## **Electronic Supplementary Information (ESI) for**

## $Cd(NH_2SO_3)_2 \cdot xH_2O$ (x = 0, 2): new sulfamates with unique coordination environment and reversible phase transitions

Xuefei Wang, Jihyun Lee, Yang Li, Yunseung Kuk and Kang Min Ok\*

## **Table of contents**

| Figure S1. As-grown single crystals of Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> ·2H <sub>2</sub> O                  | S2        |
|------------------------------------------------------------------------------------------------------------------------------|-----------|
| Figure S2. Rietveld refinements                                                                                              | S2        |
| Figure S3. Pawley phase fitting for the annealed Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> ·2H <sub>2</sub> O sample |           |
| Figure S4. SEM-EDX                                                                                                           |           |
| Figure S5. The converted UV-vis spectra by using Kubelka-Munk function                                                       | S4        |
| Figure S6. Electronic band structures                                                                                        |           |
| Figure S7. Calculated birefringence                                                                                          | S6        |
| Table S1. Crystallographic data                                                                                              |           |
| Table S2. Fractional atomic coordinates, equivalent isotropic displacement parameters and bond valence                       | sum (BVS) |
| for the non-H atoms                                                                                                          |           |
| Table S3. Selected bond lengths (Å) and angles (°) for Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> ·2H <sub>2</sub> O. | S8        |
| Table S4. Selected bond lengths (Å) and angles (°) for Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> .                   |           |
| Table S5. Hydrogen Bonds for Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> ·2H <sub>2</sub> O.                           |           |
| Table S6. Hydrogen Bonds for Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub>                                               |           |
| Table S7. The direction and magnitude of the dipole moments in the [CdO <sub>6</sub> ]                                       |           |
| Table S8. Calculated and experimental residual weight in TGA.                                                                |           |
| Table S9. Weight and atomic ratios obtained from SEM-EDX.                                                                    |           |
| Table S10. Elemental analysis                                                                                                |           |
| Table S11. Assigned vibration peaks in IR spectra                                                                            | S11       |
| Table S12. Investigation on the coordination of cations for sulfamates                                                       | S11       |
| References                                                                                                                   |           |



Figure S1. As-grown single crystals of  $Cd(SO_3NH_2)_2 \cdot 2H_2O$  with the sizes up to  $0.15 \times 0.15 \times 2.7$  cm<sup>3</sup>.



Figure S2. Rietveld refinements results for (a) Cd(SO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>·2H<sub>2</sub>O and (b) Cd(SO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>.



Figure S3. Pawley phase fitting for the annealed (a)  $Cd(SO_3NH_2)_2 \cdot 2H_2O$  and (b)  $Cd(SO_3NH_2)_2$  samples at 250 °C for 12 h.



Figure S4. SEM-EDX for (a) Cd(SO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>·2H<sub>2</sub>O and (b) Cd(SO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>.



**Figure S5.** Experimental band gap obtained from the converted UV-vis spectra by using Kubelka-Munk function for (a)  $Cd(SO_3NH_2)_2 \cdot 2H_2O$  and (b)  $Cd(SO_3NH_2)_2$ .



Figure S6. Electronic band structures for (a)  $Cd(SO_3NH_2)_2 \cdot 2H_2O$  and (b)  $Cd(SO_3NH_2)_2$ .



Figure S7. Calculated birefringence for (a)  $Cd(SO_3NH_2)_2 \cdot 2H_2O$  and (b)  $Cd(SO_3NH_2)_2$ .

