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Fig. S1. SEM images of Fe;04/C sample.



Fig. S2. (a) TEM and (b) SEM images of FeS, sample.



—FeSz
—FeS /C@VS,

Intensity (a.u.)

3330 3340 3350 3360 3370 3380 3390
H (Gauss)

Fig. S3. EPR image of FeS, and FeS,/C@VS, samples.
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Fig. S4. XRD pattern spectra of Fe;0,/C sample.

The sharp crystalline peaks at 26 of 30.1°, 35.5°, 37.0°, 43.3°, 53.3°, 57.3°and

62.9°can be well attributed to (220), (311), (222), (400), (422), (511) and (440) planes

of Fe;04 (PDF# 19-0629).!
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Fig. S5. Raman spectra of FeS,/C@VS,; and FeS,/C samples.

In the raman spectra of FeS,/C@VS,, two peaks located at 1314 and 1589 cm’!
can be observed corresponding to the D and G peaks of the carbon. The characteristic
peaks located at 337.79 and 370.13 cm! corresponded to the E, vibration mode of S
atoms and the A, vibration mode of S-S phase stretching in FeS,. The characteristic
peak located at 283.61 cm! corresponded to E,, vibration mode of VS, Compared
with FeS,/C, the higher Ip:Ig value of FeS,/C@VS, implied its affluent defective

active sites after the coupling of VS,.
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Fig. S6. XPS survey spectrum of FeS,/C@VS, sample, the high-resolution spectrum of (a) C 1s,
(b) N 1s, (c) S 2p and (d) V 2p. Comparison of (e) Fe 2p spectrum with FeS,/C and FeS,/C@VS,
samples.

The C 1s spectra exhibited three peaks located at 284.53, 285.33 and 286.55 eV
corresponding to the binding energies of C-C, C-O and C=0, respectively. The peaks
of pyridinic N, pyrrolic N and graphitic N were plotted at 398.51 eV, 399.79 eV and
400.75 eV, respectively. The peaks located at 162.35 eV and 163.82 eV was
originated from the FeS,@VS, heterojunction, while the C-S-C peak located at
164.92 eV further demonstrated the tight bonding of the carbon with the sulfide. The
last peak located at 169.21 eV was assigned to S-O. The V peaks at 516.6 and 523.7
eV are ascribed to V 2ps;; and V 2py ), corresponding to the V4" oxidation state.

The peak of (Fe-S) 2ps., Fe 2psp, (Fe-S) 2py» and Fe 2py); in the FeS,/C shifted
from the high-energy region (708.06, 712.44, 719.80 and 726.49 eV) to the low-
energy region (707.69, 712.19, 719.58 and 726.34 eV) in FeS,/C@VS, (A E;=-0.37
eV, AE,=-0.25 eV, AE;=-0.22 eV, A E4=-0.15 eV). The shift of the binding energy
in the intimate heterojunction material confirmed that the electrons can be transferred

from VS, to FeS, arisen from the build-in electronic-field between FeS,/C and VS,.3
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Fig. S7. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution profiles of the
FeS,, FeS,/C and FeS,/C@VS, samples.

The specific surface area and pore size distribution of the sample can be further
investigated accurately by N, adsorption-desorption analysis. From the isothermal
curves, it can be obtained that the FeS,/C@VS, had larger absorbance than that of
FeS, and FeS,/C, indicating that the FeS, multi-particle and VS, nanoflowers
provided a high specific surface area of 102.8 m? g'!, and there were hysteresis loops
in both curves, which were consistent with the type isothermal IV-curve. Therefore, it
was a typical mesoporous structure. The hysteresis loops were closely related to the
form of pores, and the hysteresis loop of FeS,/C@VS, was HI type, indicating that its
was cumulate pores composed of nanoparticles, which was consistent with the results
of TEM images. Also, its pore size was about 7-15 nm, this structure can promote the
electrolyte ion transport during the electrochemical process and thus improved the

rate performance of the battery.
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Fig. S8. (a) Comparison of Fe K-edge XANES spectra and (b) Fourier transform of the EXAFS
spectra of Fe foil, FeO, FeS, and FeS,/C@VS, samples.
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Fig. S9. Galvanostatic discharge/charge curves of (a) FeS,/C@VS,, (b) FeS,/C, (c) FeS, and (d)

VS; in the initial loops.
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Fig. S10. Rate capability of FeS,/C and FeS,/C@VS; electrodes at high current densities.
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Fig. S11. TEM images of (a) FeS,/C@VS, and (b) FeS,/C electrodes after cycles.

