoreduction of CO₂ with suppressing H₂ evolution over monolayer layered double hydroxide under irradiation above 600 nm, *Angew. Chem. Int. Ed.*, 2019, 58, 11860-11867.
- [8] J. An, T. Shen, W. Chang, Y. Zhao, B. Qi and Y.-F. Song, Defect engineering of NiColayered double hydroxide hollow nanocages for highly selective photoreduction of CO₂ to CH₄ with suppressing H₂ evolution, *Inorg. Chem. Front.*, 2021, 8, 996-1004.
- [9] S. Bai, T. Li, H. Wang, L. Tan, Y. Zhao and Y.-F. Song, Scale-up synthesis of monolayer layered double hydroxide nanosheets via separate nucleation and aging steps method for efficient CO₂ photoreduction, *Chem. Eng. J.*, 2021, **419**, 129390.