|                                               | Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> ·2H <sub>2</sub> O | Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> |
|-----------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|
| Formula weight                                | 340.60                                                               | 304.57                                            |
| Temp/K                                        | 298.0                                                                | 298.0                                             |
| Crystal system                                | triclinic                                                            | orthorhombic                                      |
| Space group                                   | Pl                                                                   | $P2_{1}2_{1}2_{1}$                                |
| a/Å                                           | 5.4674(5)                                                            | 6.9140(4)                                         |
| $b/{ m \AA}$                                  | 5.4729(5)                                                            | 6.9380(4)                                         |
| $c/{ m \AA}$                                  | 7.1520(6)                                                            | 13.5784(7)                                        |
| $\alpha / ^{\circ}$                           | 102.547(3)                                                           | 90                                                |
| $eta /^{\circ}$                               | 103.452(3)                                                           | 90                                                |
| $\gamma^{/\circ}$                             | 94.970(4)                                                            | 90                                                |
| $V/\text{\AA}^3$                              | 201.03(3)                                                            | 651.35(6)                                         |
| Ζ                                             | 1                                                                    | 4                                                 |
| $ ho_{ m calc} m g/cm^3$                      | 2.813                                                                | 3.106                                             |
| $\mu/\mathrm{mm}^{-1}$                        | 3.257                                                                | 3.980                                             |
| F(000)                                        | 166.0                                                                | 584.0                                             |
| Crystal size/mm <sup>3</sup>                  | $0.112\times0.101\times0.046$                                        | $0.114 \times 0.078 \times 0.038$                 |
| 2 theta range/°                               | 6.042 to 56.688                                                      | 6 to 59.172                                       |
| Index renges                                  | $-7 \le h \le 7, -7 \le k \le 7, -7$                                 | $-9 \le h \le 9, -9 \le k \le 9, -9$              |
| muex ranges                                   | $9 \le l \le 9$                                                      | $18 \le l \le 18$                                 |
| Reflns collected                              | 9157                                                                 | 23643                                             |
| Indonandant rafing                            | 1013                                                                 | 1838                                              |
| independent remis                             | $(R_{\rm int} = 0.0730)$                                             | $(R_{\rm int} = 0.1146)$                          |
| Data/restraints/par<br>am                     | 1013/1/72                                                            | 1838/4/117                                        |
| Goof on $F^2$                                 | 1.134                                                                | 1.110                                             |
| $R_1^{a}/wR_2^{b}$ [I $\geq 2\sigma$ (I)]     | 0.0349/0.0536                                                        | 0.0399/0.0757                                     |
| $R_1^{a}/wR_2^{b}$ [all data]                 | 0.0439/0.0558                                                        | 0.0462/0.0778                                     |
| Largest diff<br>peak/hole / e Å <sup>-3</sup> | 0.79/-0.68                                                           | 1.00/-1.07                                        |
| Flack parameter                               | N/A                                                                  | 0.08(4)                                           |

Table S1. Crystallographic data of Cd(SO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>·2H<sub>2</sub>O and Cd(SO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>.

 $\overline{{}^{a}R_{1} = \Sigma ||F_{o}| - |F_{o}||/\Sigma |F_{o}|} \cdot {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w F_{o}^{4}]^{1/2}$ 

| Atom       | x          | У                    | Z                                                | U(eq)     | BVS  |
|------------|------------|----------------------|--------------------------------------------------|-----------|------|
|            |            | Cd(SO <sub>3</sub> N | $(\mathrm{H}_2)_2 \cdot 2\mathrm{H}_2\mathrm{O}$ |           |      |
| Cd1        | 10000      | 10000                | 5000                                             | 13.66(13) | 2.08 |
| <b>S</b> 1 | 3918.5(17) | 6870.5(17)           | 2396.2(13)                                       | 13.9(2)   | 6.04 |
| O1         | 4046(5)    | 9022(5)              | 1561(4)                                          | 23.1(6)   | 1.67 |
| O2         | 2980(5)    | 7302(5)              | 4183(4)                                          | 19.6(6)   | 1.54 |
| 03         | 2658(5)    | 4529(5)              | 988(4)                                           | 22.9(6)   | 1.61 |
| O4         | 10695(5)   | 8523(6)              | 7752(4)                                          | 25.2(7)   | 0.39 |
| N1         | 6980(6)    | 6499(7)              | 3237(5)                                          | 16.2(7)   | 1.59 |
|            |            | Cd(SO                | <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub>      |           |      |
| Cd1        | 7617.4(7)  | -208.8(7)            | 1946.5(4)                                        | 11.50(16) | 2.09 |
| <b>S</b> 1 | 7039(2)    | 79(3)                | 4455.4(12)                                       | 11.3(4)   | 6.05 |
| S2         | 7528(2)    | 4979(2)              | 2316.6(12)                                       | 11.7(3)   | 6.14 |
| 01         | 5400(9)    | -1012(10)            | 4795(4)                                          | 22.3(14)  | 1.65 |
| O2         | 7947(8)    | -799(8)              | 3583(4)                                          | 18.2(12)  | 1.87 |
| 03         | 6719(10)   | 2123(9)              | 4346(5)                                          | 22.1(14)  | 1.63 |
| O4         | 5590(8)    | 5271(11)             | 2691(4)                                          | 23.4(13)  | 1.96 |
| 05         | 7845(9)    | 3118(8)              | 1882(4)                                          | 19.0(13)  | 1.99 |
| 06         | 8176(9)    | 6556(9)              | 1694(4)                                          | 17.2(14)  | 1.93 |
| N1         | 8664(9)    | -94(10)              | 5366(5)                                          | 13.8(13)  | 1.63 |
| N2         | 9009(9)    | 5056(11)             | 3289(4)                                          | 13.1(13)  | 1.61 |