12



15 1500
(a) (b) @ FeS /COth — Slope 256
] FBG]:‘C@VSZ o0th ——Slope 182
1200 12004 3 Fes jc 100th — slopedsz
- ] Fﬁ:fc@\lsl1ﬂmh ~—— Slope 278
£ 900 — 900
= E
o § g £
iy 600 g '% 500
d i
o FeSjC@VS, 0th a2
300 @ Fes/c oth 088383 00—
] FESAIC@VSE 100th W_Q_H—Q—H——Q—‘
g g o Fes/c tootn N
o 500 1000 1500 2000 1.0 1.5 20 25 3.0
2'(ohm) w""‘!(sm]
(c) d
Ry Ry Zw (@) Ry R, Re Zy
— 1 |
| ,, [ | | L= [
» 28
CPE CPE

CPE
Fig. S12. (a) EIS plots of FeS,/C and FeS,/C@VS,; electrodes before and after 100 cycles, (b)
corresponding linear fits of the Z' versus 2 in the low-frequency region. The corresponding

equivalent circuit model (c) before and (d) after 100 cycles.
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Fig. S13. Cyclic voltammograms of (a) FeS, and (b) FeS,/C electrodes, (c) comparison of peak

voltages of FeS,-based electrodes.
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Fig. S14. (a) CV curves at various scan rates from 0.1 to 1.0 mV s7!, (b) the plots of log(i) vs.
log(v), (c) the ratios of capacitive contribution at various rates, (d) CV curves with capacitive
contribution at 1.0 mV s! of FeS,/C@VS..

15



1.5 0.0
(ﬂ) —0.1mV/s (b) b values
——0.2mVF:
1.0 o_4$w§ reLD < -0.2{ * PeakB:0.77
e PeakD:0.79
044 * PeakE:082
v PeakF:0.76
0.64
0.84
1.0
1.5 T T T T T T T 1.2 - T T r - T
00 05 10 15 20 25 30 10 08 06 04 02 00
Voltage/V (vs.Na/Na¥) Log (scan rate / mv s”)
(c) — (d) 10
;‘E 120] [ _JDiffusion —1.0mvis
E I 1 capacitive
G 1004 0.54
5 —
3 w0 . T
.E = 0.04
S 604 E
< =
2 404 ]
.g QO 05
o 20
<
[$] o -1.04
041 0.2 0.4 0.8 10 0.0 05 10 1.5 20 25 3.0

Scan rate (mV/s) Voltage/V (vs.Na/Na*)

Fig. S15. (a) CV curves at various scan rates from 0.1 to 1.0 mV s7!, (b) the plots of log(i) vs.
log(v), (c) the ratios of capacitive contribution at various rates, (d) CV curves with capacitive
contribution at 1.0 mV s! of FeS,/C.
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Fig. S16. (a) Discharge curves of the GITT test for FeS,/C and FeS,/C@VS, electrodes and
comparison of the corresponding Na* diffusion coefficient. (b) The detailed voltage response

during a single current pulse.
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Fig. S17. The electrochemical performance of NVP/C cathodes. (a) Galvanostatic charge-

discharge curves, (b)rate capacity.

The NVP/C cathodes were tested with a voltage window of 2.0-3.9 V under 0.05
A g'l, it displayed a discharge capacity of 104.3 mA h g'! in the first loop. With the
elevating current density from 0.05 to 2.0 A g, it showed excellent rate behaviors

with average discharge capacities of 104.7, 98.7, 92.3, 85.0, 75.8 and 68.5 mA h g,

respectively.
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Fig. S18. The cycling performance at 0.5 and 1.0 A g! of the full cells.
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Table S1. Composition content (wt%) of FeS,/C@VS, sample obtained by ICP-MS.
FCSZ VSZ C

Content(%) 73.2 15.2 11.6

20



Table S2. The kinetic parameters of FeS,/C and FeS,/C@VS, samples after 100 cycles.

Materials Cycle R Ry Re¢
0 5.53 - 300.95
FeS,/C
100 7.62 11.63 589.67
0 4.71 - 198.69
FGSZ/C@VSZ
100 5.76 8.69 320.26
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Table S3. A comprehensive comparison with the recent references involving various Fe-based

electrodes for SIBs.

Materials Current Capacity High current | Capacity Ref.
rate (A g1) | (mAhg?') rate (A g) (mAh g)
FeS,/MoS,-rGO 0.1 460 2 380 4
Core-shell FeS@carbon 0.1 498 2 295 5
FeS,@C nanoboxes 0.1 560 2 470 6
FeS,/C nanospheres 0.1 400 - - 7
FeS@C-N microspheres 0.1 656 0.8 365 8
FeS,@C nanorods 0.1 365 2 235 9
FeS,@FeSe, microspheres 0.1 596 2 426 10
FeS,.«Sex 0.1 370 2 264 11
FeS,@G@CNF 0.1 436 2 312 12
FeS,/C@VS$, 0.1 542 2 453 This work
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