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Fig. S1. SEM images of Fe3O4/C sample.
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Fig. S2. (a) TEM and (b) SEM images of FeS2 sample.
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Fig. S3. EPR image of FeS2 and FeS2/C@VS2 samples.
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Fig. S4. XRD pattern spectra of Fe3O4/C sample.

The sharp crystalline peaks at 2θ of 30.1°, 35.5°, 37.0°, 43.3°, 53.3°, 57.3°and 

62.9°can be well attributed to (220), (311), (222), (400), (422), (511) and (440) planes 

of Fe3O4 (PDF# 19-0629).1
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Fig. S5. Raman spectra of FeS2/C@VS2 and FeS2/C samples.

In the raman spectra of FeS2/C@VS2, two peaks located at 1314 and 1589 cm-1 

can be observed corresponding to the D and G peaks of the carbon. The characteristic 

peaks located at 337.79 and 370.13 cm-1 corresponded to the Eg vibration mode of S 

atoms and the Ag vibration mode of S-S phase stretching in FeS2. The characteristic 

peak located at 283.61 cm-1 corresponded to E1g vibration mode of VS2. Compared 

with FeS2/C, the higher ID:IG value of FeS2/C@VS2 implied its affluent defective 

active sites after the coupling of VS2.
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Fig. S6. XPS survey spectrum of FeS2/C@VS2 sample, the high-resolution spectrum of (a) C 1s, 
(b) N 1s, (c) S 2p and (d) V 2p. Comparison of (e) Fe 2p spectrum with FeS2/C and FeS2/C@VS2 

samples.

The C 1s spectra exhibited three peaks located at 284.53, 285.33 and 286.55 eV 

corresponding to the binding energies of C-C, C-O and C=O, respectively. The peaks 

of pyridinic N, pyrrolic N and graphitic N were plotted at 398.51 eV, 399.79 eV and 

400.75 eV, respectively. The peaks located at 162.35 eV and 163.82 eV was 

originated from the FeS2@VS2 heterojunction, while the C-S-C peak located at 

164.92 eV further demonstrated the tight bonding of the carbon with the sulfide. The 

last peak located at 169.21 eV was assigned to S-O. The V peaks at 516.6 and 523.7 

eV are ascribed to V 2p3/2 and V 2p1/2, corresponding to the V4+ oxidation state.

The peak of (Fe-S) 2p3/2, Fe 2p3/2, (Fe-S) 2p1/2 and Fe 2p1/2 in the FeS2/C shifted 

from the high-energy region (708.06, 712.44, 719.80 and 726.49 eV) to the low-

energy region (707.69, 712.19, 719.58 and 726.34 eV) in FeS2/C@VS2 ( E1=-0.37 Δ

eV, E2=-0.25 eV, E3=-0.22 eV, E4=-0.15 eV). The shift of the binding energy Δ Δ Δ

in the intimate heterojunction material confirmed that the electrons can be transferred 

from VS2 to FeS2 arisen from the build-in electronic-field between FeS2/C and VS2.3
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Fig. S7. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution profiles of the 
FeS2, FeS2/C and FeS2/C@VS2 samples.

The specific surface area and pore size distribution of the sample can be further 

investigated accurately by N2 adsorption-desorption analysis. From the isothermal 

curves, it can be obtained that the FeS2/C@VS2 had larger absorbance than that of 

FeS2 and FeS2/C, indicating that the FeS2 multi-particle and VS2 nanoflowers 

provided a high specific surface area of 102.8 m2 g-1, and there were hysteresis loops 

in both curves, which were consistent with the type isothermal IV-curve. Therefore, it 

was a typical mesoporous structure. The hysteresis loops were closely related to the 

form of pores, and the hysteresis loop of FeS2/C@VS2 was HI type, indicating that its 

was cumulate pores composed of nanoparticles, which was consistent with the results 

of TEM images. Also, its pore size was about 7-15 nm, this structure can promote the 

electrolyte ion transport during the electrochemical process and thus improved the 

