Electronic Supplementary Information

Experimental Section

Materials: Sodium nitrite (NaNO₂, 99.9%), ammonium chloride (NH₄Cl), sodium hydroxide (NaOH), sodium salicylate (C₇H₅NaO₃), trisodium citrate dehydrate (C₆H₅Na₃O₇·2H₂O), p-dimethylaminobenzaldehyde (C₉H₁₁NO), sodium nitroferricyanide dehydrate (C₅FeN₆Na₂O·2H₂O) and sodium hypochlorite solution (NaClO) were purchased from Aladdin Co., Ltd. (Shanghai, China). Sulfuric acid (H₂SO₄), hydrogen peroxide (H₂O₂), hydrochloric acid (HCl), acetone hydrazine monohydrate (N₂H₄·H₂O), and ethanol were bought from Beijing Chemical Corporation. (China). Silver nitrate (Ag(NO₃)₂·6H₂O, >98%) was purchased from Chengdu Kelong Chemical Regent Co. Ltd. Titanium plate (TP, 0.4 mm thick) was purchased from Qingyuan Metal Materials Co., Ltd (Xingtai, China). All reagents used in this work are analytical grade without further purification.

Preparation of Ag@TiO₂/TP: TP ($2.0 \times 3.0 \text{ cm}^2$) was firstly sonicated in HCl, acetone, and water for 10 min, respectively. The pretreated TP was then put into 5 M NaOH solutions in Teflon-lined autoclave and heated at 180°C for 24 h to get Na₂Ti₂O₅/TP. Subsequently, the obtained Na₂Ti₂O₅/TP was immersed in 0.1 M Ag(NO₃)₂·6H₂O for 10 h to exchange Na⁺ with Ag⁺, followed by washing with water and dried. Finally, AgTi₂O₅/TP was annealed at 500°C for 2h under Ar/H₂ atmosphere, and Ag@TiO₂/TP was eventually obtained. As a control, TiO₂/TP was synthesized by the identical fabrication process of Ag@TiO₂/TP, but immersing the Na₂Ti₂O₅/TP into diluted HCl to exchange Na⁺ to H⁺.

Characterizations: X-ray diffraction (XRD) data were acquired by diffraction instrument with a Cu K α radiation (Shimadzu XRD-6100). SEM measurements were carried out on a GeminiSEM 300 scanning electron microscope (ZEISS, Germany) at an accelerating voltage of 5 kV. TEM image was gotten by a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. X-ray photoelectron spectroscopy (XPS) data were acquired by an X-ray photoelectron spectrometer

(ESCALABMK II) with Mg as the exciting source. UV–vis spectrophotometer (Shimadzu UV-1800) was used to gain the absorbance data. Gas chromatography analysis was performed on a Shimadzu GC-2014C with Ar as carrier gas.

Electrochemical measurements: The electrolysis was performed in an H-type cell separated by a Nafion 117 membrane, using Ag@TiO₂/TP (1 ×0.5 cm²) as the working electrode with a CHI 660E electrochemical workstation (Shanghai, Chenhua). A commercial graphite rod and Hg/HgO were used as counter and reference electrodes. The two compartments of H-type cell were filled with 35 mL Ar-saturated electrolyte solution (0.1 M NaOH with and without 0.1 M NO₂⁻). The curves of linear sweep voltammetry (LSV) were recorded at a scan rate of 10 mV s⁻¹ from 0.2 to -0.8 V. The chronoamperometry was conducted at different potentials and cycle tests for 1 h, and the stability tests for 12-h. All potentials reported in our work were converted to reversible hydrogen electrode via calibration with the following equation: E (RHE) = E (Hg/HgO) + (0.098+0.0591×pH) V.

Determination of NH₃: The NH₃ concentration in the solution was determined by colorimetry (the obtained electrolyte was diluted 40 times) using the indophenol blue method.¹ In detail, 2 mL of the solution after reaction was mixed with 2 mL of 1 M NaOH coloring solution containing 5% C₇H₅NaO₃ and 5% C₆H₅Na₃O₇·2H₂O. Then, 1 mL oxidizing solution of 0.05 M NaClO and 0.2 mL catalyst solution of C₅FeN₆Na₂O (1 wt%) were added to the above solution. After standing in the dark for 2 h, the UV– vis absorption spectra were measured. The concentration of NH₃ was identified using the absorbance at a wavelength of 655 nm. The concentrations of 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 ppm in 0.1 M NaOH solution. The fitting curve (y =0.377 x+0.06791, R²=0.99794) shows good linear relation of absorbance value with NH₃ concentration.