**Table S2.** Fractional atomic coordinates (×10<sup>4</sup>), equivalent isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) and bond valence sum (BVS) for the non-H atoms in Cd(SO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>·2H<sub>2</sub>O and Cd(SO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>. U<sub>eq</sub> is defined as 1/3 of the trace of the orthogonalized U<sub>ij</sub> tensor.

Table S3. Selected bond lengths (Å) and angles (°) for Cd(SO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>·2H<sub>2</sub>O.

| Tuble Ber Beleeted                   | solia lenguis (11) ana an |                                      | 21120:     |  |
|--------------------------------------|---------------------------|--------------------------------------|------------|--|
| Cd1-O2 <sup>1</sup>                  | 2.380(3)                  | O4-Cd1-O4 <sup>3</sup>               | 180.0      |  |
| Cd1-O2 <sup>2</sup>                  | 2.380(3)                  | O4 <sup>3</sup> -Cd1-N1              | 88.40(12)  |  |
| Cd1-O4                               | 2.252(3)                  | O4-Cd1-N1 <sup>3</sup>               | 88.40(12)  |  |
| Cd1-O4 <sup>3</sup>                  | 2.252(3)                  | O4 <sup>3</sup> -Cd1-N1 <sup>3</sup> | 91.60(12)  |  |
| Cd1-N1 <sup>3</sup>                  | 2.329(3)                  | O4-Cd1-N1                            | 91.60(12)  |  |
| Cd1-N1                               | 2.329(3)                  | N1-Cd1-O2 <sup>2</sup>               | 84.40(10)  |  |
| S1-O1                                | 1.435(3)                  | N1 <sup>3</sup> -Cd1-O2 <sup>1</sup> | 84.40(10)  |  |
| S1-O2                                | 1.465(3)                  | N1 <sup>3</sup> -Cd1-O2 <sup>2</sup> | 95.60(10)  |  |
| S1-O3                                | 1.447(3)                  | N1-Cd1-O2 <sup>1</sup>               | 95.60(10)  |  |
| S1-N1                                | 1.688(3)                  | N1 <sup>3</sup> -Cd1-N1              | 180.0      |  |
|                                      |                           | O1-S1-O2                             | 114.10(17) |  |
| O2 <sup>2</sup> -Cd1-O2 <sup>1</sup> | 180.00(12)                | O1-S1-O3                             | 114.61(17) |  |
| O4-Cd1-O2 <sup>2</sup>               | 82.92(10)                 | 01-S1-N1                             | 104.58(18) |  |
| O4-Cd1-O2 <sup>1</sup>               | 97.08(10)                 | O2-S1-N1                             | 103.60(17) |  |
| O4 <sup>3</sup> -Cd1-O2 <sup>1</sup> | 82.92(10)                 | O3-S1-O2                             | 111.78(16) |  |
| O4 <sup>3</sup> -Cd1-O2 <sup>2</sup> | 97.08(10)                 | O3-S1-N1                             | 106.99(17) |  |