rate performance of the battery.
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Fig. S8. (a) Comparison of Fe K-edge XANES spectra and (b) Fourier transform of the EXAFS 
spectra of Fe foil, FeO, FeS2 and FeS2/C@VS2 samples.
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Fig. S9. Galvanostatic discharge/charge curves of (a) FeS2/C@VS2, (b) FeS2/C, (c) FeS2 and (d) 
VS2 in the initial loops.
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Fig. S10. Rate capability of FeS2/C and FeS2/C@VS2 electrodes at high current densities.
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Fig. S11. TEM images of (a) FeS2/C@VS2 and (b) FeS2/C electrodes after cycles.
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Fig. S12. (a) EIS plots of FeS2/C and FeS2/C@VS2 electrodes before and after 100 cycles, (b) 
corresponding linear fits of the Z′ versus ω−1/2 in the low-frequency region. The corresponding 

equivalent circuit model (c) before and (d) after 100 cycles.
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Fig. S13. Cyclic voltammograms of (a) FeS2 and (b) FeS2/C electrodes, (c) comparison of peak 
voltages of FeS2-based electrodes.
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Fig. S14. (a) CV curves at various scan rates from 0.1 to 1.0 mV s−1, (b) the plots of log(i) vs. 
log(v), (c) the ratios of capacitive contribution at various rates, (d) CV curves with capacitive 

contribution at 1.0 mV s-1 of FeS2/C@VS2.
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Fig. S15. (a) CV curves at various scan rates from 0.1 to 1.0 mV s−1, (b) the plots of log(i) vs. 
log(v), (c) the ratios of capacitive contribution at various rates, (d) CV curves with capacitive 

contribution at 1.0 mV s-1 of FeS2/C.
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Fig. S16. (a) Discharge curves of the GITT test for FeS2/C and FeS2/C@VS2 electrodes and 
comparison of the corresponding Na+ diffusion coefficient. (b) The detailed voltage response 

during a single current pulse.
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Fig. S17. The electrochemical performance of NVP/C cathodes. (a) Galvanostatic charge-
discharge curves, (b)rate capacity.

The NVP/C cathodes were tested with a voltage window of 2.0-3.9 V under 0.05 

A g-1, it displayed a discharge capacity of 104.3 mA h g-1 in the first loop. With the 

elevating current density from 0.05 to 2.0 A g-1, it showed excellent rate behaviors 

with average discharge capacities of 104.7, 98.7, 92.3, 85.0, 75.8 and 68.5 mA h g-1, 

respectively.
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Fig. S18. The cycling performance at 0.5 and 1.0 A g-1 of the full cells.
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Table S1. Composition content (wt%) of FeS2/C@VS2 sample obtained by ICP-MS.
FeS2 VS2 C

Content(%) 73.2 15.2 11.6
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Table S2. The kinetic parameters of FeS2/C and FeS2/C@VS2 samples after 100 cycles.
Materials Cycle Rs Rf Rct

0 5.53 - 300.95
FeS2/C

100 7.62 11.63 589.67

0 4.71 - 198.69
FeS2/C@VS2

100 5.76 8.69 320.26
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Table S3. A comprehensive comparison with the recent references involving various Fe-based 
electrodes for SIBs.

Materials
Current 

rate (A g-1)

Capacity 

(mAh g-1)

High current 

rate (A g-1)

Capacity 

(mAh g-1)
Ref.

FeS2/MoS2-rGO 0.1 460 2 380 4

Core-shell FeS@carbon 0.1 498 2 295 5

FeS2@C nanoboxes 0.1 560 2 470 6

FeS2/C nanospheres 0.1 400 - - 7

FeS@C-N microspheres 0.1 656 0.8 365 8

FeS2@C nanorods 0.1 365 2 235 9

FeS2@FeSe2 microspheres 0.1 596 2 426 10

FeS2-xSex 0.1 370 2 264 11

FeS2@G@CNF 0.1 436 2 312 12

FeS2/C@VS2 0.1 542 2 453 This work
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