Determination of N₂H₄: The N₂H₄ was estimated by the Watt and Chrisp method.² The color reagent was a solution of 18.15 mg mL⁻¹ of C₉H₁₁NO in the mixed solvent of HCl and ethanol (V/V: 1/10). In detail, 2 mL electrolyte was added into 2 mL color reagent for 15 min under stirring. The absorbance of such solution was measured to quantify the hydrazine yields by the standard curve of hydrazine (y = 0.69 x + 0.0658, $R^2 = 0.99989$).

Determination of N₂ and H₂: N₂ and H₂ were quantified by gas chromatography (GC).

Calculations of NH₃ FE and NH₃ yield:

The amount of NH_3 (m_{NH3}) was calculated by the following equation:

$$m_{\rm NH3} = [\rm NH_3] \times \rm V$$

NH₃ FE was calculated by the following equation:

 $FE = (6 \times F \times [NH_3] \times V) / (M_{NH3} \times Q) \times 100\%$

NH₃ yield was calculated using the following equation:

$$NH_3$$
 yield = ([NH_3] × V) / (M_{NH3} × t × A)

Where F is the Faraday constant (96485 C mol⁻¹), [NH₃] is the NH₃ concentration, V is the volume of electrolyte in the anode compartment (35 mL), M_{NH3} is the molar mass of NH₃ molecule, Q is the total quantity of applied electricity, t is the electrolysis time (1 h), and A is the geometric area of the working electrode (1 × 0.5 cm²).

The partial current density of NH₃ (*j*NH₃) was calculated as:

$$jNH_3 = FE_{NH3} \times I_{ii}$$

where I_{it} is the average current density (mA cm⁻²) during the potentiostatic tests at given potentials.

Fig. S1. XRD pattern of TiO₂/TP.

Fig. S2. SEM image of TP.

Fig. S3. SEM images of TiO₂/TP.

	4-					Map Sum Spectrum	
	Ē						
cps/eV	2	Element	Line Type	Apparent Concentration	k Ratio	Wt%	Atomic %
		0	K series	22.71	0.07643	24.07	57.00
		Ti	K series	40.21	0.40211	37.14	29.37
		Ag	L series	38.09	0.38092	38.79	13.63
		Total:				100.00	100.00
		O M		Ag Ti Ti			
	0		2	4	6	8	keV

Fig. S4. EDX spectrum of Ag@TiO₂/TP.

Fig. S5. (a) UV–vis absorption spectra and (b) corresponding calibration curve used for calculation of NH_3 concentration.

Fig. S6. (a) UV–vis absorption spectra and (b) corresponding calibration curve used for calculation of N_2H_4 concentration.

Fig. S7. LSV curves of TiO₂/TP and Ag/TP in 0.1 M NaOH with/without 0.1 M NO₂⁻.

Fig. S8. Chronoamperometry curves of Ag@TiO₂/TP for the NO₂-RR at different applied potentials.

Fig. S9. UV–vis absorption spectra of N_2H_4 of $Ag@TiO_2/TP$ at different given potentials.

Fig. S10. NO_2 -RR performance of Ag@TiO₂/TP under different test conditions.

Fig. S11. (a) CA curves and (b) corresponding UV–vis spectra of Ag@TiO₂/TP for NH₃ generation during recycling tests at -0.5 V.

Fig. S12. LSV curves of Ag@TiO₂/TP in 0.1 M NaOH with 0.1 M NO₂⁻ before and after long-time electrolysis.

Fig. S13. XRD patterns of Ag@TiO₂/TP before and after long-time electrolysis.

Fig. S14. SEM images of $Ag@TiO_2/TP$ after long-time electrolysis.