<sup>1</sup>1-*x*, 2-*y*, 1-*z*; <sup>2</sup>1+*x*, +*y*, +*z*; <sup>3</sup>2-*x*, 2-*y*, 1-*z*; <sup>4</sup>-1+*x*, +*y*, +*z* 

| Tuble 5 II Selected                  | oolia lengens (11) ana e |                                       |          |  |
|--------------------------------------|--------------------------|---------------------------------------|----------|--|
| Cd1-O6 <sup>1</sup>                  | 2.303(6)                 | O4 <sup>4</sup> -Cd1- N1 <sup>3</sup> | 79.5(2)  |  |
| Cd1-O4 <sup>4</sup>                  | 2.296(5)                 | O2-Cd1-O6 <sup>1</sup>                | 87.3(2)  |  |
| Cd1-O2                               | 2.271(5)                 | O2-Cd1-O4 <sup>4</sup>                | 85.0(2)  |  |
| Cd1-O5                               | 2.315(6)                 | O2-Cd1-O5                             | 102.1(2) |  |
| Cd1-N2 <sup>2</sup>                  | 2.362(6)                 | O2-Cd1-N2 <sup>2</sup>                | 92.7(2)  |  |
| Cd1-N1 <sup>3</sup>                  | 2.330(6)                 | O2-Cd1-N1 <sup>3</sup>                | 162.8(2) |  |
| S2-O6                                | 1.453(6)                 | O5-Cd1-N2 <sup>2</sup>                | 81.4(2)  |  |
| S2-O4                                | 1.447(6)                 | O5-Cd1-N1 <sup>3</sup>                | 84.3(2)  |  |
| S2-O5                                | 1.437(6)                 | N1 <sup>3</sup> -Cd1-N2 <sup>2</sup>  | 104.1(2) |  |
| S2-N2                                | 1.672(6)                 | O6-S2-N2                              | 104.3(4) |  |
| S1-O2                                | 1.472(5)                 | O4-S2-O6                              | 112.6(4) |  |
| S1-O3                                | 1.443(6)                 | O4-S2-N2                              | 106.6(3) |  |
| S1-O1                                | 1.439(6)                 | O5-S2-O6                              | 113.0(4) |  |
| S1-N1                                | 1.675(6)                 | O5-S2-O4                              | 114.3(4) |  |
|                                      |                          | O5-S2-N2                              | 105.0(4) |  |
| O61-Cd1-O5                           | 162.7(2)                 | O2-S1-N1                              | 106.2(3) |  |
| O61-Cd1-N22                          | 83.7(3)                  | O3-S1-O2                              | 112.9(3) |  |
| O61-Cd1-N13                          | 90.8(2)                  | O3-S1-N1                              | 104.4(4) |  |
| O4 <sup>4</sup> -Cd1-O6 <sup>1</sup> | 109.6(2)                 | O1-S1-O2                              | 112.1(4) |  |
| O44-Cd1-O5                           | 85.9(2)                  | O1-S1-O3                              | 115.4(4) |  |
| O44-Cd1- N22                         | 166.4(2)                 | O1-S1-N1                              | 104.7(4) |  |

Table S4. Selected bond lengths (Å) and angles (°) for  $Cd(SO_3NH_2)_2$ .

<sup>1</sup>+*x*, -1+*y*, +*z*; <sup>2</sup>2-*x*, -1/2+*y*, 1/2-*z*; <sup>3</sup>3/2-*x*, -*y*, -1/2+*z*; <sup>4</sup>1-*x*, -1/2+*y*, 1/2-*z*; <sup>5</sup>+*x*, 1+*y*, +*z*; <sup>6</sup>1-*x*, 1/2+*y*, 1/2-*z*; <sup>7</sup>2-*x*, 1/2+*y*, 1/2-*z*; <sup>8</sup>3/2-*x*, -*y*, 1/2+*z* 

**Table S5.** Hydrogen Bonds for  $Cd(SO_3NH_2)_2 \cdot 2H_2O$ .

| D-HA                 | d <sub>D-Н</sub> (Å) | d <sub>H-A</sub> (Å) | d <sub>D-A</sub> (Å) |
|----------------------|----------------------|----------------------|----------------------|
| O4-H1O3 <sup>2</sup> | 0.85                 | 1.99                 | 2.803(4)             |
| O4-H2O1 <sup>1</sup> | 0.85                 | 2.07                 | 2.849(4)             |
| O4-H2O1 <sup>3</sup> | 0.85                 | 2.40                 | 2.950(4)             |
| N1-H3O3 <sup>4</sup> | 0.85(5)              | 2.22(5)              | 3.008(4)             |
| N1-H4O2 <sup>1</sup> | 0.82(6)              | 2.25(6)              | 3.064(5)             |

