Electronic Supplementary Information (ESI)

Liquid-Phase Epitaxial Growth of Multiple MOF Thin Films with Highly

Lattice Mismatch

Li-Mei Chang^{a,b}, Zhi-Zhou Ma^{a,b}, Jiandong Huang^a, Zhi-Gang Gu^{b,c,d*}

^aCollege of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

Email: zggu@fjirsm.ac.cn

^cInstitute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.

^dFujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.

Table of Contents

Materials and instrumentations

Preparation of MUD SAMs based substrates

Fabrication of SURMOFs on substrate surfaces

Scheme S1. The preparation setups for mono- varietal (a), bi-varietal (b) and tri-varietal) SURMOFs prepared by LEP layer by layer pump methods.

Figure S1. The preparation process of MUD SAMs.

Figure S2. IR spectra of SURMOF-a.

Figure S3. IR spectra of SURMOF-b.

Figure S4. IR spectra of SURMOF-c.

Figure S5. SEM images of SURMOF-a (a), SURMOF-b (b), SURMOF-c (c).

Figure S6. (a) Preparation process of **SURMOF-a on b**; out-of-plane (b) and in-plane XRD patterns (c) and as well as SEM image (d) of **SURMOF-a on b**.

Figure S7. (a) Preparation process of **SURMOF-b on a**; out-of-plane (b) and in-plane XRD patterns (c) and as well as SEM image (d) of **SURMOF-b on a**.

Figure S8. (a) Preparation process of **SURMOF-a on c**; out-of-plane (b) and in-plane XRD patterns (c) and as well as SEM image (d) of **SURMOF-a on c**.

Figure S9. (a) Preparation process of **SURMOF-b on c**; out-of-plane (b) and in-plane XRD patterns (c) and as well as SEM image (d) of **SURMOF-b on c**.

Figure S10. (a) Preparation process of **SURMOF-c on b**; out-of-plane (b) and in-plane XRD patterns (c) and as well as SEM image (d) of **SURMOF-c on b**.

Figure S11. IR spectra of SURMOF-a on b, SURMOF-a on b, SURMOF-c on a, SURMOF-a on c, SURMOF-b on c, respectively.

Figure S12. (a) Preparation process of **SURMOF-a on b on c**; out-of-plane (b) and in-plane XRD patterns (c) of **SURMOF-a on b on c**.

Figure S13. SEM images of SURMOF-c on b on a (a) and SURMOF-a on b on c (b).

Figure S14. IR spectra of SURMOF-c on b on a (a) and SURMOF-a on b on c (b).

Figure S15. The lattice constant mismatch analysis between **SURMOF-a** and **SURMOF-b** [(a2-a1)/a1] and between **SURMOF-a** and **SURMOF-c** [(a3-a1)/a1].

Materials and instrumentations

All of the chemicals were used after purchasing without further purification. Out-of-plane XRD measurements was carried out on Bruker D8 advance equipped with a Si-strip detector (PSD Lynxeye (C)) using Cu K_{α 1} radiation. In-plane XRD measurements were carried out using Bruker D8 Discover. IR spectra were recorded by using a using a FTIR spectrometer (Bruker VERTEX 80v). Scanning electron microscope (SEM) images for the morphology of thin films were recorded using a Philips XL30 (FEI Co., Eindhoven, NL) field emission gun environmental scanning electron microscope (FEG-ESEM). A Q-Sense E4 QCM was used to study the vapor adsorption of SURMOFs.

Preparation of MUD SAMs based substrates

Self-assembled monolayers (SAMs) were fabricated by immersing 150 nm Au/2 nm Ti/evaporated on Si wafers or commercially available Au substrates in ethanolic solutions of MUD (1mmol/L) (MUD=11-mercapto-1-undecanol). 1mM/L ethanolic solutions of MUD ethanolic solutions was used for SAMs preparation by 72 h immersion and then rinsed with ethanol and dried under nitrogen flux to obtain -OH group functionalized Au substrate.

Fabrication of SURMOFs on substrate surfaces

The SURMOFs used in the present work were grown using the layer by layer autoarm pump method. The -OH group functionalized Au substrates was put in the sample cell, and then subsequently filled with $Cu(OAc)_2$ and $H_2L/dabco$ (L = bdc, bpc and tpdc) ethanolic solutions in the sample cell for 30 min at 50 °C. There was 2 min ethanol washing in each step. Then 30 repeated cycles of preparation process resulted in the formation of homogeneous SURMOFs SURMOF-a, -b, -c.

For further prepare bi-varietal SURMOFs, the pre-prepared mono-varietal SURMOF was used for growth substrate, then this layer by layer pump process allows us to separately control the $Cu(OAc)_2$ and organic linker L2 deposition on the mono-varietal SURMOF to form bi-varietal SURMOF.

To prepare tri-varietal SURMOFs, the pre-prepared bi-varietal SURMOF was used for growth substrate, then this layer by layer pump process allows us to separately control the $Cu(OAc)_2$ and organic linker L3 deposition on the bi-varietal SURMOF to form tri-varietal SURMOF.

Scheme S1. The preparation setups for mono- varietal (a), bi-varietal (b) and tri-varietal) SURMOFs prepared by LEP layer by layer pump methods.

Figure S1. The preparation process of MUD SAMs.

Figure S2. IR spectra of SURMOF-a.

Figure S3. IR spectra of SURMOF-b.

Figure S4. IR spectra of SURMOF-c.

Figure S5. SEM images of SURMOF-a (a), SURMOF-b (b), SURMOF-c (c).

Figure S6. (a) Preparation process of **SURMOF-a on b**; out-of-plane (b) and in-plane XRD patterns (c) and as well as SEM image (d) of **SURMOF-a on b**.

Figure S7. (a) Preparation process of **SURMOF-b on a**; out-of-plane (b) and in-plane XRD patterns (c) and as well as SEM image (d) of **SURMOF-b on a**.

Figure S8. (a) Preparation process of **SURMOF-a on c**; out-of-plane (b) and in-plane XRD patterns (c) and as well as SEM image (d) of **SURMOF-a on c**.

Figure S9. (a) Preparation process of **SURMOF-b on c**; out-of-plane (b) and in-plane XRD patterns (c) and as well as SEM image (d) of **SURMOF-b on c**.

Figure S10. (a) Preparation process of **SURMOF-c on b**; out-of-plane (b) and in-plane XRD patterns (c) and as well as SEM image (d) of **SURMOF-c on b**.

Figure S11. IR spectra of SURMOF-a on b, SURMOF-a on b, SURMOF-c on a, SURMOF-a on c, SURMOF-b on c, respectively.

Figure S12. (a) Preparation process of **SURMOF-a on b on c**; out-of-plane (b) and in-plane XRD patterns (c) of **SURMOF-a on b on c**.

Figure S13. SEM images of SURMOF-c on b on a (a) and SURMOF-a on b on c (b).

Figure S14. IR spectra of SURMOF-c on b on a (a) and SURMOF-a on b on c (b).

Figure S15. The lattice constant mismatch analysis between **SURMOF-a** and **SURMOF-b** [(a2-a1)/a1] and between **SURMOF-a** and **SURMOF-c** [(a3-a1)/a1].