Catalyst	Electrolyte	NH ₃ yield (μg h ⁻¹ cm ⁻²)	FE (%)	Potential (V vs. RHE)	Ref
Ag@TiO ₂ /TP	0.1 M NaOH (0.1 M NO ₂ ⁻)	8,743.1	96.4	-0.50	This work
Ag@NiO/CC	0.1 M NaOH (0.1 M NO ₂ ⁻)	5,751	96.1	-0.70	3
TiO _{2-x}	0.1 M NaOH (0.1 M NO ₂ ⁻)	7,898	92.7	-0.70	4
P-TiO ₂	0.5 M Na ₂ SO ₄ (50 ppm NO ₃ ⁻)	9,533.6	90.6	-0.60	5
CoB nanoarray	$0.2 \text{ M Na}_2 \text{SO}_4$ (400 ppm NO_2^-)	3,962.7	3,962.7	-0.70	6
MnO ₂ nanoarrays	0.1 M Na ₂ SO ₄ (5 mM NO ₂ ⁻)	1.46×10 ⁻¹⁰	6	-1.75	7
Ni -NSA- V_{Ni}	0.2 M Na ₂ SO ₄ (200 ppm NO ₂ ⁻)	4,011.7	96.1	-0.54	8
Cu ₃ P NA/CF	0.1 M PBS (0.1 M NO ₂ ⁻)	1,626.6	$\begin{array}{c} 91.2 \pm \\ 2.5 \end{array}$	-0.50	9
Ni@MDC	0.1 M NaOH (0.1 M NO ₂ ⁻)	5,100	65.4	-0.80	10

Table S1. Comparison of NH_3 yield and FE of $Ag@TiO_2/TP$ with other reported NO_2 -RR electrocatalysts.

References

- R. E. Ruther, R. J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction, *Nat. Mater.*, 2013, 12, 836–841.
- L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, S. R, Tannenbaum, Analysis of nitrate, nitrite, and [¹⁵N] nitrate in biological fluids, *Anal. Biochem.*, 1982, 126, 131–138.
- 3 Q. Liu, G. Wen, D. Zhao, L. Xie, S. Sun, L. Zhang, Y. Luo, A. A. Alshehri, M. S. Hamdy, Q. Kong, X. Sun, Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis, *J. Colloid Interface Sci.*, 2022, 623, 513–519.
- D. Zhao, J. Liang, J. Li, L. Zhang, K. Dong, L. Yue, Y. Luo, Y. Ren, Q. Liu, M. S. Hamdy, Q. Kong, Q. Liu, X. Sun, A TiO_{2-x} nanobelt array with oxygen vacancies: an efficient electrocatalyst toward nitrite conversion to ammonia, *Chem. Commun.*, 2022, 58, 3669–3672.
- 5 L. Ouyang, X. He, S. Sun, Y. Luo, D. Zheng, J. Chen, Y. Li, Y. Lin, Q. Liu, A. M. Asirif, X. Sun, Enhanced electrocatalytic nitrite reduction to ammonia over P-doped TiO₂ nanobelt array, *J. Mater. Chem. A*, 2022, **10**, 23494–23498.
- 6 L. Hu, D. Zhao, C. Liu, Y. Liang, D. Zheng, S. Sun, Q. Li, Q. Liu, Y. Luo, Y. Liao, L. Xie, X. Sun, Amorphous CoB nanoarray as a high-efficiency electrocatalyst for nitrite reduction to ammonia, *Inorg. Chem. Front.*, 2022, 9, 6075–6079.
- 7 R. Wang, Z. Wang, X. Xiang, R. Zhang, X. Shi, X. Sun, MnO₂ nanoarrays: an efficient catalyst electrode for nitrite electroreduction toward sensing and NH₃ synthesis applications, *Chem. Commun.*, 2018, **54**, 10340–10342.
- 8 C. Wang, W. Zhou, Z. Sun, Y. Wang, B. Zhang, Y. Yu, Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode, *J. Mater. Chem. A*, 2021, **9**, 239– 243.

- 9 J. Liang, B. Deng, Q. Liu, G. Wen, Q. Liu, T. Li, Y. Luo, A. A. Alshehri, K. A. Alzahrani, D. Ma, X. Sun, High-efficiency electrochemical nitrite reduction to ammonium using a Cu₃P nanowire array under ambient conditions, *Green Chem.*, 2021, 23, 5487–5493.
- X. He, X. Li, X. Fan, J. Li, D. Zhao, L. Zhang, S. Sun, Y. Luo, D. Zheng, L. Xie,
 A. M. Asiri, Q. Liu, X. Sun, Ambient electroreduction of nitrite to ammonia over
 Ni nanoparticle supported on molasses-derived carbon sheets, *ACS Appl. Nano Mater.*, 2022, 5, 14246–14250.