<sup>1</sup>1-*x*, 2-*y*, 1-*z*; <sup>2</sup>1+*x*, +*y*, +*z*; <sup>3</sup>2-*x*, 2-*y*, 1-*z*; <sup>4</sup>-1+*x*, +*y*, +*z* 

Table S6. Hydrogen Bonds for Cd(SO<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>.

| D-HA                  | d <sub>D-Н</sub> (Å) | d <sub>H-A</sub> (Å) | d <sub>D-A</sub> (Å) |
|-----------------------|----------------------|----------------------|----------------------|
| N1-H1AO3 <sup>1</sup> | 0.85(3)              | 2.19(5)              | 2.977(9)             |
| N2-H2AO3              | 0.85(3)              | 2.16(5)              | 2.951(9)             |
| N1-H1BO1 <sup>2</sup> | 0.85(3)              | 2.13(3)              | 2.965(9)             |
| N2-H2BO5 <sup>3</sup> | 0.85(3)              | 2.37(13)             | 3.049(9)             |

<sup>1</sup>1/2+*x*, 1/2-*y*, 1-*z*; <sup>2</sup>1/2+*x*, -1/2-*y*, 1-*z*; <sup>3</sup>2-*x*, 1/2+*y*, 1/2-*z* 

|                                                                      |                                  |         |        |         | ma     | agnitude                               |
|----------------------------------------------------------------------|----------------------------------|---------|--------|---------|--------|----------------------------------------|
| Compound                                                             | species                          | x (a)   | y (b)  | z (c)   | debye  | 10 <sup>-4</sup> esu∙cm/Å <sup>3</sup> |
| Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> ·2H <sub>2</sub> O | Cd1O <sub>4</sub> N <sub>2</sub> | 0       | 0      | 0       | 0      | 0                                      |
| Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub>                    | Cd1O <sub>4</sub> N <sub>2</sub> | -0.3495 | 0.9054 | -0.1302 | 0.9792 | 60                                     |

**Table S7.** The direction and magnitude of the dipole moments in the  $[CdO_6]$  for  $Cd(SO_3NH_2)_2 \cdot 2H_2O$  and  $Cd(SO_3NH_2)_2$ 

**Table S8.** Calculated and experimental residual weight for  $Cd(SO_3NH_2)_2 \cdot 2H_2O$  and  $Cd(SO_3NH_2)_2$  in TGA.

|                  |                  | Cd(SO <sub>3</sub> N | $H_2)_2 \cdot 2H_2O$ | Cd(SC    | $_{3}NH_{2})_{2}$ |
|------------------|------------------|----------------------|----------------------|----------|-------------------|
| Temperature (°C) | Product          | Cal. (%)             | Exp. (%)             | Cal. (%) | Exp. (%)          |
| 135              | $Cd(SO_3NH_2)_2$ | 89.42                | 90.68                | 100      | 100               |
| 650              | $CdSO_4$         | 61.20                | 60.04                | 68.44    | 67.83             |

**Table S9.** Weight and atomic ratios for (a)  $Cd(SO_3NH_2)_2 \cdot 2H_2O$  and (b)  $Cd(SO_3NH_2)_2$  obtained from SEM-EDX.

|         | Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> ·2H <sub>2</sub> O |          | Cd(S0 | $O_3NH_2)_2$ |
|---------|----------------------------------------------------------------------|----------|-------|--------------|
| Element | Wt %                                                                 | Atomic % | Wt %  | Atomic %     |
| Cd      | 32.47                                                                | 7.04     | 29.69 | 6.29         |
| S       | 14.41                                                                | 10.96    | 17.41 | 12.94        |
| 0       | 48.24                                                                | 73.51    | 43.62 | 64.97        |
| Ν       | 4.88                                                                 | 8.50     | 9.29  | 15.80        |
| Total   | 100                                                                  |          | ]     | 00           |

Table S10. Elemental analysis for  $Cd(SO_3NH_2)_2 \cdot 2H_2O$  and  $Cd(SO_3NH_2)_2$ .

|         | Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> ·2H <sub>2</sub> O |          | Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> |          |
|---------|----------------------------------------------------------------------|----------|---------------------------------------------------|----------|
| Element | Cal. (%)                                                             | Exp. (%) | Cal. (%)                                          | Exp. (%) |
| S       | 18.83                                                                | 19.6074  | 21.06                                             | 21.5858  |
| Ν       | 8.22                                                                 | 8.7123   | 9.20                                              | 9.5022   |
| Н       | 2.37                                                                 | 2.3893   | 1.32                                              | 1.3512   |

|                     |                                               | Cd(SO <sub>3</sub> NH <sub>2</sub> ) <sub>2</sub> ·2H <sub>2</sub> O | $Cd(SO_3NH_2)_2$                            |
|---------------------|-----------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|
| Functional<br>group | Vibration type                                | Wavenum                                                              | ber (cm <sup>-1</sup> )                     |
| H <sub>2</sub> O    | stretching                                    | 3441, 3368                                                           |                                             |
| NH <sub>2</sub>     | stretching                                    | 3210, 3175, 3053                                                     | 3222, 3172, 3079                            |
| H <sub>2</sub> O    | bending                                       | 1622                                                                 |                                             |
| NH <sub>2</sub>     | bending                                       | 1532                                                                 | 1558, 1542                                  |
| $SO_3$              | Antisymmetric and<br>symmetric<br>stretching  | 1278, 1198, 1096, 1045                                               | 1300, 1265, 1235, 1194,<br>1079, 1050, 1027 |
| NH <sub>2</sub>     | rocking and<br>wagging                        | 1149                                                                 | 1151                                        |
| S-N                 |                                               | 773                                                                  | 779                                         |
| SO <sub>3</sub>     | Antisymmetric and<br>symmetric<br>deformation | 651                                                                  | 645                                         |

Table S11. Assigned vibration peaks for  $Cd(SO_3NH_2)_2 \cdot 2H_2O$  and  $Cd(SO_3NH_2)_2$ .

**Table S12.** Investigation on the coordination of cations for sulfamates and the M-N (M = metal cations) bond lengths.

| Compound                                                               | MO <sub>x</sub> polyhedra      | M-N bond length (Å)  |
|------------------------------------------------------------------------|--------------------------------|----------------------|
| $Li(NH_2SO_3)^1$                                                       | [LiO <sub>4</sub> ]            |                      |
| $Na(NH_2SO_3)^2$                                                       | [NaO <sub>6</sub> ]            |                      |
| $Cs(NH_2SO_3) (Pnma)^3$                                                | $[CsO_7]$                      |                      |
| $Mg(NH_2SO_3)_2 \cdot 4H_2O^4$                                         | $[MgO_6]$                      |                      |
| $Mg(NH_2SO_3)_2 \cdot 3H_2O^4$                                         | $[MgO_6]$                      |                      |
| $Ca(NH_2SO_3)_2 \cdot 4H_2O^4$                                         | [CaO <sub>8</sub> ]            |                      |
| $Ca(NH_2SO_3)_2 \cdot H_2O^4$                                          | [CaO <sub>7</sub> ]            |                      |
| $Sr(NH_2SO_3)_2 \cdot 4H_2O^4$                                         | $[SrO_8]$                      |                      |
| $Sr(NH_2SO_3)_2 \cdot H_2O^4$                                          | [SrO <sub>9</sub> ]            |                      |
| $Sr(NH_2SO_3)_2 (Pc)^{4,5}$                                            | [SrO <sub>9</sub> ]            |                      |
| LiCs(NH <sub>2</sub> SO <sub>3</sub> ) <sub>2</sub> <sup>6</sup>       | $[LiO_4] + [CsO_8]$            |                      |
|                                                                        |                                |                      |
| $K(NH_2SO_3)^7$                                                        | $[KO_6N_2]$                    | K-N: 3.082           |
| $LiK(NH_2SO_3)_2^6$                                                    | $[LiO_4] + [KO_8N]$            | K-N: 2.901           |
| KNO <sub>3</sub> SO <sub>3</sub> NH <sub>3</sub> <sup>8</sup>          | $[KO_8N]$                      | K-N: 3.332           |
| $Rb(NH_2SO_3)^9$                                                       | $[RbO_7N_2]$                   | Rb-N: 3.172, 3.280   |
| LiRb(NH <sub>2</sub> SO <sub>3</sub> ) <sub>2</sub> <sup>6</sup>       | $[LiO_4] + [RbO_9] + [RbO_9N]$ | Rb-N: 3.135          |
| $Cs(NH_2SO_3) (P2_1/c)^3$                                              | $[CsO_8N]$                     | Cs-N: 3.376          |
| $Sr(NH_2SO_3)_2 (P2_1)^4$                                              | $[SrO_8N]$                     | Sr-N: 2.982          |
| $Ba(NH_2SO_3)_2^{4,5}$                                                 | $[BaO_{10}N]$                  | Ba-N: 3.126 or 3.117 |
| $Cd(NH_2SO_3)_2 \cdot 2H_2O^{This work}$                               | $[CdO_4N_2]$                   | Cd-N: 2.329          |
| Cd(NH <sub>2</sub> SO <sub>3</sub> ) <sub>2</sub> <sup>This work</sup> | $[CdO_4N_2]$                   | Cd-N: 2.330, 2.362   |

## References

- 1 J. Stade, P. Held and L. Bohatý, Crystal growth, crystal structure and physical properties of lithium sulfamate Li[NH<sub>2</sub>SO<sub>3</sub>], *Cryst. Res. Technol.*, 2001, **36**, 347-360.
- 2 R. Manickkavachagam and R. K. Rajaram, Crystal structure of anhydrous sodium sulphamate, *Z. Kristallogr. Cryst. Mater.*, 1984, **168**, 179-186.
- 3 T. Fukami, T. Kyan, K. Nakano and R. H. Chen, Crystal structure and phase transition of single crystalline CsNH<sub>2</sub>SO<sub>3</sub>, *Crys. Res. Technol.*, 2011, **46**, 287-291.
- 4 P. Gross, Y. Zhang, L. Bayarjargal, B. Winkler and H. A. Höppe, New alkaline-earth amidosulfates and their unexpected decomposition to S<sub>4</sub>N<sub>4</sub>, *Dalton Trans.*, 2022, **51**, 11737-11746.
- 5 X. Hao, M. Luo, C. Lin, G. Peng, F. Xu and N. Ye, M(NH<sub>2</sub>SO<sub>3</sub>)<sub>2</sub> (M=Sr, Ba): two deep-ultraviolet transparent sulfamates exhibiting strong second harmonic generation responses and moderate birefringence, *Angew. Chem. Int. Ed.*, 2021, **60**, 7621-7625.
- 6 A. Meinhart, E. Haussühl, L. Bohatý and E. Tillmanns, Crystal structures of sulfamates MeLi(NH<sub>2</sub>SO<sub>3</sub>)<sub>2</sub> (Me: K, Rb and Cs) and physical properties of KLi(NH<sub>2</sub>SO<sub>3</sub>)<sub>2</sub> (refractive indices, thermal expansion, elastic properties), *Z. Kristallogr. Cryst. Mater.*, 2001, **216**, 513 -521.
- 7 T. M. S. G. W. Cox, V. M. Padmanabhan, N. T. Ban, M. K. Chung and A. J. Surjadi, A neutron diffraction study of potassium sulphamate, KSO<sub>3</sub>NH<sub>2</sub>, *Acta Cryst.*, 1967, **23**, 578-581.
- 8 H. Tian, C. Lin, X. Zhao, S. Fang, H. Li, C. Wang, N. Ye and M. Luo, Design of a new ultraviolet nonlinear optical material KNO<sub>3</sub>SO<sub>3</sub>NH<sub>3</sub> exhibiting an unexpected strong second harmonic generation response, *Mater. Today Phys.*, 2022, 28, 100849.
- 9 J. Schreuer, Crystal structure of rubidium sulfamate, RbH<sub>2</sub>NSO<sub>3</sub>, Z. Kristallogr. New Cryst. Struct., 1999, **214**, 305-305.